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Measurement results (and, more generally, estimates) are never absolutely accurate: there
is always an uncertainty, the actual value x is, in general, different from the estimate ex.

Sometimes, we know the probability of different values of the estimation error ∆x
def
= ex− x,

sometimes, we only know the interval of possible values of ∆x, sometimes, we have interval
bounds on the cdf of ∆x. To compare different measuring instruments, it is desirable to know
which of them brings more information – i.e., it is desirable to gauge the amount of infor-
mation. For probabilistic uncertainty, this amount of information is described by Shannon’s
entropy; similar measures can be developed for interval and other types of uncertainty. In this
paper, we analyze the computational complexity of the problem of estimating information
amount under different types of uncertainty.

Keywords: amount of information; uncertainty; probabilistic uncertainty; interval
uncertainty; entropy; computational complexity

1. Introduction

Uncertainty is inevitable. For each type of information that we are soliciting,
there are several ways to acquire this information.

For example, if we are interested in measuring the value of a physical quantity
x, we may use different types of sensors. No matter how accurate the sensor, the
measured value x̃ is, in general, different from the actual value x of the measured
quantity.

Types of uncertainty: in brief. For different sensors, we have different type of
information about this difference ∆x

def= x̃− x:
In some cases, we know which values of ∆x are possible and what is the frequency

of each of the different possible values. In other words, we know a probability distri-
bution on ∆x. This type of uncertainty is usually called a probabilistic uncertainty.
It is reasonable to describe the corresponding probability distribution by a cumu-
lative distribution function (cdf, for short) F (t) def= Prob(x ≤ t).

In other cases, the only information we have is an upper bound ∆ on the measure-
ment error. In this case, after we got the measured value x̃, the only information
that we have about the actual (unknown) value x of the measured quantity is that
x belongs to the interval [x̃−∆, x̃ + ∆]. This is the case of interval uncertainty.

So far, we have described two extreme cases:

∗Corresponding author. Email: vladik@utep.edu

ISSN: 0308-1079 print/ISSN 1563-5104 online
c© 2010 Taylor & Francis
DOI: 10.1080/0308107YYxxxxxxxx
http://www.informaworld.com



January 16, 2010 17:54 International Journal of General Systems tr09-37a

2 Vladik Kreinovich and Gang Xiang

• Probabilistic uncertainty describes the case when we have a complete infor-
mation about the probability distribution.

• Interval uncertainty corresponds to the case when we have no information
about the probabilities.

In most practical situations, we have some information about the probabilities.
As we have mentioned, to get a complete description of a probability distribution,

we need to know the values of cdf F (t) for all possible real numbers t. When we
have a partial information about the probabilities, this means that we only have
a partial information about the values F (t). In other words, for every t, instead
of the actual; (unknown) value F (t), we only know the interval [F (t), F (t)] that
contains the (unknown) actual value F (t). In other words, we have a probability
box (p-box, for short) that contains the actual (unknown) cdf F (t) (Ferson 2002,
Ferson et al. 2003).

In measurements, the p-box is probably the most general description of possible
uncertainty. In many practical situations, however, we cannot get all the infor-
mation from measurements, we must also use human expertise. The accuracy of
human expertise is rarely described solely in terms of guaranteed bounds. For ex-
pert estimates, in addition to guaranteed bounds on ∆x and on F (t), we also have
expert estimates that provide better bounds but with limited confidence.

For example, by looking at a medical image such as an X-ray image, an expert
medical doctor can guarantee that the size of the tumor is, say, between 1 and
2 cm. However, with 80% certainty, she can say that the size is between 1.2 and
1.7 cm.

To take such uncertainty into consideration, we can use fuzzy techniques. For
example, a nested family of intervals corresponding to different levels of certainty
forms a fuzzy number (the intervals are the α-cuts of this fuzzy number). For p-
boxes, we have, similarly, a nested family of p-boxes corresponding to different
levels of certainty – i.e., a fuzzy-valued cdf.

Need to compare different types of uncertainty. Often, there is a need to compare
different types of uncertainty. For example, we may have two sensors: one with a
smaller bound on a systematic (interval) component of the measurement error, the
other with the smaller bound on the standard deviation of the random component
of the measurement error. If we can only afford one of these sensors, which one
should we buy? Which of the two sensors brings us more information about the
measured signal?

To be able to make such decisions, we must be able to compare which of the
uncertainties corresponding to the two sensors carries more information – and for
that, we must be able to gauge this amount of information.

Resulting problems. To gauge the amount of information, we must have an
algorithm for computing the corresponding amount of information. For the result
of this algorithm to be meaningful, the corresponding expression for the amount
of information must be well-justified. So, we face two important problems:

• to select (and justify) an appropriate expression for the amount of information,
and

• to find efficient algorithms for computing the selected expression.

At first glance, it may sound as if these two problems are largely independent, and
can be solved separately. However, because of the practical nature of the problem,
these problems are actually closely related: for an expression to be meaningful,
it has to be efficiently computable. In other words, efficient computability is one
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of the most important requirements for selecting an expression for the amount of
information.

In view of this relation, in this paper, we describe both the justification of the
corresponding expression(s) and the algorithms for computing these expressions.

Traditional amount of information: brief reminder. The traditional Shannon’s
notion of the amount of information is based on defining information as the (aver-
age) number of “yes”-“no” (binary) questions that we need to ask so that, starting
with the initial uncertainty, we will be able to completely determine the object.

After each binary question, we can have 2 possible answers. So, if we ask q binary
questions, then, in principle, we can have 2q possible results. Thus, if we know that
our object is one of n objects, and we want to uniquely pinpoint the object after
all these questions, then we must have 2q ≥ n. In this case, the smallest number of
questions is the smallest integer q that is ≥ log2(n). This smallest number is called
a ceiling and denoted by dlog2(n)e.

For discrete probability distributions, we get the standard formula for the average
number of questions −∑

pi · log2(pi). For the continuous case, we can estimate
the average number of questions that are needed to find an object with a given
accuracy ε – i.e., divide the whole original domain into sub-domains of radius ε
and diameter 2ε.

For example, if we start with an interval [a, b] of width b − a, then we need to
subdivide it into n ∼ (b− a)/(2ε) sub-domains, so we must ask

log2(n) ∼ log2(b− a)− log2(ε)− 1

questions. In the limit, the term that does not depend on ε leads to log2(b − a).
For continuous probability distributions, we get the standard Shannon’s expression
log2(n) ∼ S − log2(2ε), where S = − ∫

ρ(x) · log2 ρ(x) dx.

How to extend these formulas to p-boxes etc.? Axiomatic approach. To extend
the formulas for information to more general uncertainty, i.e., to come up with
generalized information theory, several researchers use an axiomatic approach: they
find properties of information, and look for generalizations that satisfy as many
of these properties as possible; see, e.g. (Klir and Wierman 1999) and (Kosheleva
1998).

This approach has led to many interesting results, but sometimes, there are
several possible generalizations, so which of them should we choose?

Our idea. A natural idea is to choose the definition that kind of coincides with
the average number of binary questions that we need to ask.

Since we want to extend the information to the case when probabilities are not
known exactly, the average number of questions may also depend on which exactly
distribution is actually there. So, it is reasonable to consider the worst-case average
number of questions – this is in line with the definition for intervals.

Comment. As we have mentioned, for this idea to be workable, we need to check
that this worst-case average number of questions can be efficiently computed.

What we do in this paper. In this paper, we describe how the above idea can be
transformed into a formal definition of the amount of information corresponding
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to different types of uncertainty, and how to compute the corresponding amounts
of information.

In particular, we show that for many important types of uncertainty, this worst-
case average number of questions can indeed be efficiently computed – and there-
fore, this measure is not only theoretically reasonable, it can be applied to practical
problems.

One such application is given in this paper.

Comment. It is well known that practical applications are often more complex
than the corresponding (somewhat simplified) theoretical models. Not surprisingly,
our application also goes beyond simply counting the (worst-case) number of ques-
tions.

Bibliographic comment. Several of our results first appeared in (Ceberio et al.
2006a,b, Kreinovich et al. 2005, Xiang et al. 2006, 2007).

2. Traditional Amount of Information: Detailed Reminder

Our objective is to extend estimates of the average number of binary questions
from the probability distributions to a more general case. To do that, let us recall,
in detail, how this number is estimated for probability distributions. The need for
such a reminder comes from the fact that while most researchers are familiar with
Shannon’s formula for the entropy, most researchers are not aware how this formula
was (or can be) derived.

Discrete case: no information about probabilities. Let us start with the simplest
situation when we know that we have n possible alternatives A1, . . . , An, and we
have no information about the probability (frequency) of different alternatives. Let
us show that in this case, the smallest number of binary questions that we need to
determine the alternative is indeed q

def= dlog2(n)e.
We have already shown that the number of questions cannot be smaller than

dlog2(n)e; so, to complete the derivation, we need to show that it is sufficient to
ask q questions.

Indeed, let’s enumerate all n possible alternatives (in arbitrary order) by numbers
from 0 to n−1, and write these numbers in the binary form. Using q binary digits,
one can describe numbers from 0 to 2q−1. Since 2q ≥ n, we can describe each of the
n numbers by using only q binary digits. So, to uniquely determine the alternative
Ai out of n given ones, we can ask the following q questions: “is the first binary
digit 0?”, “is the second binary digit 0?”, etc, up to “is the q-th digit 0?”.

Case of a discrete probability distribution. Let us now assume that we also know
the probabilities p1, . . . , pn of different alternatives A1, . . . , An. If we are interested
in an individual selection, then the above arguments show that we cannot determine
the actual alternative by using fewer than log2(n) questions. However, if we have
many (N) similar situations in which we need to find an alternative, then we can
determine all N alternatives by asking ¿ N · log2(n) binary questions.

To show this, let us fix i from 1 to n, and estimate the number of events Ni in
which the output is i.

This number Ni is obtained by counting all the events in which the output was
i, so Ni = n1 + n2 + . . . + nN , where nk equals to 1 if in k-th event the output is
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i and 0 otherwise. The average E(nk) of nk equals to pi · 1 + (1− pi) · 0 = pi. The
mean square deviation σ[nk] is determined by the formula

σ2[nk] = pi · (1− E(nk))2 + (1− pi) · (0− E(nk))2.

If we substitute here E(nk) = pi, we get σ2[nk] = pi · (1 − pi). The outcomes of
all these events are considered independent, therefore nk are independent random
variables. Hence the average value of Ni equals to the sum of the averages of nk:
E[Ni] = E[n1] + E[n2] + . . . + E[nN ] = Npi. The mean square deviation σ[Ni]
satisfies a likewise equation σ2[Ni] = σ2[n1] + σ2[n2] + . . . = N · pi · (1 − pi), so
σ[Ni] =

√
pi · (1− pi) ·N .

