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Background To determine the presence of interaction in epidemiologic research, typically

a product term is added to the regression model. In linear regression, the

regression coefficient of the product term reflects interaction as departure from

additivity. However, in logistic regression it refers to interaction as departure

from multiplicativity. Rothman has argued that interaction estimated as

departure from additivity better reflects biologic interaction. So far, literature

on estimating interaction on an additive scale using logistic regression only

focused on dichotomous determinants. The objective of the present study was to

provide the methods to estimate interaction between continuous determinants

and to illustrate these methods with a clinical example.

Methods

and results

From the existing literature we derived the formulas to quantify interaction as

departure from additivity between one continuous and one dichotomous

determinant and between two continuous determinants using logistic regression.

Bootstrapping was used to calculate the corresponding confidence intervals.

To illustrate the theory with an empirical example, data from the Utrecht Health

Project were used, with age and body mass index as risk factors for elevated

diastolic blood pressure.

Conclusions The methods and formulas presented in this article are intended to assist

epidemiologists to calculate interaction on an additive scale between two variables

on a certain outcome. The proposed methods are included in a spreadsheet which

is freely available at: http://www.juliuscenter.nl/additive-interaction.xls.
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Background
In epidemiology, interaction refers to the situation where

the effect of one risk factor (A) on a certain disease

outcome is different across strata of another risk factor (B),

or vice versa. This means that if interaction between A and B

is present, A and B are not independent in causing a certain

disease. If the combined effect of A and B is larger (or smaller)

than the sum of the individual effects of A and B, there

is interaction on an additive scale or departure from additivity.

Interaction on a multiplicative scale, or departure from multi-

plicativity, occurs when the combined effect of A and B is larger

(or smaller) than the product of the individual effects.

Rothman discerns two types of interactions: statistical and

biologic.1 Statistical interaction means departure from the

underlying form of a statistical model. Because there are

various statistical models, statistical interaction does not have a
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consistent meaning. Most researchers assess interaction by

entering a product term into the linear or logistic regression

model. However, the interpretation of the regression coefficient

of the product term depends on the statistical model. In linear

regression analysis the regression coefficient of the product

term means departure from additivity, whereas in logistic

regression (and in Cox regression) the regression coefficient of

the product term estimates departure from multiplicativity

(Appendix 1). Biologic interaction means that two causes are

both needed to cause disease; the two causes are component

causes in the same causal model. Rothman has argued that

when biologic interaction is examined, we should focus on

interaction as departure from additivity rather than departure

from multiplicativity.1 In aetiologic epidemiologic research, we

are interested in biologic interaction rather than in statistical

interaction. However, by adding a product term to a logistic

model, interaction is (unknowingly) estimated as departure

from multiplicativity.

Rothman2 and Hosmer and Lemeshow3 have shown how

interaction as departure from additivity can be quantified in a

logistic regression model. They proposed to make one catego-

rical variable with four levels that combines two dichotomous

determinants. Assmann et al. 4 demonstrated that bootstrapping

may give better coverage of the 95% CI of the estimate of

interaction than the delta method described by Hosmer and

Lemeshow.3 These studies only focused on interaction between

two dichotomous determinants. In epidemiologic research, we

are often also interested in the effect of continuous determi-

nants on an outcome and dichotomizing a continuous variable

may lead to loss of information.5

This article illustrates with a clinical example the methods

and formulas to estimate interaction, as departure from addi-

tivity between continuous determinants, and its uncertainty

on both a dichotomous and a continuous outcome. We will

first describe the concept of interaction on an additive scale

and show the difference with interaction on a multiplicative

scale using a simple 2� 2 table. Then we will explain how

logistic regression analysis can be used to estimate interaction

on an additive scale. There are two reasons why regression

analysis rather than simple tabulation might be needed to

estimate interaction. First, there may be a need to adjust for

confounders. Second, if one or both of the determinants are

continuous it is not possible to construct a 2� 2 table. In this

article we will focus on one of the three measures for

interaction as departure from additivity, namely the Relative

Excess Risk due to Interaction (RERI). The other two measures,

Attributable Proportion (AP) and Synergy index (S), will be

shortly discussed in the application section of the article.

