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Abstract. Effective agricultural water management requires

accurate and timely information on the availability and use of

irrigation water. However, most existing information on irri-

gation water use (IWU) lacks the objectivity and spatiotem-

poral representativeness needed for operational water man-

agement and meaningful characterization of land–climate in-

teractions. Although optical remote sensing has been used to

map the area affected by irrigation, it does not physically al-

low for the estimation of the actual amount of irrigation wa-

ter applied. On the other hand, microwave observations of

the moisture content in the top soil layer are directly influ-

enced by agricultural irrigation practices and thus potentially

allow for the quantitative estimation of IWU. In this study,

we combine surface soil moisture (SM) retrievals from the

spaceborne SMAP, AMSR2 and ASCAT microwave sensors

with modeled soil moisture from MERRA-2 reanalysis to

derive monthly IWU dynamics over the contiguous United

States (CONUS) for the period 2013–2016. The methodol-

ogy is driven by the assumption that the hydrology formula-

tion of the MERRA-2 model does not account for irrigation,

while the remotely sensed soil moisture retrievals do contain

an irrigation signal. For many CONUS irrigation hot spots,

the estimated spatial irrigation patterns show good agreement

with a reference data set on irrigated areas. Moreover, in in-

tensively irrigated areas, the temporal dynamics of observed

IWU is meaningful with respect to ancillary data on local ir-

rigation practices. State-aggregated mean IWU volumes de-

rived from the combination of SMAP and MERRA-2 soil

moisture show a good correlation with statistically reported

state-level irrigation water withdrawals (IWW) but system-

atically underestimate them. We argue that this discrepancy

can be mainly attributed to the coarse spatial resolution of

the employed satellite soil moisture retrievals, which fails

to resolve local irrigation practices. Consequently, higher-

resolution soil moisture data are needed to further enhance

the accuracy of IWU mapping.

1 Introduction

The agricultural sector uses over 70 % of global freshwater

withdrawals for irrigation (Shiklomanov, 2000; Foley et al.,

2011). As a result of world population increase and rising liv-

ing standards, water will be a major constraint for agriculture

in the coming decades. In addition, climate change will likely

have a profound impact on irrigation demand throughout the

world. The projected increase in global mean temperature

and changing precipitation patterns are expected to decrease

natural water availability in already-water-scarce regions of

the world (Vörösmarty et al., 2000; Rockström et al., 2012;

Kummu et al., 2016). For instance, Döll (2002) showed that

around two-thirds of the areas that were irrigated in 1995

will require more irrigation water by 2070. Moreover, predic-

tions show that the hydrological cycle will intensify. Hence,

drought and flood events are expected to occur both more fre-

quently and severely, which further impairs water availability

for agriculture (Allan and Soden, 2008).
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On the other hand, irrigation itself is an important anthro-

pogenic climate forcing (Sacks et al., 2009). It influences

the surface water and energy balance through directly in-

creasing soil moisture (SM). In turn, soil moisture is widely

known to modulate the partitioning of energy between sensi-

ble and latent heat (Seneviratne et al., 2010). Subsequently,

irrigation cools the land surface on local to regional scales

through increasing evapotranspiration (ET), whereas the in-

creased availability of atmospheric water vapor can enhance

cloud cover and precipitation (Boucher et al., 2004; Lobell

et al., 2006; Sacks et al., 2009). Researchers agree that irri-

gation may have masked the full warming signal caused by

greenhouse gas emissions (Bonfils and Lobell, 2007; Kuep-

pers et al., 2007). As a past expansion of irrigated area and

an overall increase in irrigation intensity may have signifi-

cantly affected surface temperature observations, it is crucial

to include irrigation impacts both in understanding histori-

cal climate and modeling future climate trends (Lobell et al.,

2006). Assuming a similar expansion of irrigation as in re-

cent decades, some regions may actually benefit from this ir-

rigation cooling effect. As outlined in Ozdogan et al. (2006),

ET and in turn irrigation water requirements can decrease

within agricultural microclimates. However, nonlinear reper-

cussions on temperature extremes can be expected when the

required water supply cannot be met (Thiery et al., 2017) and

(semi-)arid regions are generally expected to be adversely af-

fected by water scarcity (Kueppers et al., 2007). As a conse-

quence, especially in water-scarce regions, government agen-

cies and water managers are challenged to increase water use

efficiency, optimize the distribution of water among farms

and detect illegal groundwater pumping activities (Siebert

et al., 2010; Taylor et al., 2012). For example, as a conse-

quence of prolonged winter precipitation deficits and positive

temperature anomalies from 2012 to 2017, a record-breaking

drought peaking in 2015 affected the California Central Val-

ley. While farmers tried to compensate for the 2015 surface

water shortage by pumping more groundwater, a net water

shortage of over 3 km3 resulted in the fallowing of approxi-

mately 230 000 ha of land (Howitt, 2015).

To date, irrigation practices are typically not explicitly in-

cluded in land surface, climate or weather models. On the

other hand, irrigation directly impacts land surface temper-

ature, humidity and soil moisture observations, and through

them irrigation indirectly impacts model simulations when

they are being assimilated (Tuinenburg and Vries, 2017).

A range of climate modeling studies employed irrigation

modules on a global scale. Mainly based on a combina-

tion of static spatial maps of irrigated area and soil mois-

ture and/or vegetation data, they tried to approximate sea-

sonal IWU (Lobell et al., 2006; Bonfils and Lobell, 2007;

Kueppers et al., 2007). However, the simulated impact of

irrigation on both global and regional climate showed con-

siderable variation across studies. With respect to a contigu-

ous US (CONUS) domain, Lawston et al. (2015) assessed

the effects of drip, flood and sprinkler irrigation methods

during a climatically dry and wet year on land–atmosphere

interactions. They used the National Aeronautics and Space

Administration’s (NASA) high-resolution Land Information

System (LIS) and the NASA Unified Weather Research and

Forecasting Model framework both in offline and coupled

simulations. In accordance with previous studies, they found

that irrigation indeed cools and moistens the surface over and

downwind of irrigated areas. Moreover, they found that the

magnitude of this irrigation cooling effect strongly depends

on the parametrization of the respective irrigation methods.