For big N the sum of equally distributed independent random variables tends
to a Gaussian distribution (the well-known Central Limit Theorem), therefore for
big N , we can assume that Ni is a random variable with a Gaussian distribution.
Theoretically a random Gaussian variable with the average a and a standard de-
viation σ can take any value. However, in practice, if, e.g., one buys a voltmeter
with guaranteed 0.1V standard deviation, and it gives an error 1V, it means that
something is wrong with this instrument. Therefore it is assumed that only some
values are practically possible. Usually a “k-sigma” rule is accepted that the real
value can only take values from a − k · σ to a + k · σ, where k is 2, 3, or 4. So in
our case we can conclude that Ni lies between N · pi − k ·

√
pi · (1− pi) ·N and

N · pi + k ·
√

pi · (1− pi) ·N . Now we are ready for the formulation of Shannon’s
result.

Comment. In this quality control example the choice of k matters, but, as we’ll
see, in our case the results do not depend on k at all.

Definition 2.1:

• Let a real number k > 0 and a positive integer n be given. The number n is
called the number of outcomes.

• By a probability distribution, we mean a sequence {pi} of n real numbers,
pi ≥ 0,

∑
pi = 1. The value pi is called a probability of i-th event.

• Let an integer N is given; it is called the number of events.
• By a result of N events we mean a sequence rk, 1 ≤ k ≤ N of integers from

1 to n. The value rk is called the result of k-th event.
• The total number of events that resulted in the i-th outcome will be denoted

by Ni.
• We say that the result of N events is consistent with the probability distri-

bution {pi} if for every i, we have N · pi − k · σi ≤ Ni ≤ N + k · σi, where
σi

def=
√

pi · (1− pi) ·N.

• Let’s denote the number of all consistent results by Ncons(N).
• The number dlog2(Ncons(N))e will be called the number of questions, neces-

sary to determine the results of N events and denoted by Q(N).
• The fraction Q(N)/N will be called the average number of questions.
• The limit of the average number of questions when N →∞ will be called the

information.

Theorem 2.2 : (Shannon) When the number of events N tends to infinity, the
average number of questions tends to S(p) def= −∑

pi · log2(pi).
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Comments.

• Shannon’s theorem says that if we know the probabilities of all the outputs,
then the average number of questions that we have to ask in order to get a
complete knowledge equals to the entropy of this probabilistic distribution.

• As we promised, this average number of questions does not depend on the
threshold k.

• Since we somewhat modified Shannon’s definitions, we cannot use the original
proof. Our proof (and proof of other results) is given in the appendices.

Case of a continuous probability distribution. After a finite number of “yes”-
“no” questions, we can only distinguish between finitely many alternatives. If the
actual situation is described by a real number, then, since there are infinitely many
different possible real numbers, after finitely many questions, we can only get an
approximate value of this number.

Once we fix the accuracy ε > 0, we can talk about the number of questions that
are necessary to determine a number x with this accuracy ε, i.e., to determine an
approximate value r for which |x− r| ≤ ε.

Once an approximate value r is determined, possible actual values of x form an
interval [r − ε, r + ε] of width 2ε. Vice versa, if we have located x on an interval
[x, x] of width 2ε, this means that we have found x with the desired accuracy ε:
indeed, as an ε-approximation to x, we can then take the midpoint (x + x)/2 of
the interval [x, x].

Thus, the problem of determining x with the accuracy ε can be reformulated as
follows: we divide the real line into intervals [xi, xi+1] of width 2ε (xi+1 = xi +2ε),
and by asking binary questions, find the interval that contains x. As we have shown,
for this problem, the average number of binary question needed to locate x with
accuracy ε is equal to S = −∑

pi · log2(pi), where pi is the probability that x
belongs to i-th interval [xi, xi+1].

In general, this probability pi is equal to
∫ xi+1

xi
ρ(x) dx, where ρ(x) is the prob-

ability distribution of the unknown values x. For small ε, we have pi ≈ 2ε · ρ(xi),
hence log2(pi) = log2(ρ(xi)) + log2(2ε). Therefore, for small ε, we have

S = −
∑

ρ(xi) · log2(ρ(xi)) · 2ε−
∑

ρ(xi) · 2ε · log2(2ε).

The first sum in this expression is the integral sum for the integral

S(ρ) def= −
∫

ρ(x) · log2(x) dx

(this integral is called the entropy of the probability distribution ρ(x)); so, for small
ε, this sum is approximately equal to this integral (and tends to this integral when
ε → 0). The second sum is a constant log2(2ε) multiplied by an integral sum for
the interval

∫
ρ(x) dx = 1. Thus, for small ε, we have

S ≈ −
∫

ρ(x) · log2(x) dx− log2(2ε).

So, the average number of binary questions that are needed to determine x with
a given accuracy ε, can be determined if we know the entropy of the probability
distribution ρ(x).
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Our results: in brief. Of course, the abstract definition is a good idea, but the big
challenge is translating this abstract definition into explicit easy-to-use analytical
formulas and/or algorithms. This is what we do in this paper.

Comment. In our previous work (Chokr and Kreinovich 1994, Ramer and
Kreinovich 1994a,b) we provided such formulas for fuzzy numbers and for
Dempster-Shafer knowledge bases. In this paper, we provide similar analytical (or
at least computable) formulas for the more general case of p-boxes and fuzzy-valued
probability distributions.

3. Case of Partial Information about Probability Distribution

Partial information about probability distribution: discrete case. In many real-
life situations, instead of having complete information about the probabilities p =
(p1, . . . , pn) of different alternatives, we only have partial information about these
probabilities – i.e., we only know a set P of possible values of p.

If it is possible to have p ∈ P and p′ ∈ P , then it is also possible that we have
p with some probability α and p′ with the probability 1 − α. In this case, the
resulting probability distribution α · p + (1 − α) · p′ is a convex combination of p
and p′. Thus, it it reasonable to require that the set P contains, with every two
probability distributions, their convex combinations – in other words, that P is a
convex set; see, e.g., (Walley 1991).

Definition 3.1:

• By a probabilistic knowledge, we mean a convex set P of probability distribu-
tions.

• We say that the result of N events is consistent with the probabilistic knowl-
edge P if this result is consistent with one of the probability distributions
p ∈ P .

• Let’s denote the number of all consistent results by Ncons(N).
• The number dlog2(Ncons(N))e will be called the number of questions, neces-

sary to determine the results of N events and denoted by Q(N).
• The fraction Q(N)/N will be called the average number of questions.
• The limit of the average number of questions when N →∞ will be called the

information.

Definition 3.2: By the entropy S(P ) of a probabilistic knowledge P , we mean
the largest possible entropy among all distributions p ∈ P ; S(P ) def= max

p∈P
S(p).

Proposition 3.3: When the number of events N tends to infinity, the average
number of questions tends to the entropy S(P ).

Partial information about probability distribution: continuous case. In the con-
tinuous case, we also often encounter situations in which we only have partial in-
formation about the probability distribution; one such case is the case of p-boxes.
In such situations, instead of a knowing the exact probability distribution ρ(x), we
only know a (convex) class P that contains the (unknown) distribution.

In such situations, we can similarly ask about the average number of questions
that are needed to determine x with a given accuracy ε.

Once we fix an accuracy ε and a subdivision of the real line into intervals [xi, xi+1]
of width 2ε, we have a discrete problem of determining the interval containing x.
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Due to Proposition 3.3, for this discrete problem, the average number of “yes”-
“no” questions is equal to the largest entropy S(p) among all the correspond-
ing discrete distributions pi =

∫ xi+1

xi
ρ(x) dx. As we have mentioned, for small ε,

S(p) ∼ S(ρ) − log2(2ε), where S(ρ) = − ∫
ρ(x) · log2(ρ(x)) dx is the entropy of

the corresponding continuous distribution. Thus, the largest discrete entropy S(p)
comes from the distribution ρ(x) ∈ P for which the corresponding (continuous)
entropy S(ρ) attains the largest possible value.

Computing the amount of information. According to the above results, the
amount of information in p-box – or more generally, in a class of distributions
P – is equal to the largest entropy among all the distributions from the given
class P .

Good news is that a lot of research has gone into algorithms for finding distribu-
tions with the largest entropy among different classes P – largely as a part of the
Maximum Entropy approach in which when we only know a class of distributions
P , then we assume that the actual distribution is the one with the largest entropy
from P ; see, e.g., (Jaynes 2003).

Because of this, for many classes P , we already know the corresponding maxi-
mum entropy distribution, so we can explicitly compute the corresponding amount
of information. For classes P for which the corresponding maximum entropy dis-
tribution is not known, finding such a distribution requires maximizing a convex
function (entropy) over a convex set P ; it is known that maximizing a convex
function over a convex set is a computationally feasible problem; see, e.g., (Vavasis
1991).

Problem with our definition: we need a multi-dimensional notion of information.
In our approach, we measure the information as the average number of “yes”-“no”
questions that are needed to locate an object with a given accuracy.

According to our results, for a p-box, thus defined amount of information is equal
to the amount of information corresponding to the distribution with the largest
entropy among all the distributions from a given p-box.

So, by the above definition of the amount of information, we are not able to
distinguish between this distribution and entire p-box. This is counter-intuitive.
For example, it is well known that the Gaussian distribution has the largest entropy
among all the distribution with the same standard deviation σ, but clearly, we have
more information if we know that the distribution is Gaussian than if we simply
know its standard deviation but not its shape.

To account for this difference, we must supplement the average number of ques-
tions by additional characteristics describing the desired amount of information.
Thus, to describe the amount of information for general uncertainty, instead of a
single number, we need several different numbers, which form a multi-dimensional
measure of uncertainty.

In this paper, we explore two natural ways to implement this idea.

4. First Approach: Entropy Interval Instead of a Single Entropy Value

Idea. If we know the probability distribution ρ, then the amount of information
is uniquely determined by the corresponding entropy value S(ρ).

We are interested in the situations when we do not know the probability distribu-
tion ρ, we only know that the probability distribution belongs to the class P . Based
only on this information, the only thing that we can guarantee about the average
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number of questions is that S(P ) questions is sufficient. Later on, as we gather more
information, we may learn more about the actual probability distribution – all the
way to knowing the exact distribution ρ0 ∈ P . With this additional knowledge, we
may be able to reduce the average number of questions from S(P ) = max

ρ∈P
S(ρ) to

S(ρ0).
So, if the only information that we have about the probability distribution ρ

is that ρ ∈ P , then the only information that we have about the future average
number of “yes”-“no” questions is that this number S(ρ) belongs to the range of
possible values S(P ) = {S(ρ) : ρ ∈ P}. Since the set P is convex – hence connected,
and entropy is a continuous function, this range is an interval: S(P ) = [S(P ), S(P )].