Example dataset
To illustrate the methods and formulas, we will use data

from the Utrecht Health Project (UHP), which is described in

detail elsewhere.6 In brief, the UHP is an ongoing longitudinal

study, which started in the year 2001, among all inhabitants of

a new residential area in the city of Utrecht, The Netherlands.

At baseline, an Individual Health Profile is made, which

is based on a questionnaire, physical examination and

blood measurements. By January 2005, 13 128 subjects were

invited of whom 6755 gave informed consent (51.4%) and entry

data were complete on 6304 (48.0%) adults and children.

The adult UHP population consists of 2221 (44.9%) males

and 2729 (55.1%) females with a mean age (SD) of 39.3

(12.5) years.

The data set we use in this article comprises two continuous

determinants, age and body mass index (BMI), and one

continuous outcome, diastolic blood pressure. Fifty-three sub-

jects had a missing value on BMI or diastolic blood pressure

and were excluded from the analyses. Table 1 presents

descriptive statistics of the three variables. The three variables

were dichotomized because our aim was to show how to

calculate additive interaction using both dichotomous and

continuous determinants and outcomes. We reasoned that

using the same determinants and outcome throughout all the

examples would enhance the understanding of the article. As a

result, we did not use truly dichotomous determinants, such as

gender. Age was dichotomized according to an arbitrarily

chosen cutpoint of 40 years, where age <40 years was coded

as 0 and age 540 years was coded as 1. BMI was dichotomized

according to the overweight cutpoint of 25 kg/m2, where BMI

<25 kg/m2 was coded as 0 and BMI 525 kg/m2 as 1. Diastolic

blood pressure was dichotomized according to a cutpoint of

90 mm Hg, where a normal blood pressure was coded as 0 and

hypertension as 1. The percentages in the resulting categories

were 65.2 and 34.8% for age, 50.9 and 49.1% for BMI and 87.5

and 12.5% for hypertension.

Estimating interaction on an additive
scale using a 23 2 table
Consider age (A) and BMI (B) as dichotomous risk factors for

diastolic hypertension (D). A 2� 2 table can be constructed

with the absolute risk of disease in the four following

categories: young subjects with normal BMI (A�B�), older

subjects with normal BMI (AþB�), young subjects with

overweight (A�Bþ) and older subjects who are overweight

(AþBþ). The risk in category A�B� is called the background

risk because in this category the disease frequency is caused

by other factors than A and B. Table 2 shows the absolute risks

of hypertension in these categories and the risk differences

and relative risks in strata of age and BMI.

Interaction on an additive scale is present if the combined

effect of A and B is not equal to the sum of the effects of

A and B:

ðRAþBþ � RA�B�Þ 6¼ ðRAþB� � RA�B�Þ þ ðRA�Bþ � RA�B�Þ ð1Þ

where R indicates the absolute risk of disease in that specific

stratum. Note that the background risk is subtracted to get the

Table 1 Descriptive statistics of age, body mass index and diastolic
blood pressure

N Mean SD Median Min Max

Age (years) 4897 39.3 12.5 35.6 18.0 91.1

Body mass index (kg/m2) 4897 25.5 4.2 24.9 9.2 46.7

Diastolic blood pressure
(mmHg)

4897 77.8 10.5 77.0 48.5 126.5
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effects of A alone, B alone and A and B combined. In our

example: (27.2� 4.4) 6¼ (14.7� 4.4)þ (11.0� 4.4)) 22.8416.9,

meaning there is ‘positive’ interaction on an additive scale

because the combined effect is larger than the sum of the

individual effects. By dividing all risks in Formula (1) by the

background risk, RA�B�, an equivalent expression for risk ratios

(RRs) is obtained:

ðRRAþBþ � 1Þ 6¼ ðRRAþB� � 1Þ þ ðRRA�Bþ � 1Þ: ð2Þ

In our example: (27.2/4.4� 1) 6¼ (14.7/4.4� 1)þ (11.0/

4.4� 1)) 5.1843.84.