In a very recent study, Kumar et al. (2018) conducted a multi-

sensor, multivariate land data assimilation experiment over

the CONUS by using the NASA LIS to enable the National

Climate Assessment Land Data Assimilation System. Partic-

ularly, the use of a larger-than-normal range of soil moisture

data records and snow depth data from microwave remote

sensing combined with an irrigation intensity map systemat-

ically improved soil moisture and snow depth simulations.

With respect to the discrepancies in the global modeling

studies, Sacks et al. (2009) argued that they can be primar-

ily explained by systematic differences in the control of irri-

gation water application within the respective modules, e.g.,

by climate, food demand and economical conditions. Logi-

cally, this arguments also holds true for the modeling study

by Lawston et al. (2015). Regarding the irrigation forcing

used in Kumar et al. (2018), we argue that the term “irrigation

intensity” gives a false impression. Irrigation intensity in a

physical sense should not be attributed to fractional irrigated

area but must rather be connected to the actual irrigation wa-

ter use (IWU) per unit area. In addition, fields may be either

over- or under-irrigated with respect to the physically “ideal”

amount. Hence, current irrigation modules are unable to con-

sistently reflect real-world conditions and thus introduce un-

certainties in modeling and data assimilation. Consequently,

information on the spatiotemporal distribution and develop-

ment of actual IWU is needed to improve the representation

of land–atmosphere feedbacks in model simulations (Ozdo-

gan et al., 2010a).

1.1 Statistics on irrigated areas and water withdrawals

Available information on irrigated areas, and particularly ir-

rigation water use, lacks objectivity, spatial consistency and

temporal resolution needed for large-scale hydrological as-

sessments and modeling (Deines et al., 2017). On local to

regional scales, some irrigation districts conduct regular sur-

veys, but often the data are not publicly available, lack geo-

referencing and are difficult to compare between regions due

to different sampling techniques. The elementary sources of

large-scale irrigation data are national and subnational statis-

tical units, which in most countries routinely collect infor-

mation on irrigated area and/or irrigation water withdrawals

(IWW). Data are usually represented as area equipped for

irrigation (AEI) and in some cases also reflect the area ac-

tually irrigated (AAI) in the respective year of the census
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(Siebert et al., 2005). The Global Map of Irrigation Areas

(GMIA) was the first global-scale geospatial irrigated area

data set (Döll, 2002; Döll and Siebert, 2002) based on such

statistics. GMIA combines subnational irrigation data from

various sources (FAO, UN, World Bank, agriculture depart-

ments) and geospatial information on the location and extent

of irrigation schemes (point, polygon and raster data, land

cover maps and satellite imagery) to map AEIs and AAIs at

0.5◦ resolution around the year 2000. In subsequent versions

the resolution was improved to 5 armin ×5 arcmin (Siebert

et al., 2005, 2007) and a new global historical irrigation data

set providing time series of AEI between 1900 and 2005 was

developed (Siebert et al., 2015). However, the large variabil-

ity in the quality of the underlying statistical inventory data

is propagated into the uncertainty of the final spatial map

(Siebert et al., 2005).

In summary, the main limitations of statistical inventories

and derived products are the following.

1. The quality of the data varies significantly among coun-

tries (Siebert et al., 2010). While for instance the United

States agricultural census is considered to have high

quality, many developing countries lack the resources

for comprehensive reporting.

2. National statistics are usually only valid for single years

and depend on the individual compilation cycle of each

country (e.g., every 5 years in the case of the US).

3. Irrigated area estimates usually reflect areas equipped

for irrigation, rather than areas actually irrigated. De-

pending on climatic and market conditions, farmers may

decide to only cultivate and irrigate a portion of their

fields.

4. Irrigation volume estimates reflect irrigation water with-

drawals rather than actual irrigation water use (e.g., if

rainfall is sufficient, already withdrawn spare water is

stored in reservoirs instead of being irrigated).

5. Naturally, survey-based statistics are only based on a

sample of farms, which may not be representative.

6. Conventional methods are unable to reflect illegally

withdrawn water used for irrigation (Roseta-Palma

et al., 2014; Saffi and Cheddadi, 2010).

On the basis of these drawbacks, remote sensing evolved

as an effective tool to potentially overcome these limitations

since it provides synoptic, independent and timely informa-

tion of biogeophysical variables that are either directly or in-

directly related to irrigation.

1.2 Remote sensing for irrigation mapping

1.2.1 Optical and thermal remote sensing

Data acquired by optical sensors (AVHRR, MODIS, Land-

sat) have been extensively used to identify irrigated areas

on local, regional and global scales. Vegetation indices have

been identified as effective proxies for irrigation practices,

because irrigated and non-irrigated croplands show differ-

ent spectral responses during the peak growing season (Oz-

dogan et al., 2010b). A wide range of studies used vegeta-

tion indices to map annual irrigated areas and their changes

through time, sometimes in combination with statistical in-

ventory data.

Only few global land-use–land-cover (LULC) maps based

on optical remote sensing separate irrigated from rain-fed

croplands. For example, the United States Geological Survey

(USGS) Global Land Cover Characteristics (GLCC) data set

was derived from 1 km Advanced Very High Resolution Ra-

diometer (AVHRR) sensor data and identified four types of

irrigated croplands in the year 1992 (Loveland et al., 2000).

However, the classification algorithms used were not tai-

lored to irrigated area mapping, thus resulting in low clas-

sification accuracies. Large discrepancies were found be-

tween USGS GLCC and country-level reports of irrigated

area, originating from both the uncertainties of the inven-

tory data and technical limitations of the remote sensing data

sets (Vörösmarty et al., 2000). Through a combination of un-

supervised clustering and expert knowledge, the European

Space Agency (ESA) Climate Change Initiative (CCI) has

produced a global land cover product at 300 m resolution

using Medium Resolution Imaging Spectrometer (MERIS)

data (Bontemps et al., 2013). It distinguishes between irri-

gated and non-irrigated croplands for 2000, 2005 and 2010.

However, we argue that over the CONUS the irrigated class is

likely to be considered unreliable, as apparently all irrigated

lands are wrongly attributed to the non-irrigated agriculture

class.