The upper endpoint of this interval is the entropy S(P ) = max
ρ∈P

S(ρ) of the

distribution with the largest entropy. So, our idea is to supplement this “pes-
simistic” (worst-case) estimate S(P ) with the “optimistic” (best-case) estimate
S(P ) = min

ρ∈P
S(ρ).

Foundationally, this sounds reasonable, but computationally, we have a problem:
while computing the maximum of a convex function S(ρ) over a convex set P is
a feasible problem, computing the minimum of a convex function over a convex
set is, in general, NP-hard; see, e.g., (Vavasis 1991). So if we compute S(P ), great;
otherwise we may need to look into different approaches.

Discrete case: reminder of the problem. In most practical situations, our knowl-
edge is incomplete: there are several (n) different states which are consistent with
our knowledge. How can we gauge this uncertainty? A natural measure of uncer-
tainty is the average number of binary (“yes”-“no”) questions that we need to
ask to find the exact state. According to Shannon’s information theory, when we
know the probabilities p1, . . . , pn of different states (for which

∑
pi = 1), then this

average number of questions is equal to S = −
n∑

i=1
pi · log2(pi).

In practice, we rarely know the exact values of the probabilities pi; these prob-
abilities come from experiments and are, therefore, only known with uncertainty.
Usually, from the experiments, we can find confidence intervals pi = [p

i
, pi], i.e.,

intervals which contain the (unknown) values pi. Since pi ≥ 0 and
∑

pi = 1, we
must have p

i
≥ 0 and

∑
p

i
≤ 1 ≤ ∑

pi. How can we estimate the amount of
information under such interval uncertainty?

For different values pi ∈ pi, we get, in general, different values of the amount
of information S. Since S is a continuous function, the set of possible values of S
is an interval. So, to gauge the corresponding uncertainty, we must find the range
S = [S, S] of possible values of S.

Thus, we arrive at the following computational problem:

• given n intervals pi = [p
i
, pi],

• find the range

S = [S, S] =

{
−

n∑

i=1

pi · log2(pi)

∣∣∣∣∣ pi ∈ pi &
n∑

i=1

pi = 1

}
.

In this section, we show:

• that we can efficiently compute S;
• that the problem of computing S is, in general, NP-hard, and
• that in many practically important situations we can efficiently compute S.
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Comment. Shannon’s entropy is not the only way to describe uncertainty. Re-
searchers have observed that many practically useful properties of the Shannon’s
entropy function S do not use its specific form, they only use the fact that the
expression f(p) = −p · log2(p) is equal to 0 for p = 0 and for p = 1 and that this
expression is differentiable and strictly concave – i.e., that its second derivative
f ′′(p) is negative for all p.

As a result of this observation, they proposed to use generalized entropy measures

S =
n∑

i=1
f(pi) for some differentiable strictly concave function f(p) for which f(0) =

f(1) = 0. Such generalized entropy measures are indeed useful in many practical
applications; see, e.g., (Klir 2005). In addition to Shannon’s entropy function f(p) =
−p · log2(p), several other functions are used in practice such as f(p) = p · (1− pβ)
for some β > 0 – a function that tends to Shannon’s entropy function when β → 0.

For such generalized information measures, we have a similar problem:

• given n intervals pi = [p
i
, pi],

• find the range

S = [S, S] =

{
n∑

i=1

f(pi)

∣∣∣∣∣ pi ∈ pi &
n∑

i=1

pi = 1

}
.

Our results will be described for this general case.

An O(n log2(n)) algorithm for computing S.

• First, we sort 2n endpoints p
i
and pi into a sequence

0 = p(0) < p(1) < p(2) < . . . < p(m) < p(m+1) = 1.

In the process of this sorting, for each k from 1 to m, we form the sets
A−k = {i : p

i
= p(k)} and A+

k = {i : pi = p(k)}.
• Then, for each k from 0 to m, we compute the values Mk, Pk, and nk as

follows.
• We start with M0 =

n∑
i=1

f(p
i
), P0 =

n∑
i=1

p
i
, and n0 = n.

• Once we know Mk, Pk, and nk, we compute the next values of these
quantities as follows:

Mk+1 = Mk−
∑

j∈A−k+1

f(p
j
)+

∑

j∈A+
k+1

f(pj); Pk+1 = Pk−
∑

j∈A−k+1

p
j
+

∑

j∈A+
k+1

pj ;

nk+1 = nk −#(A−k+1) + #(A+
k+1).

• If nk = n, we take Sk = Mk.

• If nk < n, then we compute p =
1− Pk

n− nk
.

• If p ∈ [p(k), p(k+1)], then we compute Sk = Mk + (n− nk) · f(p).
• Otherwise, we ignore this k.

• Finally, we find the largest of these values Sk as the desired bound S.

Towards a linear-time algorithm for computing S. In the previous text, we de-
scribed a O(n · log2(n)) algorithm for computing S.
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In this algorithm, most stages require linear time O(n). The only stage that
requires time O(n · log2(n)) is sorting. It turns out that instead of using sorting,
we can use the median – and the median of n elements can be computed in linear
time O(n); see, e.g., (Cormen et al. 2009).

Linear-time algorithm for computing S. This algorithm is iterative. At each
iteration of this algorithm we have three sets:

• the set J− of all the endpoints p
i
and pj for which we already know that for

the optimal vector p we have, correspondingly, pi 6= p
i

(for p
i
) or pj = pj

(for pj);
• the set J+ of all the endpoints p

i
and pj for which we already know that for

the optimal vector p we have, correspondingly, pi = p
i

(for p
i
) or pj 6= pj

(for pj);
• the set J of the endpoints p

i
and pj for which we have not yet decided whether

these endpoints appear in the optimal vector p.

In the beginning, J− = J+ = ∅ and J is the set of all 2n endpoints. At each
iteration we also update the values N− = #(J−), N+ = #(J+), E− =

∑
pj∈J−

pj ,

and E+ =
∑

p
i
∈J+

p
i
. Initially, N− = N+ = E− = E+ = 0.

At each iteration we do the following.

• First we compute the median m of the set J .
• Then, by analyzing the elements of the undecided set J one by one, we divide

them into two subsets Q− = {p ∈ J : p ≤ m} and Q+ = {p ∈ J : p > m}. We
also compute m+ = min{p : p ∈ Q+}.

• We compute e− = E− +
∑

pj∈Q−
pj , e+ = E+ +

∑
p

i
∈Q+

p
i
,

n− = N− + #{pj ∈ Q−}, n+ = N+ + #{p
i
∈ Q+},

and r =
1− e− − e+

N − n− − n+
.

• If r < m, then we replace J− with J− ∪ Q−, E− with e−, J with Q+, and
N− with n−.

• If r > m+, then we replace J+ with J+ ∪Q+, E+ with e+, J with P−, and
N+ with n+.

• If m ≤ r ≤ m+, then we replace J− with J− ∪Q−, J+ with J+ ∪Q+, J with
∅, E− with e−, E+ with e+, N− with n−, and N+ with n+.

At each iteration the set of undecided indices is divided in half. Iterations continue
until all indices are decided. After this we return, as S, the value of the entropy
for the vector x for which:

• pj = pj for indices j for which pj ∈ J−,
• pi = p

i
for indices i for which p

i
∈ J+, and

• pi = r for all other indices i.

Comment.. This algorithm was, in effect, first presented in our 2007 paper (Xi-
ang et al. 2007), in which we first introduced linear-time algorithms for computing
population variance and entropy under interval uncertainty. However, in our 2007
paper, we described, in detail, algorithms for computing population variance (and
their detailed justifications), while the algorithms and justifications for the entropy
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case were only briefly outlined. In this paper, we present, in detail, linear-time
algorithms for entropy and their justifications (in the appendices).

Computing S is, in general, NP-hard. Several algorithms for computing S are
known; see, e.g., (Abellan and Moral 2000, 2003, 2004, 2005, 2006). In the worst
case, these algorithms require time that grows exponentially with n.

The following result shows that this exponential time is caused by the complexity
of the problem.

Proposition 4.1: The problem of computing S is NP-hard.

Effective algorithm for computing S when intervals are not contained in each
other. Usually, when we know pi with some uncertainty, we know the approximate
values p̃i and the accuracy ∆ of this approximation. In this case, we know that
the actual (unknown) value of pi belongs to the interval [p̃i − ∆, p̃i + ∆]. Since
these intervals all have the same width 2∆, none of them can be a proper subset
of the other. It turns out that if we restrict ourselves to intervals that satisfy this
condition, then it is possible to compute S efficiently.

Definition 4.2: We say that intervals [p
i
, pi] satisfy the no-subset property if

[p
i
, pi] 6⊂ (p

j
, pj) for all i and j (for which the intervals pi and pj are non-

degenerate).

An O(n · log2(n)) algorithm that computes S for all cases when the no-subset
property holds.

• First, we sort n intervals pi in lexicographic order:

p1 ≤lex p2 ≤lex . . . ≤lex pn

where [a, a] ≤lex [b, b] if and only if either a < b, or a = b and a ≤ b.
• Second, for each i from 1 to n, we compute

Mi =
∑

j:j<i

f
(
p

j

)
+

∑

m:m>i

f (pm) ; Pi =
∑

j:j<i

p
j
+

∑

m:m>i

pm.

First, we compute M1 =
n∑

j=2
f(pj) and P1 =

n∑
j=2

pj ; then, we sequentially

compute other values as

Mi = Mi−1 + f
(
p

i−1

)
− f (pi) ; Pi = Pi−1 + p

i−1
− pi.

• For every i, we compute pi =
1− Pi

n− 1
. If pi ∈ [p

i
, pi], we compute

Si = Mi + f(pi).

• Finally, we return the smallest of these values Si as S.

Linear-time algorithm for computing S for the case when narrowed intervals
satisfy the no-subset property. For simplicity, let us consider the case when all the
intervals are non-degenerate, i.e., when ∆i > 0 for all i.
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The proposed algorithm is iterative. At each iteration of this algorithm we have
three sets:

• the set I− of all the indices i from 1 to n for which we already know that for
the optimal vector p, we have pi = p

i
;

• the set I+ of all the indices j for which we already know that for the optimal
vector p, we have pj = pj ;

• the set I = {1, . . . , n} \ (I− ∪ I+) of the indices i for which we are still
undecided.