Interaction on a multiplicative scale is present if the

combined effect of A and B is not equal to the product of

the effects of A and B:

ðRAþBþ=RA�B�Þ 6¼ ðRAþB�=RA�B�Þ
�
ðRA�Bþ=RA�B�Þ: ð3Þ

In our example: (27.2/4.4) 6¼ (14.7/4.4)� (11.0/4.4))

6.18 < 8.35, meaning that there is ‘negative’ interaction on a

multiplicative scale because the combined effect is smaller than

the product of the individual effects. The fact that interaction is

present can also be seen in Table 2, as the effect of BMI on

hypertension is different across strata of age. Also, the effect of

age on hypertension is different across strata of BMI. However,

the risk difference is highest in the older age stratum and in the

overweight stratum, whereas the RR is highest in the younger

age stratum and in the normal BMI stratum. This agrees with

the calculations above, as these showed there is positive

interaction on an additive scale and negative interaction on

a multiplicative scale. This example illustrates that it depends

on the measure of effect (risk difference or RR) whether

interaction is present or not, or in which direction the

interaction operates.

The amount of interaction as departure from additivity can be

derived from Formula (1) for absolute risks:

ðRAþBþ � RA�B�Þ � ðRAþB� � RA�B�Þ � ðRA�Bþ � RA�B�Þ ð4Þ

and from Formula (2) for relative risks:

ðRRAþBþ � 1Þ � ðRRAþB� � 1Þ � ðRRA�Bþ � 1Þ: ð5Þ

Rothman called this amount of interaction RERI.2 Rewriting

Formula (5) gives:

RERI ¼ RRAþBþ � RRAþB� � RRA�Bþ þ 1: ð6Þ

In our example the RERI is RERI¼ 6.18� 3.34� 2.50þ 1¼ 1.34,

meaning that the relative risk for hypertension in older

overweight subjects is 1.34 more than if there were no

interaction between age and BMI. Figure 1 shows this

graphically.

Note that the absolute background risk was 4.4% and thus

the absolute risk due to interaction is 5.9% (4.4%� 1.34), which

is exactly the amount of interaction for absolute risks calculated

with Formula (4).

Assuming that the odds ratio (OR) approximates the relative

risk, this formula can also be used for ORs. Note that in the

absence of interaction as departure from additivity, i.e. when

there is exact additivity, RERI¼ 0.

Estimating interaction on an additive
scale using logistic regression
Determinant A, determinant B and the product of A and B

are included in the logistic regression model. This may seem

confusing because we indicated above that a product term

tests departure from multiplicativity rather than additivity

in a logistic regression model. However, as shown below, the

regression coefficient of the product term can also be used to

calculate interaction as departure from additivity. Including

determinant A, B and the product of A and B in the logistic

regression formula results in:

ln
p

1 � p

� �
¼ lnðoddsÞ ¼ �̂0 þ �̂1 Aþ �̂2Bþ �̂3 AB: ð7Þ

To calculate RERI the following three ORs are needed:

(i) AþB� relative to A�B� which is e�̂1 , (ii) A�Bþ relative
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Figure 1 Relative risks in categories A�B�, AþB�, A�Bþ and AþBþ,
divided in background, individual effect of A, individual effect of B and
the interaction effect as departure from additivity

Table 2 Absolute risks, risk differences and relative risks of diastolic hypertension according to strata of age and BMI

Normal BMI (B�) Overweight (Bþ)

N Risk N Risk Risk difference Relative risk

Young (A�) Normal tension (D�) 1731 1232

Hypertension (Dþ) 79 4.4% 153 11.0% 6.6% 2.50

Old (Aþ) Normal tension (D�) 581 743

Hypertension (Dþ) 100 14.7% 278 27.2% 12.5% 1.85

Risk difference 10.3% 16.2%

Relative risk 3.34 2.47
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to A�B� which is e�̂2 and (iii) AþBþ relative to A�B� which

is e�̂1þ�̂2þ�̂3 (Appendix 1). The formulas to assess presence of

interaction on an additive scale and to estimate the RERI are:

e�̂1þ�̂2þ�̂3 � 1
� �

6¼ e�̂1 � 1
� �

þ e�̂2 � 1
� �

ð8Þ

and

RERI ¼ e�̂1þ�̂2þ�̂3 � e�̂1 � e�̂2 þ 1: ð9Þ

The regression coefficients from the logistic regression model

can be substituted into Formulae (8) and (9). Important to note

is that these formulae can be used for two dichotomous as well

as two continuous determinants or a combination of both.