Other studies used approaches specifically tailored to ir-

rigated area mapping. For instance, the global data set of

monthly irrigated and rain-fed crop areas around the year

2000 (MIRCA2000) provides irrigated and rain-fed areas

for 26 crop classes for each month of the year at 5 arcmin

resolution (Portmann et al., 2010). For this purpose, agri-

cultural census statistics, national reports, databases, a map

of crop-specific annual harvested area, a cropland extent

map, the GMIA, crop calendars, and ancillary information

on climate and topography were combined. Using quantita-

tive spectral matching techniques on normalized difference

vegetation index (NDVI) time series from multiple sensors

(AVHRR, SPOT-1, MODIS, Landsat 7 and JERS-1 SAR) in

combination with climate (monthly precipitation and temper-

ature data from the Climate Research Unit) and ancillary data

(GTOPO30 1 km digital elevation model, global tree cover),

the International Water Management Institute (IMWI) pro-

duced a Global Irrigated Area Map (GIAM) at 1 km resolu-

tion around the year 2000 (Thenkabail et al., 2009). More re-

cently, Salmon et al. (2015) created a global map of rain-fed,

irrigated and paddy croplands (GRIPC) around the year 2005

at 500 m spatial resolution using supervised classification

of remote sensing, climate and agricultural inventory data.
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However, there are large discrepancies between the different

global data sets mainly stemming from varying definitions

of irrigated areas among the data sets (i.e., area equipped for

irrigation, irrigated area and cropped area) and differing ref-

erence years (i.e., the years 2000 and 2005) (Salmon et al.,

2015; Meier et al., 2018). Moreover, three of the four ex-

isting global maps (GMIA, MIRCA2000 and GRIPC) rely

on agricultural inventory data for the classification of irri-

gated areas, which is subject to major limitations concerning

quality and accuracy. In addition, the maps are limited to sin-

gle years (GMIA, GIAM, GRIPC) or single months within

a single year (MIRCA2000), thus not being able to address

the high inter-annual variability of irrigated areas, which is

mainly governed by climate and market conditions (Deines

et al., 2017).

On a continental scale, the MODIS Irrigated Agriculture

Dataset for the conterminous United States (MIrAD-US) was

created by assimilating county-level irrigation statistics with

MODIS-derived seasonal peak NDVI to spatially identify ir-

rigated and non-irrigated lands at 250 m resolution (Ozdogan

and Gutman, 2008; Pervez et al., 2008; Pervez and Brown,

2010). A significant drawback is that the map compilation is

tied to the same 5-year cycle of the United States Department

of Agriculture (USDA) Census of Agriculture. Ambika et al.

(2016) mapped irrigated areas from 2000 to 2015 at 250 m

resolution over India by using 250 m MODIS seasonal peak

NDVI data and 56 m LULC data. Teluguntla et al. (2017)

used spectral matching techniques and automated cropland

classification algorithms to infer cropland extent, irrigated

versus rain-fed croplands, and cropping intensities over Aus-

tralia. The latter two products allow for the study of inter-

annual variability of irrigated areas (Ambika et al., 2016).

On a regional scale, higher-resolution Landsat imagery

was adopted by a range of studies. Ozdogan et al. (2006)

used 30 m Landsat imagery to map changes in annual irri-

gated area from 1993 to 2002 in southeastern Turkey based

on NDVI thresholding approaches and compared them with

estimates of irrigation water requirements inferred from po-

tential evapotranspiration. In a recent study, Deines et al.

(2017) produced annual irrigation maps for 1999–2016 for

a region in the High Plains aquifer (United States) at 30 m

resolution. Pun et al. (2017) used a combination of surface

energy balance partitioning and vegetation indices to clas-

sify irrigated and non-irrigated croplands at 30 m resolution

in Nebraska.

Thermal remote sensing has been widely used to map irri-

gation water based on estimating potential evaporation from

surface energy heat fluxes and the application of specific

crop factors (Rosas et al., 2017). A well-known technique

is the Surface Energy Balance Algorithm for Land, which

estimates variables of the hydrological cycle based on re-

motely sensed surface energy balance components (Basti-

aanssen et al., 1998). In contrast, Hain et al. (2015) developed

a novel method for inferring regions where non-precipitation

inputs (e.g., irrigation) significantly impact terrestrial latent

heat flux (LE). They compared modeled bottom-up LE (i.e.,

without irrigation) and top-down LE drawn from observa-

tions of diurnal land surface temperature changes which are

connected to changes in the land surface moisture status and

therefore irrigation. However, these methods are only able to

provide estimates on irrigation water requirements (i.e., what

amount of water a plant would ideally need), as opposed to

actually irrigated water, as in practice fields are often under-

irrigated.

1.2.2 Microwave remote sensing

Microwave observations are widely used to estimate soil

moisture (Entekhabi et al., 2010; Wagner et al., 2013; Dorigo

et al., 2017). The major advantages of microwave observa-

tions are their all-weather capability and the intrinsic capac-

ity to sense a geophysical variable which is directly and phys-

ically linked to irrigation.

The first study to investigate the utility of satellite soil

moisture retrievals for irrigation mapping was carried out by

Kumar et al. (2015). They used soil moisture retrievals from

ASCAT, AMSR-E, SMOS and WindSat, and the ESA CCI

multi-satellite surface soil moisture product in combination

with soil moisture estimates from the Noah LSM (land sur-

face model) to map irrigated areas in the CONUS. Their key

assumption was that irrigation is not included in the formu-

lation of LSM, whereas satellite-derived soil moisture is ex-

pected to reflect the changes in soil moisture induced by irri-

gation. Based on synthetic data, they were able to detect dif-

ferences between the probability density functions of satel-

lite and modeled soil moisture. However, the satellite data

showed only few systematic differences that could be reli-

ably related to irrigation practices.

Qiu et al. (2016) compared trends from 1996 to 2010 in

China of ESA CCI, ERA-Interim/Land reanalysis and in

situ soil moisture, as well as precipitation. They observed

significant discrepancies between precipitation and satellite

soil moisture trends over irrigated areas, which they ascribed

to irrigation. Escorihuela and Quintana-Seguí (2016) com-

pared three global satellite soil moisture products (ASCAT,

AMSR2 and SMOS) with model soil moisture estimates

from the Surface Externalisée (SURFEX) model (Masson

et al., 2013) (forced with meteorological data) in the Mediter-

ranean. Only a downscaled version of SMOS (SMOScat)

showed significantly lower correlations over irrigated areas.

The authors argued that primarily due to the coarse spa-

tial resolution of the native soil moisture retrievals the other

products were not able to resolve the irrigation signal from

the soil moisture signal from the surrounding dry-land area.