In the beginning, I− = I+ = ∅ and I = {1, . . . , n}. At each iteration we also
update the values of two auxiliary quantities E− def=

∑
i∈I−

p
i

and E+ def=
∑

j∈I+

pj . In

principle, we could compute these values by computing these sums. However, to
speed up computations on each iteration, we update these two auxiliary values in
a way that is faster than re-computing the corresponding two sums. Initially, since
I− = I+ = ∅, we take E− = E+ = 0.

At each iteration we do the following:

• first, we compute the median m of the set I (median in terms of sorting by p̃i);
• then, by analyzing the elements of the undecided set I one by one, we divide

them into two subsets P− = {i : p̃i ≤ p̃m} and P+ = {j : p̃j > p̃m};
• we compute e− = E− +

∑
i∈P−

p
i
and e+ = E+ +

∑
j∈P+

pj ;

• If e− + e+ > 1, then we replace I− with I− ∪ P−, E− with e−, and I with
P+.

• If e− + e+ + 2∆m < 1, then we replace I+ with I+ ∪ P+, E+ with e+, and I
with P−.

• Finally, if e− + e+ ≤ 1 ≤ e− + e+ + 2∆m, then we replace I− with

I− ∪ (P− − {m}),

I+ with I+ ∪ P+, I with {m}, E− with e− − p
m

, and E+ with e+.

At each iteration the set of undecided indices is divided in half. Iterations continue
until we have only one undecided index I = {k}. After this we return, as S, the
value of the entropy for the vector p for which pi = p

i
for i ∈ I−, pj = pj for

j ∈ I+, and pk = 1− e− − e+ for the remaining value k.

5. Continuous Case: p-Box

Formulation of the problem and a seemingly natural solution. As we have men-
tioned, in the traditional statistical approach, the uncertainty in a probability
distribution is usually described by Shannon’s entropy

S = −
∫

ρ(x) · log2(ρ(x)) dx,

where ρ(x) = F ′(x) is the probability density function of this distribution.
In the situations when we have partial information about the probability distri-

bution F (x) – e.g., when we only know that F (x) belongs to a non-degenerate p-box
F(x) = [F (x), F (x)], a reasonable estimate for an arbitrary statistical characteristic
S is the range of possible values of S over all possible distributions F (x) ∈ F(x).

It therefore seems natural to apply this approach to entropy as well – and return



January 16, 2010 17:54 International Journal of General Systems tr09-37a

14 Vladik Kreinovich and Gang Xiang

the range of entropy as a gauge of uncertainty of a p-box; see, e.g., (Klir 2005,
Xiang et al. 2006).

Limitations of the above (seemingly natural) solution. The problem with the
above approach is that every non-degenerate p-box includes discrete distributions,
i.e., distributions which take discrete values x1, . . . , xn with finite probabilities. For
such distributions, Shannon’s entropy is −∞.

Thus, for every non-degenerate p-box, the resulting interval [S, S] has the form
[−∞, S]. Thus, once the distribution with the largest entropy S is fixed, we cannot
distinguish between a very narrow p-box or a very thick p-box – in both case, we
end up with the same interval [−∞, S].

It is therefore desirable to develop a new approach that would enable us to
distinguish between these two cases.

Case of p-boxes: description of the situation. The traditional approach of
interval-valued entropy does not allow us to distinguish between narrow and wide
p-boxes. For a wide p-box, it is OK to make a wide interval like [−∞, S], but for
narrow p-boxes, we would like to have narrower estimates. Let us therefore consider
narrow p-boxes.

Since entropy is defined for smooth (differentiable) cdfs F (x), it is reasonable to
start with the case when the central function of a p-box is also smooth. In other
words, we consider p-boxes of the type

F(x) = [F0(x)−∆F (x), F0(x) + ∆F (x)],

where F0(x) is differentiable, with derivative ρ0(x) def= F ′
0(x), and ∆F (x) is small.

Formulation of the problem. For each ε > 0 and for each distribution F (x) ∈
F(x), we can use the above formulas to estimate the average number Sε(F ) of “yes”-
“no” question that we need to ask to determine the actual value with accuracy ε.
Our objective is to compute the range [S, S] = {Sε(F ) : F ∈ F}.

Estimates. We have mentioned earlier that asymptotically,

S ∼ −
∫

ρ0(x) · log2(ρ0(x)) dx− log2(2ε).

It turns out that for the lower bound, we have the following asymptotics:

S ∼ −
∫

ρ0(x) · log2(max(2∆F (x), 2ε · ρ0(x))) dx.

(The derivation of this formula is given in Appendix H.)

Comment. This result holds when ε and the width of ∆F both tends to 0. If
instead we fix the width ∆F and let ε → 0, then S →∞ but S remains finite.
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6. Alternative Approach: An Entropy of Determining the Probability
Distribution

We started with the situation when we do not know the object, we only know the
probabilities of different objects, and we wanted to find out how many “yes”-“no”
questions we need to find the object x.

In the new situation, in addition to not knowing the object x, we also do not
know the exact probability distribution ρ(x). It is therefore reasonable, in addition
to finding out how many binary questions we need to find x, to also find out how
many “yes”-“no” questions we need to find the exact probability distribution ρ(x).

Of course, just like we cannot determine the real number x after finitely many
“yes”-“no” questions, we are not able to determine ρ(x) exactly after finitely many
questions, we can only obtain an approximate value of a probability distribution.

A natural way to describe a probability distribution is via its cdf F (x). There
are two reasons why the approximate cdf may be different from the actual one: we
may get the probabilities only approximately, and we may get the values at which
these probabilities are attained only approximately. It is therefore reasonable to
fix two accuracy values ε (accuracy with which we approximate probabilities) and
δ (accuracy with which we approximate x) and try to find an approximation F̃ (x)
to F (x) in which, for every x, we have |F̃ (x̃) − F (x)| ≤ ε for some x̃ for which
|x̃− x| ≤ δ.

When P is a p-box, then, for every number x0, we have the interval [F (x0), F (x0)]
of possible values of the probability F (x0) = Prob(X ≤ x0). We want to find the
actual value of ε with the accuracy ε. We have already mentioned that this is
equivalent to localizing F (x0) within an interval of width 2ε. Within the original
interval of width w(x0)

def= F (x0) − F (x0), there are n(x0)
def= w(x0)/(2ε) such

subintervals, so, to localize F (x0), we need ∼ log2(n(x0)) = log2(w(x0))− log2(2ε)
questions.

To get the spatial accuracy δ, we need to repeat this procedure for the values x1,
x2 = x1 + 2δ, etc. Overall, we thus need

∑
log2(w(xi)) −

∑
log2(2ε) questions. If

we multiply the first sum by 2δ, then we get the integral sum for
∫

log2(w(x)) dx;
so, the first sum is ∼ ∫

log2(w(x)) dx/(2δ). The second sum is a constant that does
not depend on the p-box at all.

Thus, for a p-box [F (x), F (x)], the overall number of questions that we need
to ask to determine the probability distribution F (x) with a given accuracy is
determined by the integral

∫
log2(F (x)− F (x)) dx. This easy-to-compute integral

can thus serve as an additional information measure for p-boxes.

7. Adding Fuzzy Uncertainty

The main idea behind fuzzy uncertainty is that, instead of just describing which
objects are possible, we also describe, for each object, the degree to which this
object is possible. For each degree of possibility α, we can determine the set of
objects that are possible with at least this degree of possibility – the α-cut of the
original fuzzy set. Vice versa, if we know α-cuts for every α, then, for each object
x, we can determine the degree of possibility that x belongs to the original fuzzy
set.

A fuzzy set can be thus viewed as a nested family of its α-cuts.
Thus, if instead of a (crisp) set P of possible probability distributions (e.g., a

p-box), we have a fuzzy set P of possible probability distributions, then we can
view this information as a family of nested crisp sets P(α) – α-cuts of the given



January 16, 2010 17:54 International Journal of General Systems tr09-37a

16 Vladik Kreinovich and Gang Xiang

fuzzy set.
In this case, once we fix a measure of information I(P ) for crisp sets of distribu-

tions – e.g., the maximum entropy, we can then extend this measure to fuzzy sets
P – by defining I(P) as a fuzzy number whose α-cut coincides with I(P(α)).

Comment. Instead of describing the information in a fuzzy set by a fuzzy num-
ber, we can, alternatively, interpret degree of possibility in probabilistic terms
and compute the corresponding information by using probability formulas; see,
e.g., (Ramer and Kreinovich 1994a,b).

8. Application: How to Measure Loss of Privacy

Need to take into account that not all information is equally important. In the
main text, we estimated the amount of information by the number of “yes”-“no”
questions that we need to ask so that, starting with the initial uncertainty, we will
be able to completely determine the object (or at least determine it with a given
accuracy ε).

The very fact that we are simply counting the number of questions means that
we implicitly assume that all these questions are (in some reasonable sense) equally
important – i.e., in other words, that all pieces of information about the objects
are (in some sense) equally important.

In many practical applications, this assumption is very reasonable – e.g., when
we are estimating how much computer memory we need to store this information
or how much computation time we need to process it.

However, in some applications, different pieces of information are of drastically
different importance. In such applications, it is desirable to modify the above defi-
nition so as to take into account relative importance of different questions. In this
paper, we provide one example of such an application: to measuring the loss of
privacy.

Measuring loss of privacy is important. Before explaining why the Shannon-
type amount of information is not always a very good measure of privacy loss, let
us first explain why it is important to measure loss of privacy in the first place.

Privacy means, in particular, that we do not disclose all information about our-
selves. If some of the originally un-disclosed information is disclosed, some privacy
is lost. To compare different privacy protection schemes, we must be able to gauge
the resulting loss of privacy.

Seemingly natural idea: measuring loss of privacy by the acquired amount of in-
formation. Since privacy means that we do not have complete information about
a person, a seemingly natural idea is to gauge the loss of privacy by the amount of
new information that we gained about this person.

Often, this idea is in good accordance with our intuition. In some cases, the
above definition is in good accordance with the intuitive notion of a loss of privacy.
As an example, let us consider the case when our only information about some
parameter x is that the (unknown) actual value of this parameter x belongs to the
(unknown) interval [L,U ]. In this case, the amount of information is proportional
to log2(U − L). If we learn a narrower interval containing x, e.g., if we learn that
the actual value of x belongs to the left half [u, l] def= [L, (L + U)/2] of the original
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interval, then the resulting amount of information is reduced to

log2((L + U)/2− L) = log2((U − L)/2) = log2(U − L)− 1.