Estimating confidence interval
A simulation study4 showed that the first bootstrap percentile

method gave better coverage of the 95% CI than the delta

method.3 Moreover, note that assessment of a continuous

determinant per, e.g., 5 units instead of per 1 unit leads to a

non-linear transformation of the RERI and its CI. Then the

delta method cannot be used whereas bootstrapping can. For

these two reasons, we adopted the first bootstrap percentile

method to calculate the CI around the estimate of interaction.

From the original data set 10 000 bootstrap samples (with

replacement) were taken, each of which was the same size as

the original sample. The RERI was then estimated in each of

these new samples and the 95% CI for RERI was estimated as

the 2.5th and 97.5th percentiles of the resulting bootstrap

sampling distribution. The statistical program S-PLUS 6.2 was

used (S-PLUS 6.2, Insightful, Seattle, USA) to carry out the

bootstrapping procedure. Appendix 2 presents the script we

used and an example output.

Empirical examples of estimating
interaction on an additive scale

Two dichotomous determinants and dichotomous
outcome

Consider age and BMI as risk factors for diastolic hypertension,

all dichotomized as described before. Age, BMI and the product

of age and BMI are entered as the independent variables and

diastolic hypertension as the dependent variable in a logistic

regression model. The output of the logistic regression model

shows that an older person has a 3.77 times higher risk of

diastolic hypertension than a young person (Table 3).

Overweight subjects have a 2.72 times higher risk of diastolic

hypertension compared with subjects with normal BMI. The OR

and CI of the product term provide some evidence of ‘negative’

interaction on a multiplicative scale (OR (95% CI)¼ 0.80

(0.55–1.17)). Most readers will conclude that there is no inter-

action between age and BMI, because the OR of the product

term is not significant. However, since the underlying model is

a logistic regression model, this product term refers only to

interaction on a multiplicative scale. The OR of 0.80 actually

means that the combined effect of old age and overweight

is 0.80 times the product of the individual effects of old age

and overweight. To assess the amount of interaction on

an additive scale we use Formula (8): ðe�̂1þ�̂2þ�̂3 � 1Þ 6¼

ðe�̂1 � 1Þ þ ðe�̂2 � 1Þ ) 7:244:5 and Formula (9): RERI ¼

e�̂1þ�̂2þ�̂3 � e�̂1 � e�̂2 þ 1 ¼ 2:7: There is ‘positive’ interaction on

an additive scale because 7.2 is larger than 4.5. The amount of

additive interaction, the RERI, is equal to 2.7. This means that

the relative risk of having hypertension in older subjects with

overweight is 2.7 more than if there were no interaction

between age and BMI. Bootstrapping resulted in the following

RERI with 95% CI: RERI (95% CI) ¼ 2.7 (1.3, 4.4). Note that

a RERI of 0 indicates exact additivity and thus no interaction

on an additive scale. In this example, there is more evidence

for interaction on an additive scale than for interaction on

a multiplicative scale.

One continuous and one dichotomous determinant
and dichotomous outcome

Exactly the same methods as described above can be used for

one dichotomous and one continuous determinant. Consider

again age and BMI as risk factors for hypertension but now age

is a continuous variable. Age, BMI and the product of age and

BMI are entered as the independent variables and hypertension

as the dependent variable in a logistic regression model.

We arbitrarily chose to evaluate the effect of age per 5 years

increase by dividing age by 5, and included this variable in the

model. Table 4 shows that per 5 years increase of age, the risk

of having diastolic hypertension increases with a factor of 1.29.

Overweight subjects have a 4.05 times higher risk of diastolic

hypertension compared with subjects with normal BMI. The OR

and CI of the product term provide evidence for ‘negative’

interaction on a multiplicative scale (OR (95% CI)¼ 0.94

(0.88–1.00)). However, ‘positive’ interaction is present on an

additive scale: ðe�̂1þ�̂2þ�̂3 � 1Þ 6¼ ðe�̂1 � 1Þ þ ðe�̂2 � 1Þ ¼ 4:043:4

and RERI ¼ e�̂1þ�̂2þ�̂3 � e�̂1 � e�̂2 þ 1 ¼ 0:6 with a 95% CI of

(0.3; 1.0). A RERI of 0.6 means that the relative risk of having

hypertension in overweight subjects is 0.6 more with each

Table 3 Output of logistic regression model with age and BMI as
dichotomous (dich) determinants and product of age and BMI entered
into the model. Outcome is diastolic hypertension