Very recently Lawston et al. (2017) investigated the potential

of the new SMAP (Soil Moisture Active Passive mission)

enhanced 9 km SM product to identify irrigation signals in

three semi-arid regions in the western United States. Results

showed that SMAP soil moisture carries a clear irrigation sig-

nal from rice irrigation in the Sacramento Valley (California),
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while the signals were less obvious in the other two regions

(Columbia River basin, Washington and Colorado).

1.3 Objective of this study

Despite the large number of studies using remote sensing ap-

proaches to map irrigated area and irrigation water require-

ments at various spatial and temporal scales, none of these

approaches has attempted to derive actual irrigation water

use. To bridge this gap, we propose a new method for es-

timating IWU from a combination of remotely sensed and

modeled reanalysis soil moisture data. The approach is based

on the hypothesis that neither the structure nor the forc-

ing of the model data accounts for artificial water supply,

while the microwave soil moisture retrievals do (Kumar et al.,

2015; Escorihuela and Quintana-Seguí, 2016). The method

is implemented over the CONUS by using three state-of-the-

art microwave soil moisture products (i.e., based on SMAP,

AMSR2 and ASCAT) in combination with MERRA-2 re-

analysis soil moisture. By using passive L-band and both

active and passive C-band soil moisture data, we aim to as-

sess the impact of the microwave observation frequency and

the sensing technique with respect to irrigation quantifica-

tion. For this reason we only used one data set per category.

The paper is organized as follows: Sect. 2 provides a gen-

eral overview of the irrigation landscape in the CONUS.

Section 3 covers the utilized satellite, model and ancillary

data sets and the preprocessing involved. The theoretical

and practical aspects of the new methodology to estimate

IWU are discussed in Sect. 4. Results are shown and dis-

cussed with respect to official reference irrigation data in

Sect. 5. Section 6 concludes the study and gives an outlook

on follow-on research.

2 Study area

2.1 Irrigation practices in the contiguous United States

The amount of water needed by a certain crop for optimal

growth mainly depends on three factors: crop type, soil and

climate. Irrigation water need is given by the difference be-

tween these requirements for optimal crop growth and effec-

tive rainfall. In the largely semi-humid climate of the eastern

United States, irrigation is supplemental, which means that

irrigation is applied to mostly rain-fed crops during times of

insufficient rainfall to achieve higher yields than under rain-

fed conditions alone. In contrast, the predominantly semi-

arid climate of the western US makes artificial water supply

a necessity, thus requiring full irrigation.

The 2013 Farm and Ranch Irrigation Survey (FRIS) of

the National Agricultural Statistics Service (NASS) of the

USDA provides selected irrigation data from surveys con-

ducted at approximately 35 000 farms using irrigation across

the US (USDA, 2013). It reports state-level data of both ir-

rigated area and irrigation water withdrawals subdivided by

Figure 1. Per-state irrigated area, irrigation water withdrawals and

irrigation water application rates for 2013. The data were drawn

from the latest Farm and Ranch Irrigation Survey (FRIS) and only

reflect irrigation operations in open fields (e.g., excluding crops

grown and irrigated in greenhouses).

specific crop type, water source and irrigation technique. In

addition, these estimates are given for crops cultivated out-

doors (“in the open”) and indoors (“under protection”, e.g.,

horticultural crops grown in greenhouses). Figure 1 shows

the per-state irrigated area and irrigation water withdrawals

limited to crops grown outdoors, as well as irrigation applica-

tion rates during the 2013 growing season provided by FRIS.

It is likely that the sensitivity of satellite soil moisture re-

trievals to irrigation increases when the irrigation application

efficiency of a particular irrigation system or technique de-

teriorates. Therefore, we expect higher sensitivity towards

gravity irrigation systems (e.g., flood and furrow irrigation)

and lower sensitivities towards sprinkler and micro-irrigation

systems. Figure A1 shows a distinct decline in irrigation rates

per area from the semi-arid west to the more humid east. The

state of Arizona has the highest irrigation rate per area, fol-

lowed by California and Nevada. Gravity flow systems show

the highest rates in California and Arizona but also depict

large values along the Mississippi Delta. This can mainly

be attributed to the cultivation of rice, which is primarily

grown in these regions and is either flood or furrow irrigated.

Finally, micro-irrigation systems are largely limited to the

western half of the US.

www.hydrol-earth-syst-sci.net/23/897/2019/ Hydrol. Earth Syst. Sci., 23, 897–923, 2019
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Figure 2. Study regions and locations of the pixels selected for

a local time series analysis over the fractional irrigated area map

derived from the spatially aggregated MIrAD-US data set (Per-

vez and Brown, 2010). The focus regions are included in black

squares and include the Sacramento Valley (SV) and San Joaquin

Valley (SJV) in the California Central Valley (CCV), Snake River

Plain (SRP), Nebraska Plains (NPS) and the Mississippi Floodplain

(MFP). Green and orange crosses indicate the locations of the ir-

rigated (PI) and non-irrigated (PNI) pixels, respectively, at which

we further analyze satellite and model soil moisture time series in

conjunction with IWU estimates.

2.2 Focus areas

In addition to the continental-scale analysis, we chose four

irrigation hot spots characterized by different climates and

irrigation practices within the CONUS (Fig. 2) to compre-

hensively assess the spatiotemporal dynamics of irrigation.

These regions are the Sacramento Valley and San Joaquin

Valley in the California Central Valley; the Snake River

Plain, Idaho; the High Plains, Nebraska; and part of the Mis-

sissippi Floodplain located within the state of Mississippi.

For each focus area, we conducted a time series analysis at a

local scale (Sect. 5.3), as well as a cross comparison with ref-

erence data on irrigated area (Sect. 5.5) and irrigation water

withdrawals (Sect. 5.4).

2.2.1 Central Valley, California

Traditionally, the California Central Valley accounts for the

highest irrigation water withdrawals across the CONUS. Its

northern part is characterized by a Mediterranean climate

with hot, dry summers, whereas its southern half is defined

by both hot and cold semi-arid climates (Kottek et al., 2006).

