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Abstract

In this paper, we propose new camera calibration meth-
ods assuming a static camera. Two corresponding imaged
rectangles whose aspect ratios are unknown are sufficient
to calibrate a camera. By warping the images properly, we
show that the information from the imaged rectangles can
be transformed to the form of camera constraints. Based
on this results, we propose two methods, one for three or
more images and the other for only two images. The pro-
posed methods are verified with synthetic and real images,
and the results are comparable with less assumptions on
cameras and on scenes.

1. Introduction

Estimating the intrinsic parameters of cameras is an im-
portant procedure in many vision-based methods, including
three-dimensional measurements, rendering, robot localiza-
tion, etc. The approaches to estimating the intrinsic parame-
ters of cameras are summarized in three categories. The first
one uses known targets, called calibration objects, which
are three-dimensional [3, 10], or two-dimensional [7, 9, 12],
or even one-dimensional [13]. In these methods, camera
calibration works quite robustly, but the physical measure-
ments of the artificial objects are needed. The second ap-
proach uses only some camera assumptions without cali-
bration targets, called autocalibration [2, 4, 8]. To autocali-
brate cameras, there must be much longer image sequences
and robustly matched feature sets. The final approach is
in-between the first two approaches. There is some knowl-
edge of both the scenes and the cameras. By combining the
various constraints on the cameras and the scenes, camera
calibration is possible [1, 7, 11]. In these methods, the con-
strained camera models are used, such as zero-skewed or
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square-pixel cameras. However, many industrial cameras
do not suffice under these assumptions.

In [6], we propose a method to estimate infinite homog-
raphy between two views using two arbitrary rectangles.
In this paper, we propose new camera calibration methods
based on [6]. In our proposed methods, we assume that the
camera used is static. We only have to find two correspond-
ing imaged rectangles whose aspect ratios are not known.
The images are warped so that the projected rectangle is to
be a real rectangle. We imagine a virtual camera, called
a fronto-parallel camera, that can capture a warped image,
and show that there are some constraints on the imagined
camera. Based on the properties, we propose two methods,
one for three or more images and the other for only two im-
ages. Both methods are tested with synthetic and real image
sets, and the results are comparable to the well-known met-
ric measurement based calibration methods.

This paper is organized as follows. In Section 2, we
briefly introduce warping based on the imaged rectangles
and the concept of the fronto-parallel camera, which may
capture the warped image. Section 3 gives sketches about
the computation of infinite homography between two views
based on the virtual fronto-parallel cameras. We propose
two algorithms, one for three or more images and the other
for just two images in Section 4. Section 5 gives an analy-
sis of the proposed algorithm and the results from real input
images. We conclude this paper in Section 6.

2. Fronto-parallel camera

Assume that there is a rectangle in 3D, whose aspect ra-
tio is unknown, denoted as , and we have a view cap-
turing the rectangle in a general position. In this case, we
can find a homography to make the projectively distorted
rectangle to align with the orthogonal axis of the rectan-
gle. The warped image is called a semi-metric image [6].
Figure 1 shows an example of a semi-metric image. In the
semi-metric image, the projected rectangle in the input im-
age becomes a rectangle whose aspect ratio is , which
can be measured.
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((a,b,c))

Figure 1: Example of a semi-metric image

Assume that there is a virtual camera to take the semi-
metric image. We call the camera as the Fronto-Parallel
(FP) camera, because the image plane of the virtual camera
is parallel to the scene plane containing the rectangle [6].

The camera matrix of a FP camera is given as

(1)

up to scale. As you can easily see, the camera matrix
expresses a camera whose skew is zero, and its pixel aspect
ratio is equal to a ratio between an aspect ratio of the ref-
erence rectangle and the corresponding semi-metric as-
pect ratio . The principal point of the camera
is expressed with the scaled vanishing point orthogonal to
the reference plane, which appears in Figure 1; the scale
has the role of a focal length. To summarize, the FP camera
matrix is determined with scene information and a camera
pose.

Naturally, the relationship between the IAC in the projec-
tive space and the IAC of a FP camera is obtained
from such basic conic transformation as

(2)

where is a plane homography from projective space to
semi-metric space.

The FP cameras have some motion constraints.

1. The FP cameras rotate to the physical camera of the
original image.

2. The FP cameras that are derived from an identical rect-
angle in 3D from different viewpoints are purely trans-
lating to each other.

Because two FP cameras derived from an identical rect-
angle are purely translating, the infinite homography be-
tween the corresponding FP cameras is given as

(3)

because and have the same pixel aspect ratios
with zero skew from Eq. (1), and the relative rotation is

.

3. Linear estimation of infinite homography
from two arbitrary rectangles

If a captured scene contains two arbitrary rectangles
whose aspect ratios are unknown, the infinite homography
is estimated linearly using the parametrization, as in Eq. (3).

Assume that there are two views, view 1 and view 2
which contain two arbitrary rectangles named rectangles
and . In that case, we can find two infinite homographies
with respect to two rectangles as

(4)

where means a semi-metric warping matrix of view
1 w.r.t. the rectangle .

However, the infinite homography is dependent only on
the intrinsic parameters of cameras and a relative rotation
between two views [5] such as

This means that the infinite homography is determined iden-
tically regardless whether rectangle is selected as a refer-
ence. This gives us a constraint equation

(5)

where is a proper scale factor.
The unknowns are the parameters of and and a

scale factor . The number of unknowns is seven and we
have nine equations, so we can easily solve the equation
linearly. Note that we do not use any metric measurements
such as lengths and aspect ratios of scene rectangles.