95% CI of OR

Parameter Estimate
Standard

error OR Lower Upper

Age dich 1.33 0.16 3.77 2.77 5.14

BMI dich 1.00 0.14 2.72 2.05 3.61

Age dich�BMI dich �0.23 0.19 0.80 0.55 1.17

Constant �3.09 0.12

Table 4 Output of logistic regression model with age (per 5 years) as
continuous (cont) determinant, BMI as dichotomous (dich) determi-
nant and product of age and BMI entered into the model. Outcome is
diastolic hypertension

95% CI of OR

Parameter Estimate
Standard

error OR Lower Upper

Age (per 5 years) cont 0.26 0.03 1.29 1.22 1.36

BMI dich 1.40 0.31 4.05 2.20 7.45

Age cont � BMI dich �0.06 0.03 0.94 0.88 1.00

Constant �4.60 0.25
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5 years of increase in age than if there were no interaction

between age and BMI.

Two continuous determinants and dichotomous
outcome

Consider again age and BMI as risk factors for diastolic

hypertension but now as two continuous variables. Age, BMI

and the product of age and BMI are entered as the independent

variables and diastolic hypertension as the dependent variable

in a logistic regression model. We again chose to evaluate the

effect of age per 5 years. The effect of BMI was estimated per

2 units. Table 5 shows that per 5 years increase of age and per

2 units increase of BMI, the risk of having diastolic hyperten-

sion increased with a factor of 1.41 and 1.39, respectively. The

OR and CI of the product term show that there is little evidence

for interaction on a multiplicative scale (OR (95% CI)¼ 0.99

(0.98–1.01)). Calculating interaction on an additive scale

gives: ðe�̂1þ�̂2þ�̂3 � 1Þ 6¼ ðe�̂1 � 1Þ þ ðe�̂2 � 1Þ ) 0:9340:80 and

RERI ¼ e�̂1þ�̂2þ�̂3 � e�̂1 � e�̂2 þ 1 ¼ 0:14 with a 95% CI of

(0.04; 0.34). A RERI of 0.14 means that with every 5 years

increase in age, and 2 units increase in BMI, the relative risk

of having hypertension is 0.14 more than if there were no

interaction.

Robustness of RERI and confidence interval

In the examples above, the effect of age was assessed per 5 years

increase of age and the effect of BMI per 2 units increase of BMI.

To assess the robustness of RERI and CI, we calculated the RERI

and its 95% confidence interval using different years of increase

in age (1, 2, 5 and 10) and different units of increase in BMI

(1, 2 and 5). The results are presented in Table 6. Note that

the increase in RERI with increasing units is not linear with the

units increase. For example, the RERI with age per 1 unit

increase and BMI per 2 units increase (0.025, Table 6) is not

exactly a factor 2 larger than the RERI with age per 1 unit

increase and BMI per 1 unit increase (0.011, Table 6).

Estimating interaction on an additive scale
using linear regression

As explained previously, in case of linear regression the

regression coefficient of the product term reflects interaction

as departure from additivity (Appendix 1). Consider again age

and BMI as risk factors for elevated diastolic blood pressure.

Age and BMI are dichotomous variables and diastolic blood

pressure is a continuous variable. Age, BMI and the product of

age and BMI are entered as the independent variables and

diastolic blood pressure as the dependent variable in a linear

regression model. The output is presented in Table 7.

The combined effect of age and BMI is larger than the sum

of the individual effects of age and BMI:

(84.2� 73.7) 6¼ (79.1� 73.7)þ (77.7� 73.7)) 10.549.4 or

(5.4þ 4.0þ 1.1� 0)4 (5.4� 0)þ (4.0� 0)) 10.549.4.

The amount additive interaction is: (5.4þ 4.0þ 1.1)�

5.4� 4.0þ 0¼ 1.1, which (by definition) equals the regression

coefficient of the product term. Note that this estimate of

interaction is not the same as ‘RERI’ as this calculation

concerns the change in absolute values of the continuous out-

come instead of a change in the relative risks. The confidence

interval around the interaction estimate is easily calculated

with the standard error of the regression coefficient of the

product term: (�0.1; 2.3). So there is considerable evidence for

‘positive’ interaction on an additive scale between age and BMI

as dichotomous risk factors for diastolic blood pressure on

a continuous scale.