As a result, crop production requires full irrigation. We se-

lected two areas within the Central Valley for the time series

analysis: the southern San Joaquin Valley, where several dif-

ferent crop types are cultivated using sprinkler, furrow and

micro-irrigation systems, and the northern Sacramento Val-

ley, where flood irrigation for rice is prevalent and which was

also investigated by Lawston et al. (2017). Rice production

in California is the second largest in the US (NASS, 2012)

and relies on large amounts of irrigation water, which is usu-

ally supplied by winter snowmelt. In the Sacramento Val-

ley, which accounts for 95 % of California’s rice yield, rice

is typically water seeded (Linquist et al., 2015). This means

that the fields are completely flooded at 10–15 cm depth be-

fore planting (usually late April to mid-May) and then seeded

with the help of airplanes. The fields typically remain flooded

throughout the growing season and are only drained from

early September onward, approximately 3 weeks before har-

vest in September to mid-October.

2.2.2 Snake River Plain, Idaho

Idaho accounts for the second largest irrigation water with-

drawals in the US after California (NASS, 2012). In Idaho,

the Snake River Plain is the most important agricultural area

and sprinkler irrigation is the dominant irrigation technique.

Similar to the San Joaquin Valley it is characterized by a cold

semi-arid climate (Kottek et al., 2006).

2.2.3 High Plains, Nebraska

Nebraska is located in the middle of a transitional climate

zone which extends longitudinally through the middle of the

US. While the climate in western Nebraska is cold semi-arid,

the eastern part is humid continental, characterized by hot

summers and year-round precipitation (Kottek et al., 2006).

For example, irrigation requirements for corn are approxi-

mately 350 mm in the west and continuously drop to ap-

proximately 150 mm in the east (reference values obtained

from the University of Nebraska–Lincoln). The mainly em-

ployed irrigation system is the center pivot, and the major

crops grown are corn and soybean.

2.2.4 Mississippi Floodplain, Mississippi

The Mississippi Floodplain region is characterized by a fully

humid subtropical climate with hot summers (Kottek et al.,

2006). Despite the large amounts of rainfall throughout the

year, only approximately 30 % falls in the summer period

when the major crops are grown (Kebede et al., 2014), thus

requiring the use of supplemental irrigation. The dominant

crop types include soybean, corn, cotton and rice. Within the

Mississippi Floodplain we chose an area in the state of Mis-

sissippi for a local analysis. Here, reports on irrigation water

withdrawals (2009 and 2011 growing seasons) are available

from the Yazoo Mississippi Delta Joint Water Management

District. For the 2011 growing season, average application

rates of approximately 180, 400, 330 and 970 mm are re-

ported for cotton, corn, soybeans and rice, respectively, lead-

ing to an average of around 490 mm.
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3 Data sources

The data sources used in this study are summarized in Ta-

ble 1.

3.1 Remotely sensed soil moisture

3.1.1 SMAP

The Soil Moisture Active Passive (SMAP) mission was

launched in January 2015 and is the second mission exclu-

sively designed for the retrieval of soil moisture together with

freeze and/or thaw status (Entekhabi et al., 2010). After fail-

ure of its radar in July 2015, the radiometer continues to

provide measurements in the L band (1.4 GHz) at a spatial

resolution of approximately 40 km. Validation studies have

shown that the radiometer meets the target retrieval accuracy

of 0.04 m3 m−3 (unbiased RMSE, ubRMSE) over non-frozen

land surfaces free of excessive snow, ice, mountainous ter-

rain and dense vegetation coverage (Colliander et al., 2017).

In general, the L band is expected to be more suitable for

soil moisture retrieval, because it is less affected by vege-

tation and representative of a deeper soil layer than higher

frequency C- or X-band retrievals (Entekhabi et al., 2010).

SMAP obtains global coverage every 2–3 days and equa-

torial crossing times are 06:00 and 18:00 local solar time

(LST) for the descending and ascending orbits, respectively.

We used both ascending and descending orbit data covering

the period of April 2015 to December 2016. We used the

L3_SM_P V5 data product, which is sampled at 36 km res-

olution. In this product version, a water body correction and

an improved soil temperature depth correction have been ap-

plied, which have respectively reduced anomalous soil mois-

ture values near large water bodies and the dry bias with re-

spect to the SMAP core validation sites (Jackson, 2018). In

the case of overlapping orbits, we only used the descending

(06:00 LST) overpass.

3.1.2 AMSR2

AMSR2 is a microwave radiometer on board the GCOM-W1

satellite and has provided measurements at 6.9 GHz (C band)

and three higher frequencies up to 36.5 GHz (Ka band) since

July 2012 (Imaoka et al., 2010). Daily ascending and de-

scending overpasses are at 13:30 and 01:30 LST, respec-

tively, achieving global coverage with a spatial resolution of

about 40 km every 1–2 days. The VUA–NASA product used

in this study is based on the Land Parameter Retrieval Model

(LPRM) V6 algorithm, which simultaneously retrieves vol-

umetric soil moisture and vegetation optical depth (VOD)

from the observed brightness temperatures (Owe et al., 2008;

der Schalie et al., 2016). LPRM is based on a radiative trans-

fer equation and partitions the observation into its emission

components from soil and vegetation based on the horizontal

and vertical polarized brightness temperatures. Only obser-

vations from the descending orbits were used and, in addi-
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tion, the retrievals were masked for high VOD values and

radio frequency interference (RFI), spatially resampled to

a regular 0.25◦ grid and temporally centered at 00:00 UTC

(Dorigo et al., 2017; Gruber et al., 2017; Liu et al., 2012).

3.1.3 ASCAT

The Advanced Scatterometer (ASCAT) on board the Mete-

orological Operational (Metop-A and B) satellites has been

operational since October 2006 and is a real aperture radar

instrument operating at C band (5.255 GHz) and VV polar-

ization. Local equatorial crossing times are at 21:30 for the

ascending overpass and at 09:30 for the descending overpass,

and global coverage is achieved every 1–3 days depending on

latitude. The TU Wien change detection algorithm (Wagner

et al., 1999; Naeimi et al., 2009) is applied to the backscat-

ter coefficients to create time series of relative surface soil

moisture for the topmost centimeters of soil. This is accom-

plished by scaling each observation between reference val-

ues representing the historically lowest and highest observed

backscatter values, respectively. Soil moisture is provided

in degree of saturation (%) and ranges between 0 % (wilt-

ing point) and 100 % (soil saturation). It has a spatial reso-

lution of 25 km and is made available on a discrete global

grid (DGG) at a spatial sampling of 12.5 km. In this study,

we used a modified version of the European Organisation

for the Exploitation of Meteorological Satellites (EUMET-

SAT) Satellite Application Facility on Support to Operational

Hydrology and Water (H-SAF) H111 soil moisture product.