4. Estimating intrinsic parameters

If we know the infinite homographies between views
captured by a static camera with three or more views, the
camera calibration is linearly possible [5]. The algorithm is
as follows:

1. Track two arbitrary rectangles.

2. Find semi-metric warping matrices in all views w.r.t.
the two rectangles.

3. Estimate proper transformations and using
Eq.(5).

4. Calculate the infinite homography using Eq.(4).

5. Find the image of absolute conic (IAC) such that
.
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6. Determine the camera matrix from IAC using
Cholesky decomposition .

This algorithm can be compared with previous works
that use information on scene geometry and proper cam-
era assumptions [1, 7, 11]. The key difference is that we do
not assume that there is important metric information of the
scene such as line lengths or aspect ratios of the rectangles;
we have no camera assumptions such as zero-skew and the
known aspect ratio of the pixels. Because finding some rect-
angles in images is much easier than finding some metrics
only with images, the proposed method is much more flex-
ible than the previous ones.

If there are no further assumptions about the cameras,
the camera calibration with only two views cannot generally
be possible. However, we show that it is possible if we
have two arbitrary corresponding rectangles in each view.
That is because the “virtual” FP cameras can be treated as
constrained physical cameras.

Assume that there are two views captured by a static
camera, and we have infinite homography between the two
views. From the infinite homography , the IAC is
given as

and we can make a linear equation , as we did.
However, the rank of is only four, so we need another
constraints of the static camera. By introducing FP cameras,
we have two camera constraints of the two fronto-parallel
cameras as in Eq. (1). The constraints on FP cameras can
be transformed to ones of physical cameras using Eq. (2),
and calibration of the camera is possible.

5. Experiments

We analyze the performance of the algorithm in various
situations. We generated three views having two arbitrary
rectangles in general poses. Gaussian noises whose stan-
dard deviation is 0.5 pixels were added on the corners of
the rectangles.

First, we test the effect of angles between the model
plane and the image plane of the camera. In Figure 2, RMS
errors of focal length estimation are depicted, with 500 iter-
ations. Figure 2a shows the performance to rotation of the
plane in 3D along the x-axis. In 40 degrees, the plane is
orthogonal to the image plane, and all the features lie on a
line. This is a singular case, and the calibration is not much
degraded in general conditions.
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(b) Planar rotation
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Figure 2: Simulated performance of the proposed algorithm
using three images

Figure 3: Real input images for camera calibration

Second, we analyze the effects of planar rotation of the
model plane. Figure 2b shows the effects of planar rotation
of the world plane. We tested the performance of the dif-
ferences of the directions of the orthogonal axis of the two
rectangles. We conclude that the directions of the model
axis do not affect the performance of the algorithm.

Next, we test the effects of the area of the projected rect-
angles in input images. Figure 2c shows the performance of
the area of the rectangles used in images. The performance
is degraded exponentially when the area becomes smaller.
This is natural because it is equivalent to estimating van-
ishing points from the four corner points of the rectangles.
However, the algorithm works robustly if we have projected
rectangles larger than 10% of the average of the whole im-
ages, as shown in Figure 2c.

We test our algorithm with real images. Figure 3 shows
some input images containing two arbitrary rectangles. The
images are captured with the SONY DSC-F717 in 640
480 resolution. We do not know the exact value of the as-
pect ratios of the rectangles in the metric world. The rectan-
gles are placed arbitrarily, so we cannot use the pose relation
between the two planes. Note that some imaged rectangles
are rarely distorted projectively.

The calibration result is given as

For comparison, we calibrated the camera with the well-
known Zhang’s plane based calibration method [12] using
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six metric planes, as

Note that the proposed algorithm does not need any kind
of metric measurements such as metric coordinates or line
lengths. Also although we did not apply any robust method
or refinement techniques such as Gauss-Newton manner
non-linear minimization, the estimated camera parameters
are comparable only with three images.

We test the method for only two views under the same
condition as the three view cases. As you can see in Fig-
ure 4, calibration is not possible just with two views from a
static camera, although the infinite homography is known.
However with two imaged rectangles, the intrinsic camera
parameter can be estimated.
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Figure 4: Analysis of the effects of adding two scene con-
straints to autocalibration of static cameras based on IAC

Applying this method to real images, we first used two
real images in Figure 3. The intrinsic parameters of the
cameras with two added scene constraints as in Figure 3
is given as

Compared with the three image case in Figure 3, the accu-
racy is degraded. The accuracy for the focal length estima-
tion is less 5% in this results.

6. Conclusion

In this paper, we propose new camera calibration meth-
ods for static cameras. To calibrate the cameras, we have to
find only two corresponding imaged rectangles whose as-
pect ratios are not known. To solve the problem, we gener-
ate warped images so that the projectively transformed rect-
angles become real rectangles after warping, and imagine

there is a camera that may capture the warped image physi-
cally. We call the virtual camera the fronto-parallel camera
and show that there are some constraints on the camera. By
analyzing the motion of the fronto-parallel camera, the in-
finite homography between two cameras can be retrieved
easily with a simple linear method. Based on this, we pro-
posed two methods to calibrate cameras, one for three or
more images, and the other for only two images. Both meth-
ods are tested with synthetic and real image sets; the results
are comparable to the classical calibration methods based
on metric measurements, although we have fewer measure-
ments of the scene and constraints on the cameras.
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