Practical use
Besides the RERI, Rothman has proposed two other measures

of interaction on an additive scale: the proportion of disease

among those with both exposures that is attributable to their

interaction (AP) and the ratio between the combined effect

and the sum of the individual effects, the synergy index (S)2.

The formulas of these measures are:

AP ¼
RERI

RRAþBþ
, ð10Þ

and

S ¼
RRAþBþ � 1

RRAþB� � 1ð Þ þ RRA�Bþ � 1ð Þ
: ð11Þ

Table 5 Output of logistic regression model with age (per 5 years) as
continuous (cont) determinant, BMI (per 2 kg/m2) as continuous (cont)
determinant and product of age and BMI entered into the model.
Outcome is diastolic hypertension

95% CI of OR

Parameter Estimate
Standard

error OR Lower Upper

Age (per 5 years) cont 0.34 0.10 1.41 1.15 1.72

BMI (per 2 kg/m2) cont 0.33 0.07 1.39 1.22 1.59

Age cont�BMI cont �0.01 0.01 0.99 0.98 1.01

Constant �8.09 0.92

Table 7 Output of linear regression model with age and BMI as
dichotomous determinants and product of age and BMI entered into the
model. Outcome is diastolic blood pressure

95% CI of b

Parameter Estimate
Standard

error Lower Upper

Age dich 5.4 0.4 4.5 6.2

BMI dich 4.0 0.3 3.4 4.7

Age dich�BMI dich 1.1 0.6 -0.1 2.3

Constant 73.7 0.2 73.2 74.1

Table 6 RERI and 95% confidence interval for different units increase
in age (1, 2, 5 and 10) and BMI (1, 2 and 5)

RERI
(95% CI) Age

1 2 5 10

BMI

1 0.011
(0.004–0.026)

0.023
(0.007–0.051)

0.064
(0.020–0.158)

0.152
(0.040–0.390)

2 0.025
(0.007–0.055)

0.051
(0.015–0.114)

0.139
(0.040–0.337)

0.327
(0.079–0.812)

5 0.078
(0.023–0.193)

0.161
(0.047–0.412)

0.440
(0.130–1.210)

1.031
(0.287–3.106)
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Note that in the absence of interaction as departure from

additivity, AP is 0 and S is 1. These measures of interaction can

also be calculated in case of one or two continuous determi-

nants using the same approach as described above for the RERI.

The CI can also be obtained by bootstrapping.

Assuming that a hazard ratio approximates a relative risk, the

methods to estimate interaction on an additive scale described

in this article can also be applied to Cox regression. The script

for bootstrapping, however, should be adapted.

The proposed methods to estimate interaction on an additive

scale with continuous determinants are included in a spread-

sheet which is freely available at: www.juliuscenter.nl/additive-

interaction.xls. In the spreadsheet the output of the logistic

regression model (or Cox regression model) has to be filled in

and all estimates of interaction (RERI, AP and S) are calcu-

lated. Furthermore, the script for bootstrapping in S-PLUS to

calculate the 95% CI is presented in Appendix 2 and included in

the spreadsheet.

In this article, we took Rothman’s theory about the causal pie

model as a starting point. This theory implies that biologic

interaction is present if two causes are both needed to cause

disease and therefore should be assessed as departure from

additivity rather than multiplicativity. Not all researchers may

agree with this view and the relevance of interaction on a

multiplicative scale may be different in non-aetiologic research.

However, when interaction on an additive scale is the measure

of interest, the methods outlined in this article may be used

fruitfully.

Conclusions
The aim of our article was to show that interaction as departure

from additivity between continuous determinants can be

estimated using logistic regression analysis and to give an

empirical example. The methods and formulas presented in this

article are intended to assist epidemiologists to calculate

interaction on an additive scale between continuous determi-

nants. To facilitate its use, the proposed methods are included

in a spreadsheet which is freely available at: www.juliuscenter.

nl/additive-interaction.xls.