The modified version uses a dynamic correction which is ex-

pected to better account for inter-annual variability than the

original H111 product (Hahn et al., 2017; Vreugdenhil et al.,

2016).

3.2 MERRA-2 reanalysis soil moisture

The second Modern-Era Retrospective analysis for Research

and Applications 2 (MERRA-2) (Bosilovich et al., 2016) is

an atmospheric reanalysis product providing global, hourly

fields of land surface and atmospheric conditions for 1980–

present at a spatial resolution of 0.625◦ × 0.5◦. It assimi-

lates atmospheric satellite observations using the Goddard

Earth Observing System Model (GEOS-5). MERRA-2 uses

an observation-based precipitation correction over land to

fully correct modeled precipitation at latitudes < |42.5◦|,

with a linear tapering between |42.5◦| < latitude < |62.5◦|,

while no correction is applied at more northern and south-

ern latitudes. The precipitation correction has significantly

improved the soil moisture simulations with respect to its

predecessor (Reichle et al., 2017a). The soil moisture sim-

ulations are representative of the first 5 cm of soil and are

expressed in volumetric units (m3 m−3). We explicitly chose

MERRA-2 soil moisture in favor of soil moisture from other

global reanalysis data sets, because MERRA-2 does not as-

similate surface humidity and surface temperature observa-

tions (Reichle et al., 2017c), which are directly impacted by

irrigation (Wei et al., 2013; Tuinenburg and Vries, 2017).

MERRA-2 surface soil moisture simulations were evaluated

in Reichle et al. (2017b) with in situ soil moisture data from

320 sites. It was shown that the modeled estimates are biased

by 0.053 m3 m−3, which is approximately in the order of the

SMAP soil moisture retrieval target accuracy.

3.3 Ancillary data

Despite the drawbacks discussed in Sect. 1.2, the ESA CCI

Land Cover data set (Bontemps et al., 2013) was used to cre-

ate a cropland mask for the CONUS, because the classifi-

cation of overall agricultural land cover (i.e., irrigated and

rain-fed lands) proved to be accurate. For a more detailed

analysis of the impact of precipitation, we used CPC Unified

Gauge-Based Analysis of Daily Precipitation, which covers

the CONUS at 0.25◦ native resolution (Chen et al., 2008;

Xie et al., 2010). Therefore, it is expected to provide more

detailed information than the precipitation data set used to

force MERRA-2 SM, which has a 0.5◦ resolution.

3.4 Data preprocessing

As data from SMAP were only available from April 2015

onward, we extended the study period to include available

AMSR2 and ASCAT data from 2013 to 2016. Hence, four

growing seasons with varying climatic conditions were cov-

ered by the AMSR2 and ASCAT sensors and two growing

seasons by SMAP. We assumed a general growing season

for the entire CONUS from the start of April to the end of

September. All data were spatially matched to a common

0.25◦ regular grid using nearest-neighbor resampling. In or-

der to constrain the analysis to areas where irrigation is fea-

sible, we masked all pixels with < 5 % of fractional crop-

land area based on ESA CCI Land Cover for 2010 (Bon-

temps et al., 2013). Unreliable observations in the satellite

data were masked, applying their respective quality flags for

frozen soil, dense vegetation and radio frequency interfer-

ence.

The spatial representativeness and observation depth

slightly differ among the various remote sensing products

and modeled soil moisture. MERRA-2 SM is simulated for

a fixed 5 cm thick soil layer (Bosilovich et al., 2016) and

thus shows more inertia to changes in the water balance

(i.e., through precipitation) than the remotely sensing data.

Besides, ASCAT is provided in a different unit than the

other products. To account for these systematic differences

between products, we applied a linear rescaling approach

(Brocca et al., 2013), which forces the satellite soil mois-

ture time series 2sat to have the same mean µ and standard

deviation σ as the modeled soil moisture 2mod:

2sat
rescaled =

2sat − µ(2sat)

σ (2sat)
σ (2mod) + µ(2mod). (1)
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It is likely that over irrigated areas µ(2sat) increases during

the respective irrigation period, which alters the scaling pa-

rameters. We expect that this should not affect the temporal

evolution of changes in soil moisture. However, the influence

of irrigation on the temporal variability of soil moisture (de-

pending on the type of irrigation, general climate conditions,

etc.) is a source of uncertainty. In particular over very dry

regions, the model soil moisture may never reach saturation,

while the remotely sensed soil moisture data do (due to ir-

rigation). Since the variable of interest is irrigation amount,

volumetric soil moisture in m3 m−3 is converted to the corre-

sponding water column depth Dwatertable (mm) by multiply-

ing it with the depth of soil Dsoil for which the soil moisture

simulations are representative. Thus, for the layer 0–5 cm, for

example, 0.3 m3 m−3 corresponds to a 15 mm water column

covering the unit area of 1 m2.

4 Methods

4.1 Theoretical foundation for retrieving irrigation

water use from microwave remote sensing

Kumar et al. (2015) first proposed the idea of inferring ir-

rigation from a positive bias between remotely sensed and

modeled soil moisture, induced by seasonal water application

during the dry season. This idea is based on two key assump-

tions: first, the satellite soil moisture products are sensitive

to large-scale irrigation (as partly confirmed by Escorihuela

and Quintana-Seguí, 2016; Lawston et al., 2017); and, sec-

ond, the model does not account for irrigation, neither ex-

plicitly (i.e., in the formulation) nor implicitly through the

assimilation of surface humidity or surface temperature ob-

servations, which are affected by irrigation (Wei et al., 2013).

We build on these assumptions and introduce a new metric to

estimate IWU from the difference between satellite-observed

and modeled soil moisture. The soil water balance equations

describing the respective change in soil moisture for each

time step t (day) are described by

d2sat

dt
= P(t) + I (t) − ET(t) − R(t) − 1Srest (2)

for the satellite observations and

d2mod

dt
= P(t) − ET(t) − R(t) − 1Srest (3)

for the model simulations. P (mm) is precipitation; I (mm) is

irrigation; ET (mm) is evapotranspiration; and 2sat and 2mod

(mm) are satellite and modeled surface soil moisture, respec-

tively, converted to water column depth. 1Srest (m3 m−3) de-

scribes water storage changes below the surface layer, includ-

ing drainage. Subtracting Eq. (3) from Eq. (2) yields

I (t) =
d2sat

dt
−

d2mod

dt
. (4)

Hence, estimating irrigation from differences between the

temporal variations of satellite and model SM is theoretically

feasible.