Thus, by learning the narrower interval for x, we gained

log2(U − L)− (log2(U − L)− 1) = 1

bit of new information.
The narrower the new interval, the smaller the resulting new amount of infor-

mation, so the larger the information gain.

The above definition is not always perfect. In some other situations, however,
the above idea is not in perfect accordance with our intuition.

Indeed, when we originally knew that a person’s salary is between $10,000 and
$20,000 and later learn that the salary is between $10,000 and $15,000, we gained
one bit of information. On the other hand, if the only new information that we
learned is that the salary is an even number, we also learn exactly one bit of new
information. However, intuitively:

• in the first case, we have a substantial privacy loss, while
• in the second case, the direct privacy loss is minimal.

Comment. It is worth mentioning that while the direct privacy loss is small, the
information about evenness may indirect lead to a huge privacy loss. The fact that
the salary is even means that we know its remainder modulo 2. If, in addition, we
learn the remainder of the salary modulo 3, 5, etc., then we can can combine these
seemingly minor pieces of information and use the Chinese remainder theorem (see,
e.g., (Cormen et al. 2009)) to uniquely reconstruct the salary.

What we plan to do. The main objective of this section is to describe an alter-
native definition of privacy loss which is in better accordance with our intuition.

Why information is not always a perfect measure of loss of privacy. The amount
of new information is not always a good measure of the loss of privacy because it
does not distinguish between:

• crucial information that may seriously affect a person, and
• irrelevant information – that may not affect a person at all.

To make a distinction between these two types of information, let us estimate
potential financial losses caused by the loss of privacy.

Example when loss of privacy can lead to a financial loss. As an example, let
us consider how a person’s blood pressure x affects the premium that this person
pays for his or her health insurance.

From the previous experience, insurance companies can deduce, for each value
of blood pressure x, the expected (average) value of the medical expenses f(x) of
all individuals with this particular value of blood pressure. So, when the insurance
company knows the exact value x of a person’s blood pressure, it can offer this
person an insurance rate F (x) def= f(x) · (1 + α), where α is the general investment
profit. Indeed:
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• If an insurance company offers higher rates, then its competitor will be able
to offer lower rates and still make a profit.

• On the other hand, if the insurance company is selling insurance at a lower
rate, then it will not earn enough profit, and investors will pull their money
out and invest somewhere else.

To preserve privacy, we only keep the information that the blood pressure of
all individuals from a certain group is between two bounds L and U , and we do
not know have any additional information about the blood pressure of different
individuals. Under this information, how much will the insurance company charge
to insure people from this group?

Based on the past experience, the insurance company is able to deduce the rela-
tive frequency of different values x ∈ [L,U ] – e.g., in the form of the corresponding
probability density ρ(x). In this case, the expected medical expenses of an average
person from this group are equal to E[f(x)] def=

∫
ρ(x) ·f(x) dx. Thus, the insurance

company will insure the person for a cost of E[F (x)] =
∫

ρ(x) · F (x) dx.
Let us now assume that for some individual, the privacy is lost, and for this indi-

vidual, we know the exact value x0 of his or her blood pressure. For this individual,
the company can now better predict its medical expenses as f(x0) and thus, offer
a new rate F (x0) = f(x0) · (1 + α). When F (x0) > E[F (x)], the person whose
privacy is lost also experiences a financial loss F (x0) − E[F (x)]. We will use this
financial loss to gauge the loss of privacy.

Need for a worst-case comparison. In the above example, there is a financial
loss only if the person’s blood pressure x0 is worse than average. A person whose
blood pressure is lower than average will only benefit from reduced insurance rates.

However, in a somewhat different situation, if the person’s blood pressure is
smaller (better) than average, this person’s loss or privacy can also lead to a finan-
cial loss. For example, an insurance company may, in general, pay for a preventive
medication that lowers the risk of heart attacks – and of the resulting huge medical
expenses. The higher the blood pressure, the larger the risk of a heart attack. So,
if the insurance company learns that a certain individual has a lower-than-average
blood pressure and thus, a lower-than-average risk of a heart attack, this risk may
not justify the expenses on the preventive medication. Thus, due to a privacy
loss, the individual will have to pay for this potentially beneficial medication from
his/her own pocket – and thus, also experience a financial loss.

So, to gauge a privacy loss, we must consider not just a single situation, but
several different situations, and gauge the loss of privacy by the worst-case financial
loss caused by this loss of privacy.

Which functions F (x) should we consider. In different situations, we may have
different functions F (x) that describe the dependence of a (predicted) financial
gain on the (unknown) actual value of a parameter x.

This prediction only makes sense only if we can predict F (x) for each person
with a reasonable accuracy, e.g., with an accuracy ε > 0. Measurements are never
100% accurate, and measurement of x are not exception. Let us denote by δ the
accuracy with which we measure x, i.e., the upper bound on the (absolute value
of) the difference ∆x

def= x̃ − x between the measured value x̃ and the (unknown)
actual value x. Due to this difference, the estimated value F (x̃) is different from
the ideal prediction F (x). Usually, measurement errors ∆x are small, so we can
expand the prediction inaccuracy ∆F

def= F (x̃) − F (x) = F (x + ∆x) − F (x) in
Taylor series in ∆x and ignore quadratic and higher order terms in this expansion,
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leading to ∆F ≈ F ′(x) ·∆x. Since the largest possible value of ∆x is δ, the largest
possible value for ∆F is thus |F ′(x)| · δ. Since this value should not exceed ε, we
thus conclude that |F ′(x)| · δ ≤ ε, i.e., that |F ′(x)| ≤ M

def= ε/δ.

Resulting definitions. Thus, we arrive at the following definition:

Definition 8.1: Let P be a class of probability distributions on a real line, and
let M > 0 be a real number. By the amount of privacy A(P ) related to P , we mean
the largest possible value of the difference F (x0)−

∫
ρ(x) · F (x) dx over:

• all possible values x0,
• all possible probability distributions ρ ∈ P , and
• all possible functions F (x) for which |F ′(x)| ≤ M for all x.

The above definition involves taking a maximum over all distributions ρ ∈ P
which are consistent with the known information about the group to which a given
individual belongs. In some cases, we know the exact probability distribution, so
the family P consists of only one distribution. In other situations, we may not know
this distribution. For example, we may only know that the value of x is within the
interval [L,U ], and we do not know the probabilities of different values within this
interval. In this case, the class P consists of all distributions which are located on
this interval (with probability 1).

When we learn new information about this individual, we thus reduce the group
and hence, change from the original class P to a new class Q. This change, in
general, decreases the amount of privacy.

In particular, when we learn the exact value x0 of the parameter, then the re-
sulting class of distribution reduces to a single distribution concentrated on this x0

with probability 1 – for which F (x0)−
∫

ρ(x) · F (x) dx = 0 and thus, the privacy
is 0. In this case, we have a 100% loss of privacy – from the original value A(P ) to
0. In other cases, we may have a partial loss of privacy.

In general, it is reasonable to define the relative loss of privacy as a ratio

A(P )−A(Q)
A(P )

. (1)

In other words, it is reasonable to use the following definition.

Definition 8.2:

• By a privacy loss, we mean a pair 〈P, Q〉 of classes of probability distributions.
• For each privacy loss 〈P,Q〉, by the measure of a privacy loss, we mean the

ratio (1).

Comment. At first glance, it may sound as if these definitions depend on an
(unknown) value of the parameter M . However, it is easy to see that the actual
measure of the privacy loss does not depend on M :

Proposition 8.3: For each pair 〈P, Q〉, the measure of the privacy loss is the
same for all M > 0.

The new definition of privacy loss is in good agreement with intuition. Let us
show that the new definition adequately describes the difference between learn-
ing that the parameter is in the lower half of the original interval and that the
parameter is even.
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Proposition 8.4: Let [l, u] ⊆ [L,U ] be intervals, let P be the class of all probabil-
ity distributions located on the interval [L,U ], and let Q be the class of all probability
distributions located on the interval [l, u]. For this pair 〈P, Q〉, the measure of the

privacy loss is equal to 1− u− l

U − L
.

Comment. In particular, if we start with an interval [L,U ], and then we learn
that the actual value x is in the lower half [L, (L + U)/2] of this interval, then we
get a 50% privacy loss.

What about the case when we assume that x is even? Similarly to the proof of
the above proposition, one can prove that if both L and U are even, and Q is the
class of all distributions ρ(x) which are located, with probability 1, on even values
x, we get A(Q) = A(P ). Thus, the even-values restriction lead to a 0% privacy
loss.

Thus, the new definition of the privacy loss is indeed in good agreement with our
intuition.
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by Grant 5015 “Application of fuzzy logic with operators in the knowledge based
systems” from the Science and Technology Centre in Ukraine (STCU), funded by
European Union.

The authors are grateful to George Klir and Radim Belohlavek for their en-
couragement and valuable suggestions, and to the anonymous referees for their
thorough analysis and important advice.

References

Abellan, J., and Moral, S, 2000. A non-specificity measure for convex sets of prob-
ability distributions. Intern. J. of Uncertainty, Fuzziness and Knowledge-Based
Systems, 8 (3), 357–367.

Abellan, J., and Moral, S., 2003. Maximum of entropy for credal sets”, Intern. J.
of Uncertainty, Fuzziness, and Knowledge-Based Systems, 11 (5), 587–597.

Abellan, J., and Moral, S., 2004. Range of entropy for credal sets”, In: López-Diaz,
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Appendices: Proofs

Appendix A. Proof of Shannon’s theorem

Let’s first fix some values Ni, that are consistent with the given probabilistic dis-
tribution. Due to the inequalities that express the consistency demand, the ratio
fi = Ni/N tends to pi as N → ∞. Let’s count the total number C of results, for
which for every i the number of events with outcome i is equal to this Ni. Once
we know C, we will be able to compute Ncons by adding these C’s.

Actually we are interested not in Ncons itself, but in Q(N) = dlog2(Ncons)e, and
moreover, in lim(Q(N)/N). So we’ll try to estimate not only C, but also log2(C)
and lim log2(C)/N .

To estimate C means to count the total number of sequences of length N , in
which there are N1 elements, equal to 1, N2 elements, equal to 2, etc. It is known
that this number is equal to

C =
N !

N1! ·N2! · . . . ·Nn!

To simplify computations, we can use the well-known Stirling formula

k! ∼ (k/e)k ·
√

2π · k.