Acknowledgements
We acknowledge the participating inhabitants of Leidsche Rijn,

Utrecht, The Netherlands, and the general practitioners working

in this area for providing research data from routine care. This

study was supported by an unrestricted grant from Novo

Nordisk and the Scientific Institute of Dutch Pharmacists

(WINAp) and was supported by The Netherlands Organization

for Scientific Research (ZON-MW 917.66.311). The Utrecht

Health Project (LRGP) received grants from the Ministry of

Health, Welfare, and Sports (VWS), the University of Utrecht,

the Province of Utrecht, the Dutch Organisation of Care

Research (ZON), the University Medical Center Utrecht

(UMC Utrecht) and the Dutch College of Healthcare

Insurance Companies (CVZ).

Conflict of interest: None declared.

References
1 Rothman KJ. Epidemiology: An Introduction. New York: Oxford

University Press, 2002.
2 Rothman KJ. Modern Epidemiology. Boston/Toronto: Little: Brown and

Company, 1986.

3 Hosmer DW, Lemeshow S. Confidence interval estimation of

interaction. Epidemiology 1992;3:452–56.
4 Assmann SF, Hosmer DW, Lemeshow S, Mundt KA. Confidence

intervals for measures of interaction. Epidemiology 1996;7:286–90.
5 Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous

predictors in multiple regression: a bad idea. Stat Med 2006;25:127–41.
6 Grobbee DE, Hoes AW, Verheij TJ, Schrijvers AJ, van Ameijden EJ,

Numans ME. The Utrecht Health Project: optimization of routine

healthcare data for research. Eur J Epidemiol 2005;20:285–87.

Appendix 1
In linear regression, the regression coefficient of the product

term refers to departure from additivity, whereas in logistic

regression, the regression coefficient of the product term

refers to departure from multiplicativity. This is shown below.

For simplicity we assume determinants A and B to be

dichotomous (with levels 0 and 1).

Linear regression

When entering two determinants, A and B, and a product term

in a linear regression model, the regression formula of the

outcome Y is:

Y ¼ �0 þ �1Aþ �2Bþ �3AB:

KEY MESSAGES

� In linear regression the regression coefficient of the product term reflects interaction as departure from additivity,

whereas in logistic regression it refers to interaction as departure from multiplicativity.

� So far, literature on estimating interaction as departure from additivity using logistic regression only focused on

dichotomous determinants.

� The aim of our article is to show with an empirical example that additive interaction between continuous determinants

can be estimated using logistic regression analysis.

� The methods and formulas presented in this article are intended to assist epidemiologists to calculate additive interaction

between continuous determinants.

� To facilitate its use the proposed methods are included in a spreadsheet which is freely available at: www.juliuscenter.nl/

additive-interaction.xls.
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The individual effect of A, assuming no effect of B, is:

Y ¼ �0 þ �1 � �0 ¼ �1:

The individual effect of B, assuming no effect of A, is:

Y ¼ �0 þ �2 � �0 ¼ �2:

The combined effect of A and B, compared with no effect of A

and B, is:

Y ¼ �0 þ �1 þ �2 þ �3 � �0 ¼ �1 þ �2 þ �3:

It can be seen that the combined effect of A and B can be

assessed by adding the regression coefficients of A, B and the

product term. There are three possibilities for the regression

coefficient of the product term:

(i) If b3¼ 0, the combined effect of A and B¼ b1þ b2!

exactly additivity!no interaction as departure from

additivity.

(ii) If b3 < 0, the combined effect of A and B< b1þ b2! less

than additivity! ‘negative’ interaction as departure from

additivity.

(iii) if b340, the combined effect of A and B4b1þ b2!more

than additivity! ‘positive’ interaction as departure from

additivity.