4.2 Deriving irrigation water use

We define an irrigation event as a simultaneous increase in

satellite soil moisture
(

d2sat

dt
> 0

)

and a decrease or stagna-

tion in model soil moisture
(

d2mod

dt
≤ 0

)

. This means that

rainfall did not cause the satellite-observed increase in soil

moisture, which over agricultural land was very likely a re-

sult of irrigation. For each event, the amount of irrigation

water leading to the increase is derived as the difference
d2sat

dt
− d2mod

dt
, if the change in satellite is significant (i.e.,

above the noise level). The latter is accounted for by apply-

ing a threshold of relative soil moisture change thresh2 (see

Sect. 4.3 and Appendix A). We then calculate seasonal irri-

gation water use (IWU) summing up the approximated dif-

ference quotients over the growing season period:

IWU =

iEOS
∫

iSOS

(d2sat
i − d2mod

i ) dt ≈

EOS
∑

i=SOS

12sat-mod
i , (5)

where

12sat-mod
i =

{

12sat
i − 12mod

i , if 12sat
i ≥ 2thresh

0, otherwise

and with

12sat
i = 2sat

i − 2sat
i−n,

12mod
i = 2mod

i − 2mod
i−n .

IWU is the accumulated irrigation water use from the start

(iSOS) until the end of the growing season (iEOS). According

to the crop calendars provided by Portmann et al. (2010) and

the USDA planting and harvesting dates handbook (NASS,

2010) the period 1 April–30 September generally covers the

growing season of most crops receiving irrigation water in

the CONUS. 2sat
i and 2mod

i are satellite and model SM on

day i, thresh2 denotes the relative soil moisture threshold,

and 2sat
i−n and 2mod

i−n are the last available soil moisture ob-

servations with a data gap of n days. If an irrigation event is

detected during an observation gap of > 4 days, we check if

there has been a significant increase in the model soil mois-

ture (e.g., due to rainfall) within that period. When more

than one significantly positive model slope (or precipitation

events) occurs during the gap period, we cannot say for sure

if the observed increase in soil moisture was due to irriga-

tion or precipitation and therefore conservatively disregard

the potential irrigation event.

4.3 Masking spurious irrigation detections

It is essential to differentiate between irrigation signals and

high-frequency noise in the satellite data. For this purpose,
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we apply a threshold thresh2 to the relative changes in satel-

lite soil moisture similar to the approach applied by Dorigo

et al. (2013) to detect spurious in situ data:

2sat
t − 2sat

t−n

2sat
t−n

≥ 0.12 ≡ thresh2. (6)

Based on an extensive sensitivity analysis (Appendix A) we

concluded that a threshold of thresh2 ≡ 0.12 is an appropri-

ate generic choice for the whole CONUS.

Potential errors may arise when the model forcing misses

or creates false rainfall events. In addition, because of dif-

ferences in timing of the estimates and differences in rep-

resented soil depth between remotely sensed and modeled

soil moisture, their response to precipitation events may dif-

fer as well. This may lead to spurious irrigation events when

irrigation is estimated on days with rainfall. Therefore, we

use information from an additional CPC precipitation data

set at 0.25◦ resolution, thus providing an approximately 4×

higher spatial resolution than the rainfall product used to

force MERRA-2 (see Sect. 3.2). This allows us to make

a more educated guess when evaluating if the observations

and/or model estimates are affected by rainfall. Furthermore,

if a potential irrigation signal coincides with preceding rain-

fall we assume that irrigation is unlikely and disregard the

event. In some extreme cases, capillary rise from deeper soil

layers or run-on can wet the top soil. Theoretically, these con-

ditions are reflected by the satellite soil moisture retrievals

but are absent in the model soil moisture simulations (i.e.,

if such effects are not accounted for in the soil hydrology

formulation of the LSM, McColl et al., 2017). However, at

the large spatial scales represented by the employed satel-

lite (approximately 25 km) and model soil moisture products

(approximately 50 km), very few pixels are expected to show

positive 12sat
i or 12mod

i in the absence of precipitation or

irrigation. Another impact concerns mismatches between the

ancillary data used to force the model and parametrize the

respective satellite soil moisture retrieval algorithms, such as

land cover and soil parameters. By rescaling to the model

dynamic soil moisture range, we implicitly account for mis-

matches in soil parameters. However, addressing potential

mismatches in land cover was out of the scope of this paper

and thus represents an intrinsic limitation of the method.

5 Results and discussion

5.1 Growing season correlations between satellite and

model soil moisture

To investigate the potential detectability of IWU, we inves-

tigated the correlation between satellite and modeled soil

moisture during the growing season (Fig. 3). We computed

the correlation separately for dry (precipitation = 0; rdry) and

wet conditions (precipitation > 0; rwet). If rdry is low or

negative over agricultural areas which are known to be ir-

rigated (as inferred from the MIrAD-US product) while rwet

is strongly positive, this is a strong indication of irrigation

(also see Fig. A2, where the absolute differences between

the mean correlations for wet and dry periods |rwet −rdry| are

shown).

Over non-agricultural land cover, low growing season cor-

relations between SMAP and MERRA-2 soil moisture are

observed over the densely vegetated south- and northeastern

US, as well as over parts of the arid southwest (Fig. 3a, b).

AMSR2 exhibits low correlations in coastal areas, complex

terrain and over dense vegetation cover (Fig. 3c, d). ASCAT

shows negative correlations against MERRA-2 over the arid

southwestern deserts and the densely vegetated coastal north-

west and southeast (Fig. 3e, f). Overall, for each satellite–

model pair there is a clear reduction of rdry with respect to

rwet over several irrigation hot spots within the CONUS.

5.1.1 Central Valley

Over the Central Valley, SMAP shows moderate to high rwet

with MERRA-2, except for the Sacramento Valley in north-

ern California. In contrast, rdry is moderately to strongly neg-

ative over the southern San Joaquin Valley, which indicates

that an irrigation signal is indeed observed by the satellite

sensor. The fact that rdry is comparable to, if not higher than,

rwet over the Sacramento Valley should be attributed to the

special characteristics of the prevalent rice irrigation. In the

Sacramento Valley, a permanent flood of 10–15 cm is usually

maintained during the whole growing season before fields

are drained in preparation for harvest (Linquist et al., 2015).