Then, we get

C ≈

(
N

e

)N √
2π ·N

(
N1

e

)N1

· √2π ·N1 · . . . ·
(

Nn

e

)Nn

· √2π ·Nn

Since
∑

Ni = N , terms eN and eNi cancel each other.
To get further simplification, we substitute Ni = N ·fi, and correspondingly NNi

i

as (N · fi)N ·fi = NN ·fi · fi
N ·fi . Terms NN is the numerator and

NN ·f1 ·NN ·f2 · . . . ·NN ·fn = NN ·f1+N ·f2+...+N ·fn = NN

in the denominator cancel each other. Terms with
√

N lead to a term that depends
on N as c ·N−(n−1)/2. So, we conclude that

log2(C) ≈ −N · f1 · log2(f1)− . . .−N · fn log2(fn)−

n− 1
2

· log2(N)− const.

When N →∞, we have 1/N → 0, log2(N)/N → 0, and fi → pi, therefore

log2(C)
N

→ −p1 · log2(p1)− . . .− pn · log2(pn),

i.e., log2(C)/N tends to the entropy of the probabilistic distribution.
Now, that we have found an asymptotics for C, let’s compute Ncons and Q(N)/N .

For a given probabilistic distribution {pi} and every i, possible values of Ni form
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an interval of length Li
def= 2k ·

√
pi · (1− pi) ·

√
N . So there are no more than Li

possible values of Ni. The maximum value for pi ·(1−pi) is attained when pi = 1/2,
therefore pi · (1− pi) ≤ 1/4, and hence Li ≤ 2k ·

√
N/4 = (k/2) · √N . For every i

from 1 to n there are at most (k/2) ·√N possible values of Ni, so the total number
of possible combinations of N1, . . . , Nn is smaller than ((k/2)·√N)n. Let us denote
this number of combinations by N(p).

The total number Ncons of consistent results is the sum of N(p) different values
of C (values that correspond to N(p) different combinations of N1, N2, . . . , Nn).
Let’s denote the biggest of these values C by Cmax. Since Ncons is the sum of
N(p) terms, and each of these terms is not larger than the largest of them Cmax,
we conclude that Ncons ≤ N(p) · Cmax. On the other hand, the sum Ncons of
non-negative integers is not smaller than the largest of them, i.e., Cmax ≤ Ncons.
Combining these two inequalities, we conclude that Cmax ≤ Ncons ≤ N(p) · Cmax.
Since N(p) ≤ ((k/2)·√N)n, we conclude that Cmax ≤ Ncons ≤ ((k/2)·√N)n ·Cmax.
Turning to logarithms, we find that log2(Cmax) ≤ log2(Ncons) ≤ log2(Cmax)+(n/2)·
log2(N) + const. Dividing by N , tending to the limit N → ∞ and using the fact
that log2(N)/N → 0 and the (already proved) fact that log2(Cmax)/N tends to the
entropy S, we conclude that limQ(N)/N = S. The proposition is proven.

Appendix B. Proof of Proposition 3.3

By definition, a result is consistent with the probabilistic knowledge P if and only
if it is consistent with one of the distributions p ∈ P . Thus, the set of all the results
which are consistent with P can be represented as a union of the sets of all the
results consistent with different probability distributions p ∈ P . In the proof of
Shannon’s theorem, we have shown that for each p ∈ P , the corresponding number
is asymptotically equal to exp(N · S(p)).

To be more precise, for every N , the number C of results with given frequencies
{fj} (fj ≈ pj) has already been computed in the proof of Shannon’s theorem:
lim (log2(C))/N = −∑

fj log2(fj).
The total number of the results Ncons which are consistent with a given proba-

bilistic knowledge P is equal to the sum of Nco different values of C that correspond
to different fj . For a given N , there are at most N +1 different values of N1 = N ·f1

(0,1,. . . ,N), at most N + 1 different values of N2, etc., totally at most (N + 1)n

different sets of {fj}. So, we get an inequality Cmax ≤ Ncons ≤ (N + 1)n · Cmax,
from which we conclude that limQ(N)/N = lim log2(Cmax)/N .

Appendix C. Justification of the O(n · log2(n)) Algorithm for Computing S

Computing S: analysis of the problem. Let (p1, . . . , pn) be the values of prob-
abilities at which the entropy S attains its maximum. The fact that S attains its
maximum means that if we change the values pi, then the corresponding change
∆S in S is non-positive: ∆S ≤ 0. We will use this condition for different changes
in pi.

For each value of pi, we have three possibilities:

• this value can be strictly inside the corresponding interval [p
i
, pi];

• this value can be at the left end of this interval, i.e., pi = p
i
; and

• this value can be at the right end of this interval, i.e., pi = pi.

Let us consider these possibilities one by one.
Let us first consider the values pj which are strictly inside the corresponding

intervals. If for some j and k, the corresponding probabilities are strictly inside the
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corresponding intervals, i.e., if we have pj ∈ (p
j
, pj) and pk ∈ (p

k
, pk), then for a

sufficiently small real number ∆, we can replace pj with pj +∆ and pk with pk−∆
and still get a sequence of probabilities for which pi ∈ [p

i
, pi] for all i and

∑
pi = 1.

For small ∆, the corresponding change ∆S in entropy is equal to

(
∂S

∂pj
− ∂S

∂pk

)
·∆ + o(∆) = (f ′(pj)− f ′(pk)) ·∆ + o(∆).

Since ∆ can be positive or negative, the only way to have ∆S ≤ 0 for all small ∆
is to make sure that the coefficient at ∆ is equal to 0, i.e., that f ′(pj)− f ′(pk) = 0.
Since f(p) is a strictly concave function, i.e., f ′′(p) < 0, the derivative f ′′(p) =
(f ′(p))′ of the function f ′(p) is always negative – which means that this derivative
is a strictly decreasing function. Thus, f ′(pj) = f ′(pk) implies that pj = pk – i.e.,
that all the values pj which are inside the corresponding intervals coincide. Let us
denote this common value of pj by p.

Let us now consider the situation when pj is at the left end of the corresponding
interval, i.e., when pj = p

j
. If for some other k, the corresponding value pk is at

the right end or strictly inside the corresponding interval, then pk > p
k
. In this

case, we can only make a similar change pj → pj + ∆ and pk → pk − ∆ when
∆ > 0. Then, the requirement that ∆S ≤ 0 means that the coefficient at ∆ should
be non-positive, i.e., that f ′(pj)−f ′(pk) ≤ 0. Since the derivative f ′(p) is a strictly
decreasing function, we conclude that pk ≤ pj . In particular, for the case when pk

is inside the corresponding interval – and is, thus, equal to p – we conclude that
p ≤ pj .

Similarly, if pj is at the right end of the corresponding interval, i.e., if pj = pj ,
then, for every k for which pk > p

k
, we conclude that pk ≥ pj . In particular, we

can conclude that pj ≤ p.
Let us now consider the case when there are some values pi strictly inside the

corresponding interval, so there is a value p. Let us show that is we know where
p is located in comparison with all the endpoints [p

i
, pi], then we can uniquely

determine all the values pi.
Indeed, if the entire interval [p

i
, pi] is located to the left of p, i.e., if pi < p, then:

• the minimum cannot be attained strictly inside the interval – because it would
have been attained at the point pi = p, and we are considering the case when
the entire interval [p

i
, pi] is located to the left of p;

• similarly, the minimum cannot be attained for pi = pi, because then, as we
have proven, we should have p ≤ pi, and the entire interval [p

i
, pi] is located

to the left of p.

Thus, in this case, the only remaining possibility is pi = pi.
Similarly, if the entire interval [p

i
, pi] is located to the right of p, i.e., if p < p

i
,

then pi = p
i
.

If p
i
< p < pi, then, similarly, we cannot have pi = p

i
and pi = pi, so we must

have pi inside and hence, pi = p.
To exploit this conclusion, let us formalize how we can describe the location of

p in relation to 2n endpoints. If we sort these endpoints p
i
and pi into a sequence

p(1) ≤ p(2) ≤ . . . ≤ p(2n), then we divide the entire real line into 2n + 1 “zones”

[p(k), p(k+1)], where we denoted p(0)
def= 0 and p(2n+1)

def= 1.
Let us pick a zone [p(k), p(k+1)], and show how we can find the possibly optimal

values pi (and the corresponding value of the entropy) under the assumption that
the (unknown) value p belongs to the this zone.

If pi < p, then we must have pi ≤ p(k) – otherwise, if pi > p(k), then, since p(k)
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describe all the endpoints, we would have pi ≥ p(k+1) and hence pi > p. Thus, in
the optimal arrangement of probabilities, we have pi = pi.

Similarly, if p
i
> p, then we have pi = p

i
. For all other i, we have pi = p. This

value p can be computed based on the fact that
∑

pi = 1.
For each of 2n + 1 zones, we need to analyze n values pi; thus, for each of the

zones, we need O(n) computation steps. Overall, we get a quadratic algorithm for
computing S.

Before we describe this algorithm, we should mention that the above description
only works when we actually have an index i for which pi is strictly inside the
corresponding interval. If no such index exists, then we can still conclude that
every value pj = pj is smaller than or equal than every value pk = p

k
. Thus, there

exists a value p that is greater than or equal than all j for which pj = pj and less
than or equal than all k for which pk = p

k
. By using this p, we arrive at the same

conclusion about the values pi.
Thus, in general, we arrive at the following algorithm (first described in

(Kreinovich 1996)).

Quadratic-time algorithm for computing S.

• First, we sort 2n endpoints of n intervals pi into an increasing sequence p(0) =
0 < p(1) < p(2) < . . . < p(m) < p(m+1) = 1. (If all the endpoints are different,
then m = 2n, but since some endpoints may coincide, we may have m < 2n;
in general, m ≤ 2n.)

• Second, for every k from 0 to m− 1, we compute the following three values:

Mk =
∑

i:pi≤p(k)

f(pi) +
∑

j:p
j
≥p(k+1)

f(p
j
); Pk =

∑

i:pi≤p(k)

pi +
∑

j:p
j
≥p(k+1)

p
j
;

nk = #{i : pi ≤ p(k) ∨ p
i
≥ p(k+1)}.

• If nk = n, we take Sk = Mk.

• If nk < n, then we compute p =
1− Pk

n− nk
.

• If p ∈ [p(k), p(k+1)], then we compute Sk = Mk + (n− nk) · f(p).
• Otherwise, we ignore this k.

• Finally, we find the largest of these values Sk as the desired bound S.

How to reduce the computation time to O(n · log2(n)). Let us show that the
computation time for this algorithm can be reduced to O(n · log2(n)). Indeed,
sorting requires O(n · log2(n)) steps; see, e.g., (Cormen et al. 2009). Once we have
a sorted list, we can find, for each of the 2n endpoints p

i
and pi, where they are in

this sorting. We can thus, for each of the values p(j), mark which endpoints coincide
with this value.