Logistic regression

When inserting two determinants, A and B, and a product term

in a logistic regression model, the regression formula of the

logit of p is:

ln
p

1 � p

� �
¼ ln oddsð Þ ¼ �0 þ �1Aþ �2Bþ �3AB:

The individual effect of A, assuming no effect of B, is:

lnðORAþÞ ¼ ln
oddsðAþ,B�Þ

oddsðA�,B�Þ

� �

¼ lnðoddsðAþ,B�ÞÞ � lnðoddsðA�,B�ÞÞ

¼ �0 þ �1 � �0 ¼ �1 ! ORAþ ¼ e�1 :

The individual effect of B, assuming no effect of A, is:

lnðORBþÞ ¼ ln
oddsðA�,BþÞ

oddsðA�,B�Þ

� �

¼ lnðoddsðA�,BþÞÞ � lnðoddsðA�,B�ÞÞ

¼ �0 þ �2 � �0 ¼ �2 ! ORBþ ¼ e�2 :

The combined effect of A and B, compared with no effect of A

and B, is:

lnðORAþBþÞ ¼ ln
oddsðAþ,BþÞ

oddsðA�,B�Þ

� �

¼ lnðoddsðAþ,BþÞÞ � lnðoddsðA�,B�ÞÞ

¼ �0 þ �1 þ �2 þ �3 � �0 ¼ �1 þ �2 þ �3

! ORAþBþ ¼ e�1þ�2þ�3 ¼ e�1 � e�2 � e�3

¼ ORA � ORB � ORAB:

It can be seen that the combined effect of A and B can be

assessed by multiplying ORA, ORB and ORAB. There are

three possibilities for the regression coefficient of the

product term:

(i) If b3¼ 0, ORAB¼ 1 and the combined effect of A and

B¼ORA�OR! B exactly multiplicativity!no interac-

tion as departure from multiplicativity.

(ii) If b3 < 0, ORAB < 1 and the combined effect of A and

B< ORA�ORB! less than multiplicativity! ‘negative’

interaction as departure from multiplicativity.

(iii) if b340, ORAB41 and the combined effect of A and

B4ORA�ORB!more than multiplicativity! ‘positive’

interaction as departure from multiplicativity.

Appendix 2

Script for bootstrapping

This is a script for S-PLUS which can be used to bootstrap the

RERI and its 95% confidence interval.

library (Design)
reri <- function(datsam)
{
fitlr <- glm(<outcome variable4 � <variable A4 �

<variable B4, family¼binomial, data¼datsam)
reri <- exp(fitlr$coef[2]þfitlr$coef[3]þfitlr$coef[4])-
exp(fitlr$coef[2]) - exp(fitlr$coef[3]) þ 1
}
summary.bootstrap(bootstrap(<dataset4, reri(<dataset4),
B¼ 10000, group = <dataset4$<outcome variable4), probs¼c(0.025,0.5,
0.975))

In the general linear model (glm) command, the outcome

variable and the two determinants, variable A and variable B,

should be substituted. In the bootstrap command, the name

of the data set should be filled in and a grouping variable

should be filled in to make sure that bootstrap sampling

is performed within the strata of the outcome. Furthermore, the

number of samples is specified (B¼ 10 000) in the script and

the median and 2.5th and 97.5th percentile are asked for.

Example output

This is an example of output that S-PLUS gives, when running

the script described above.

Forming replications 1 to 100
. . ..
Forming replications 9901 to 10000
Call:
bootstrap(data ¼ lrgpset, statistic ¼ reri(lrgpset),
B ¼ 10000, group ¼ lrgpset$bpd.dich)
Number of Replications: 10000
Summary Statistics:

Observed Bias Mean SE
Reri 2.706 0.03215 2.738 0.7906
Empirical Percentiles:

2.5% 50% 97.5%
Reri 1.28 2.709 4.377

BCa Confidence Limits:
2.5% 50% 97.5%

Reri 1.293 2.701 4.388
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Explanation of the output

Call

Here it says that it uses the data set ‘lrgpset’ and it bootstraps

the statistic ‘reri’ with a number of samples of 10 000 000 and

the outcome ‘bpd.dich’ as grouping variable.

Summary statistics

The observed or calculated RERI is 2.706. Of 10 000 samples

the mean RERI is 2.738 and the standard error is 0.7906. The

bias is the difference between the observed and the mean RERI.

Empirical percentiles

Here the median value (50th percentile) and the 2.5th and

97.5th percentiles of the RERI are given.

BCa confidence limits

These are the bias adjusted median value (50th percentile)

and the bias adjusted 2.5th and 97.5th percentiles of the RERI.

These 2.5th and 97.5th percentiles are the 95% CI limits. The

bias adjusted median and percentiles are corrected for bias due

to overfitting of the model by the bootstrap procedure.
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