The initial computation of the values M0, P0, and n0 requires O(n) steps. Once
we go from Mk to Mk+1 (or from Pk to Pk+1), we only need to update the values
corresponding to the endpoints of this zone. Overall, for all the updates, we thus
need as much time as there are updated values pi overall.

Each endpoint in this arrangement changes only once, so overall, we need a linear
number of steps (2n) to update all the values Mk, all the values Pk, and all the
values nk. Thus, overall, we need time O(n·log2(n))+O(n)+O(n) = O(n·log2(n)).
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Appendix D. Proof that the Proposed Fast Algorithm Always Computes S in
Linear Time

Let us first prove that the fast algorithm described in the main text always com-
putes the desired bound S. Indeed, in the previous appendices, we have shown that
if we sort all 2n endpoints into a sequence p(1) ≤ p(2) ≤ . . . ≤ p(2n), then for some
k = kmax the maximum S is attained for the vector p for which the following holds:

• For all indices j for which pj ≤ p(k), we have pj = pj .
• For all indices i for which p

i
≥ x(k+1), we have pi = p

i
.

• For all other indices, we have pi = const. Since
n∑

i=1
pi = 1, we conclude that

this constant is equal to rk
def=

1− Ek

n−Nk
, where

Ek =
∑

j:pj≤p(k)

pj +
∑

i:p
i
≥p(k+1)

p
i
;

Nk = #{j : pj ≤ p(k)}+ #{i : p
i
≥ p(k+1)}.

It can also be proven that for the optimal k we have rk ∈ [p(k), p(k+1)]. These facts
can proven by the same analysis (adding ∆p to one value pj and subtracting ∆p
from another value pk) as in our above analysis of S.

Let us first prove that if rk =
1− Ek

n−Nk
≤ p(k+1) then the similar inequality

rk+1 =
1− Ek+1

n−Nk+1
≤ p(k+2) holds for the next value k. Indeed, the given inequality

1−Ek

n−Nk
≤ p(k+1) is equivalent to 1− Ek ≤ (n−Nk) · p(k+1).

The only difference between the sums Ek =
∑

j:pj≤p(k)

pj +
∑

i:p
i
≥p(k+1)

p
i
and Ek+1 =

∑
j:pj≤p(k+1)

pj +
∑

i:p
i
≥p(k+2)

p
i
is that:

• some terms equal to p(k+1) may be added (if there are j for which pj = p(k+1)),
and

• some other terms equal to to p(k+1) may be subtracted (if there are i for which
p

i
= p(k+1)).

In general, Ek+1 = Ek + ck · p(k+1) for some integer ck (positive, negative, or zero),
and Nk+1 = Nk + ck. Subtracting ck ·p(k+1) from both sides of the given inequality
1 − Ek ≤ (n − Nk) · p(k+1), we conclude that 1 − Ek+1 ≤ (n − Nk+1) · p(k+1), i.e.

that rk+1 =
1− Ek+1

n−Nk+1
≤ p(k+1). Since the sequence p(k) is sorted, we thus conclude

that p(k+1) ≤ p(k+2) and hence rk+1 ≤ p(k+2).
So if the inequality rk ≤ p(k+1) holds for some k, it holds for all larger values of

k as well. Thus this inequality holds for all k after a certain value l0.
Similarly, we can prove that if the inequality rk ≥ p(k) holds for some k, then it

holds for k− 1 as well – since the only difference between Ek and Ek−1 consists of
adding and/or subtracting some values p(k). So if the inequality rk ≥ p(k) holds for
some k, it holds for all smaller values of k as well. Thus, this inequality holds for
all k until a certain value k0.
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Similarly to the proof about V , we can prove that if there are several values
k = l0, l0 + 1, . . . , k0 for which both inequalities hold p(k) ≤ rk ≤ p(k+1), then for
these k, the entropy has exactly the same value.

So:

• for k < kmax, we have rk > p(k+1),
• for k > kmax, we have rk < p(k), and
• for k = kmax (or, to be more precise, for l0 ≤ k ≤ k0), we have p(k) ≤ rk ≤

p(k+1).

Hence:

• if rk < p(k), then we cannot have k < kmax and k = kmax, hence k > kmax;
• if rk > p(k+1), then we cannot have k > kmax and k = kmax, hence k < kmax;
• if p(k) ≤ rk ≤ p(k+1), then we cannot have k < kmin and k > kmin, hence

k = kmax.

Thus, the above algorithm finds the correct value of kmax and thence, the correct
value of S.

To complete our proof, we must show that the proposed algorithm for computing
S requires linear time. Indeed, at each iteration, computing median requires linear
time, and all other operations with J require time t linear in the number of elements
|J | of J : t ≤ C · |J | for some C. We start with the set J of size 2n. On the
next iteration, we have a set of size 2n/2 = n, then n/2, etc. Thus, the overall
computation time is ≤ C · (2n + n + n/2 + . . .) ≤ C · 4n, i.e. linear in n.

Appendix E. Proof that Computing S is NP-Hard

By definition, a problem is called NP-hard if every problem from the class NP
can be reduced to it; see, e.g., (Papadimitriou 1994). To prove that a problem P
is NP-hard, it is sufficient to reduce one of the known NP-hard problems P0 to
P. The reason for this is as follows: since P0 is known to be NP-hard, it means
that every problem from the class NP can be reduced to P0, and since P0 can be
reduced to P, thus, we can deduce that every problem from the class NP can be
reduced to P.

1◦. For our proof, we will select the following subset problem as the known NP-hard
problem P0: given n positive integers s1, . . . , sn, check whether there exist signs

ηi ∈ {−1,+1} for which the signed sum
n∑

i=1

ηi · si equals to 0.

We will eventually prove that this problem can be reduced to the problem of
computing S; this computational problem will be denoted by P. However, directly
proving that P0 can be reduced to P seems to be difficult. Therefore, we introduce
the following auxiliary problem, denoted as P1: given a real number a > 0 and n

intervals q1 = [q
1
, q1],q2 = [q

2
, q2], . . . ,qn = [q

n
, qn], where

n∑

i=1

q
i
≤ a ≤

n∑

i=1

qi and

0 ≤ q
i
for all i, find the lower endpoint L of the range

L = [L, L] =

{
−

n∑

i=1

qi · log2(qi)

∣∣∣∣∣ qi ∈ qi &
n∑

i=1

qi = a

}
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Comment. Similarly to our problem P, the new problem P1 is also about min-

imizing entropy S: the only difference is that instead of the restriction
n∑

i=1

pi = 1,

we have a new restriction
n∑

i=1

qi = a.

2◦. To reduce P0 to P1 means that for every instance (s1, . . . , sn) of the problem
P0, we can find a corresponding instance of the problem P1 from whose solution,
we can easily check whether the desired signs ηi in P0 exist.

In order to select an appropriate instance, let us first analyze the function −q ·
log2(q). This function is equal to 0 for q = 0 and for q = 1. It attains its maximum
when

∂

∂q
(−q · log2(q)) = − log2(e) · (1 + ln(q)) = 0,

i.e., when q =
1
e
. The corresponding maximum is equal to −1

e
·log2

(
1
e

)
=

log2(e)
e

.

We have already mentioned that the function −q · log2(q) is concave; therefore, for

every real number r between 0 and the maximum – i.e., for which 0 < r <
log2(e)

e
,

there exist exactly two different values q for which −q · log2(q) = r. Let us denote
the smaller of these two values by q−(r), and the larger one by q+(r). We can check
that that 0 < q−(r) < q+(r) < 1 and 0 < q+(r)− q−(r) < 1. As r grows from 0 to
its largest value, the difference q+(r)− q−(r) decreases from 1 to 0.

Now, for each instance (s1, . . . , sn) of the problem P0, we select the corresponding
instance of the problem P1, i.e., the intervals [q

i
, qi] and the real number a, as

follows:

• First, we select a positive real number z for which z ·max(si) < 1.
• Next, for each i from 1 to n, we find ri for which q+(ri)− q−(ri) = z · si, and

take q
i
= q−(ri) and qi = q+(ri).

• Finally, we select a =
n∑

i=1

q
i
+ qi

2
.

It is easy to check that for thus selected values, q
i
≥ 0 and

n∑
i=1

q
i
≤ a ≤

n∑
i=1

qi.

Let L0
def= −

n∑
i=1

q
i
· log2(qi

). We will show that L = L0 if and only if there exist

signs ηi for which
n∑

i=1

ηi · si = 0.

3◦. Let us first prove that L ≥ Lo.
Indeed, due to our choice of q

i
and qi, the function −q · log2(q) attains the same

value at the two endpoints of the interval [q
i
, qi] and is larger everywhere inside

this interval. Thus, for every i and for every qi ∈ [q
i
, qi], we have −qi · log2(qi) ≥

−q
i
· log2(qi

). By adding these inequalities, we conclude that

L = −
n∑

i=1

qi · log2(qi) ≥ −
n∑

i=1

−q
i
· log2(qi

) = L0.

Since all the values of L are larger than or equal to L0, the smallest possible value
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L of the function L also satisfies the inequality L = L0.

4◦. Let us first prove that if the desired signs ηi exist, then L = L0.
Indeed, in this case, we can select qi = q

i
when ηi = −1 and qi = qi when ηi = 1.

Both cases can be described by a single formula

qi =
q
i
+ qi

2
+

ηi · (qi − q
i
)

2
=

q
i
+ qi

2
+

ηi · z · si

2
.

Since −q
i
· log2(qi

) = −qi · log2(qi), for this choice of qi, we have

L = −
n∑

i=1

qi · log2(qi) = −
n∑

i=1

q
i
· log2(qi

) = L0.

In this case,

n∑

i=1

qi =
n∑

i=1

(
q
i
+ qi

2
+

ηi · z · si

2

)
=

n∑

i=1

q
i
+ qi

2
+

z

2
·

n∑

i=1

ηi · si =
n∑

i=1

q
i
+ qi

2
= a.

Since for this choice of qi, we have L = L0, we can thus onclude that the smallest
possible value L of L cannot exceed L0: L ≤ L0.

We have already proven that L ≥ L0, so we can conclude that L = L0.

5◦. Now let us prove that if L = L0, then the desired signs ηi exists.
Let q1, . . . , qn be the values that minimize L, i.e., for which L = L. From the

equality L = L0, we will conclude that for every i, we have either qi = q
i
or qi = qi.

This can be proven by reduction to a contradiction: if for some j, we have qj 6= q
j

and qj 6= qj , then we will get −qj · log2(qj) > −q
j
· log2(qj

). For every other i, we
have −qi · log2(qi) ≥ −q

i
· log2(qi

) = −qi · log2(qi). By adding all these inequalities,
we can conclude that

L = L = −
n∑

i=1

qi · log2(qi) > −
n∑

i=1

q
i
· log2(qi

) = L0,

which contradicts to our assumption that L = L0. This contradiction shows that
indeed, for every i, we have either qi = q

i
or qi = qi.

Let us set ηi = −1 when qi = q
i
and ηi = 1 when qi = qi. Then,

qi =
q
i
+ qi

2
+

ηi · z · si

2
.

From the condition
∑

qi = a, we now conclude that

a =
n∑

i=1

qi =
n∑

i=1

q
i
+ qi

2
+

ηi · z · si

2
= a + z ·

n∑

i=1

ηi · si,

hence
n∑

i=1
ηi · si = 0.
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Therefore, we have proven that the subset problem P0 can be reduced to the
auxiliary problem P1. Thus, the auxiliary problem P1 is also NP-hard.

6◦. To complete the proof, we need to show that the auxiliary problem P1 can
be reduced to our P. In other words, for every instance of the auxiliary problem
P1, we can find the corresponding instance of the original problem P, from whose
solution we can easily find the solution to the instance of P1.

Indeed, let us consider an instance of the auxiliary P1, i.e., the intervals [q
i
, qi]

and the real number a for which q
i
≥ 0 and

n∑
i=1

q
i
≤ a ≤

n∑
i=1

qi. As the corresponding

instance of the original problem, we will take p
i
=

q
i

a
and pi =

qi

a
.

Possible values pi ∈ [p
i
, pi] and qi ∈ [q

i
, qi] can be obtained from each other by,

correspondingly, multiplying or dividing by a. For each set qi = pi · a, we have

L = −
n∑

i=1

qi · log2(qi) = −
n∑

i=1

a · pi · log2(a · pi) = −a ·
n∑

i=1

pi · log2(a · pi) =

−a ·
n∑

i=1

pi · log2(pi)− a · log2(a) ·
n∑

i=1

pi =

−a ·
n∑

i=1

pi · log2(pi)− a · log2(a) = a · S − a · log2(a).

Thus, L is an increasing function of S, hence the minimum L is equal to

L = a · S − a · log2(a).

Therefore, if we get the solution S to the above instance of our original problem P,
we will thus be able to easily compute the solution L to the corresponding instance
of the auxiliary problem P1.

Therefore, the auxiliary problem P1 – whose NP-hardness we have already proven
– can be reduced to the original problem P. So, we have prove that the original
problem P of computing S is indeed NP-hard.

Appendix F. Justification of the O(n · log2(n)) Algorithm for Computing S
when Intervals Are Not Contained in Each Other

It is easy to show that when we sort the intervals in lexicographic order, then both
their lower endpoints p

i
and upper endpoints pi are also sorted: p

i
≤ p

i+1
and

pi ≤ pi+1. (Indeed, otherwise, we would get a violation of the subset property.) Let
us thus assume that the intervals are thus sorted.

Let us now show that it is sufficient to consider monotonic optimal tuples
p1, . . . , pn, for which pi ≤ pi+1 for all i. Indeed, if pi > pi+1, then, since
pi ≤ pi ≤ pi+1 and pi > pi+1 ≥ p

i+1
, we have pi ∈ [p

i+1
, pi+1] and similarly

pi+1 ∈ [p
i
, pi]. Thus, we can swap the values pi and pi+1 without changing the

value of S. We can repeat this swap as many times as necessary until we get a
monotonic tuple that has the exact same value S = S.
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Let us now show that in the optimal tuple, at most one pi can be inside the
corresponding interval. Indeed, if we have two values pj and pk strictly inside their
intervals, then, similarly to the case of S, we can conclude that pj = pk. Now, for
pj − ∆ = p − ∆ and pk + ∆ = p + ∆, the function S should have a minimum
at ∆ = 0 and thus, its second derivative relative to ∆ should be non-negative.
However, an explicit computation shows that this derivative is negative. Thus, our
assumption is false, and at most one pj can be inside the corresponding interval.

Similar to the case of S, we can now conclude that:

• if pj = p
j

and pm > p
m

, then pj ≤ pm; and
• if pm = pm and pj < pj , then pm ≥ pj .

Thus, each value pj = p
j

precede all the values pm = pm, and the only value
pi which is strictly inside the corresponding interval lies in between these values.
Thus, in a monotonic optimal tuple p1, . . . , pn, the first elements are equal to p

j
,

then we may have one element which is strictly inside its interval, and then we
have values pm = pm.

The above algorithm tests all such (possibly optimal) sequences and finds the
one for which the entropy is the largest.

Appendix G: Proof that Under the No-Subset Property, the Fast Algorithm
Always Computes S in Linear Time

In the previous appendix, we have already shown that, if we sort the intervals pi

by their midpoints, then the minimum S is always attained at a monotonic tuple
p1, . . . , pn in which the first elements are equal to p

j
, then we may have one element

which is strictly inside its interval, and then we have values pm = pm.
For the resulting vector p = (p

1
, . . . , p

k−1
, pk, pk+1, . . . , pn), with p

k
≤ pk ≤ pk,

the condition
n∑

i=1
pi = 1 implies that Σk ≤ 1 ≤ Σk−1, where Σk

def=
k∑

i=1
p

i
+

n∑
j=k+1

pj .

When we go from Σk to Σk+1, we replace a larger value pk+1 with a smaller
value p

k+1
. Hence Σk > Σk+1. Thus there has to be exactly one kmax for which

Σk ≤ 1 ≤ Σk−1.
So if we have Σm > 1, this means that the value kmax corresponding to the

minimum of S is > m. Hence for all the indices i ≤ m we already know that in the
optimal vector p we have pi = p

i
. Thus these indices can be added to the set I−.

If Σm−1 (= Σm +2∆m) < 1, this means that the value kmin corresponding to the
minimum of S is < m. Hence for all the indices j ≥ m we already know that in the
optimal vector p we have pj = pj . Thus these indices can be added to the set I+.

Finally, if Σm ≤ 1 ≤ Σm−1 then this m is where the minimum of S is attained.
The algorithm has been justified.
The proof that the new algorithm for computing S requires linear time is similar

to the proof about the linear-time algorithm for computing S.

Appendix H. Proof of the Asymptotic Formula for S for the Case of p-Boxes

When we discretize the distribution, we get pi ≈ ρ0(xi) ·∆xi, hence

−
∑

pi · log2(pi) ≈ −
∫

ρ0(x) · log2(ρ0(x) ·∆x) dx.

To minimize the entropy, we can take the discrete distribution with values



January 16, 2010 17:54 International Journal of General Systems tr09-37a

32 Vladik Kreinovich and Gang Xiang

x1, . . . , xn as far away from each other as possible. A distribution which is lo-
cated at xi and xi+1 and has 0 probability to be in between is described by a cdf
F (x) which is horizontal on [xi, xi+1]. Thus, we must select a cdf F (x) ∈ F(x) for
which these horizontal segments are as long as possible. The length of a horizontal
segment is bounded by the geometry of the p-box:

-¾
¡

¡
¡

¡
¡

¡
¡
6

?
∆xi

2∆F (x)
F (x)

¡
¡

¡

F (x)
-¾ 2ε

Thus, this length cannot exceed
2∆F (x)
ρ0(x)

. If this length is > 2ε, then we can

take this interval between the sequential values xi. If this length is < 2ε, then

we can still take ∆xi = 2ε. Thus, in general, we take ∆xi = max
(

2∆F (x)
ρ0(x)

, 2ε

)
.

Substituting this expression into the above asymptotic formula, we get the desired
asymptotic for S.

Appendix I. Proof of Proposition 8.3

To prove this proposition, it is sufficient to show that for each M > 0, the measure
of privacy loss is the same for this M and for M0 = 1. Indeed, for each function
F (x) for which |F ′(x)| ≤ M for all x, for the re-scaled function F0(x) def= F (x)/M ,
we have |F ′

0(x)| ≤ 1 for all x, and

F (x0)−
∫

ρ(x) · F (x) dx = M ·
(

F0(x0)−
∫

ρ(x) · F0(x) dx

)
. (2)

Vice versa, if |F ′
0(x)| ≤ 1 for all x, for the re-scaled function F (x) def= M ·F0(x), we

have |F ′(x)| ≤ M for all x, and (2). Thus, the maximized values corresponding to M
and M0 = 1 different by a factor M . Hence, the resulting amounts of privacy A(P )
and A0(P ) corresponding to M and M0 also differ by a factor M : A(P ) = M ·A0(P ).
Substituting this expression for A(P ) (and a similar expression for A(Q)) into the

definition (1), we can therefore conclude that
A(P )−A(Q)

A(P )
=

A0(P )−A0(Q)
A0(P )

,

i.e., that the measure of privacy is indeed the same for M and M0 = 1. The
proposition is proven.

Appendix J. Proof of Proposition 8.4

Due to Proposition 8.3, for computing the measure of the privacy loss, it is sufficient
consider the case M = 1. Let us show that for this M , we have A(P ) = U − L.

Let us first show that for every x0 ∈ [L,U ], for every probability distribution
ρ(x) on the interval [L,U ], and for every function F (x) for which |F ′(x)| ≤ 1, the
privacy loss F (x0)−

∫
ρ(x) · F (x) dx does not exceed U − L.

Indeed, since
∫

ρ(x) dx = 1, we have F (x0) =
∫

ρ(x) · F (x0) dx and hence,

F (x0)−
∫

ρ(x) · F (x) dx =
∫

ρ(x) · (F (x0)− F (x)) dx.

Since |F ′(x)| ≤ 1, we conclude that |F (x0)− F (x)| ≤ |x0 − x|. Both x0 and x are
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within the interval [L,U ], hence |x0 − x| ≤ U − L, and |F (x0) − F (x)| ≤ U − L.
Thus, the average value

∫
ρ(x) · (F (x0) − F (x)) dx of this difference also cannot

exceed U − L.
Let us now show that there exists a value x0 ∈ [L,U ], a probability distribution

ρ(x) on the interval [L,U ], and a function F (x) for which |F ′(x)| ≤ 1, for which
the privacy loss F (x0)−

∫
ρ(x) ·F (x) dx is exactly U −L. As such an example, we

take F (x) = x, x0 = U , and ρ(x) located at a point x = L with probability 1. In
this case, the privacy loss is equal to F (U)− F (L) = U − L.

Similarly, we can prove that A(Q) = u− l, so we get the desired measure of the
privacy loss. The proposition is proven.
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