Hence, irrigation water remains observable during both wet-

and dry periods of the growing season, and the impact of ir-

rigation on r actually increases for the wet period with re-

spect to the dry period. In contrast, ASCAT exhibits high

correlations with MERRA-2 in this region. During the early

phenological growth phase of rice, this observation can be

attributed to specular reflection of the radar signal from the

flood water surface, given that wind speeds do not signifi-

cantly affect the water’s surface roughness (Nguyen et al.,

2015). By the time the rice stems start to break through the

water surface the now elongated rice stems are known to act

as double-bounce reflectors, which commonly results in an

enhanced backscatter signal that can be observed until field

drainage in late summer (Le Toan et al., 1997; Nguyen et al.,

2016) (see ASCAT soil moisture time series in Fig. 5b). Both

SMAP and ASCAT show moderate to high negative correla-

tions against MERRA-2 in the heavily irrigated San Joaquin

Valley. Concerning AMSR2 SM there is no clear pattern of

discrepancy between rwet and rdry in the Central Valley.

5.1.2 Snake River Plain

Over the Snake River Plain, ASCAT has a clear signal that

could be attributed to irrigation. Particularly in the central

and westernmost areas along the Snake River, rdry depicts
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Figure 3. Mean correlation r between the daily time series of each satellite soil moisture product (SMAP, AMSR2 and ASCAT) and MERRA-

2 soil moisture separated for wet periods (left column; precipitation PCP > 0) and dry periods (right column; PCP = 0) during the growing

season. Correlations were calculated over agricultural areas only.

a strong negative correlation with MERRA-2, while rwet is

moderately positive. Moderately negative rdry obtained for

SMAP shows a good alignment with areas known to be ir-

rigated in the Snake River Plain. Although the correlation is

less negative than for ASCAT, the spatial pattern is resem-

bled more clearly. Here, AMSR2 shows slightly more nega-

tive rdry than rwet over agricultural land cover, but the spatial

pattern appears to be less reliable than for the other satellite

products.

5.1.3 High Plains

The ASCAT product is the only one to show a distinct pattern

of negative correlation over the irrigated part of the Nebraska

Plains. While rwet shows weak positive correlations, rdry re-

veals strong negative r , suggesting that an irrigation signal is

entailed in the ASCAT signal. However, this pattern cannot

be reliably attributed to irrigation practices as ASCAT shows

low correlations over the entire Corn Belt region, where agri-

culture is generally known to be rain-fed (see Fig. 2). Vegeta-

tion scattering effects from the corn canopies are a plausible

explanation for the observed deviation. As the corn plants

reach their maximum height (up to approximately 3 m) to-

wards the end of the growing season, the C-band backscat-

ter signal will increasingly be composed of canopy backscat-

ter and canopy-soil double-bounce reflections, while sensi-

tivity to actual soil moisture decreases (Daughtry et al., 1991;

Joseph et al., 2010).
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5.1.4 Mississippi Floodplain

Lastly, all products show low r values over the Mississippi

Floodplain, although with varying magnitudes. In this region,

ASCAT shows the lowest negative correlation, followed by

AMSR2 and SMAP. Moreover, for all SM products rdry is

lower than rwet.

5.1.5 Other regions

Figure 3 also reveals that strong negative rdry (in combina-

tion with moderately high rwet) based on ASCAT aligns well

with areas known to be irrigated over the Columbia River

basin, Washington. As the ASCAT soil moisture product has

a significantly higher nominal spatial resolution than the pas-

sive products, we hypothesize that in this region it is the only

sensor to resolve the irrigation practices. Correlations based

on SMAP loosely agree with this pattern and AMSR2 only

has few valid observations over this region. In addition, both

ASCAT and SMAP have patterns of rdry < rwet over an ir-

rigated region in southwestern Georgia. In contrast, AMSR2

shows moderately high positive r over this region.

To determine the sensitivity of the growing season corre-

lation r between satellite and model soil moisture to varia-

tions in fractional irrigated area within a pixel, we examined

their relationship with irrigation intensities derived from the

MIrAD-US irrigated area data set (Pervez and Brown, 2010).

However, no evidence of a negative linear relationship be-

tween the two variables was found (not shown), as at low irri-

gation fractions r is mostly dominated by effects originating

from the remaining land cover types. Overall, the results ob-

tained by separately analyzing the spatial patterns of rdry and

rwet between satellite and model soil moisture largely sup-

port the hypothesis that, over areas known to be irrigated, the

remotely sensed soil moisture signal deviates from modeled

soil moisture, given that the model does not explicitly ac-

count for irrigation (which is the case for MERRA-2). Hence,

the overall hypothesis of this study, which is that IWU can be

inferred from differences between the temporal variations of

the remotely sensed and modeled soil moisture, is corrobo-

rated.

5.2 Spatial patterns of estimated irrigation water use

Spatial plots of mean annual estimated irrigation water use

IWU (i.e., averaged over the study period of 2013–2016)

(Fig. 4a–c) suggest that all satellite products are able to iden-

tify the extensive irrigation applied in the California Central

Valley. Here, SMAP-derived IWU clearly resembles the ir-

rigation patterns of the MIrAD-US data set in the northern

Sacramento Valley and southern San Joaquin Valley (Fig. 2).

The AMSR2- and ASCAT-derived IWU are generally higher

than SMAP and extend throughout the whole California Cen-

tral Valley. Although small in magnitude, the IWU pattern

derived from ASCAT over the central Snake River Plain is

spatially distinct. Similarly, AMSR2 shows a clear signal

over the western to central Snake River Plain. Concerning

the Nebraska Plains, only AMSR2 IWU shows patterns that

agree with MIrAD-US. Over the Mississippi Floodplain, AS-

CAT shows the highest IWU, followed by AMSR2.

ASCAT-derived IWU seems to be affected by vegetation

effects in the Corn Belt region and in the southeastern US.

For all sensors, the method fails to detect IWU in many ir-

rigated areas, especially those along the High Plains aquifer

(Nebraska, Kansas, Texas), which extends from the northern

to the southern central US. A plausible explanation for miss-

ing these areas is that many farmers in these regions practice

supplemental irrigation, thus resulting in a less distinguish-

able irrigation signal. In addition, the center pivot irrigation

systems, which are mainly used in this region, have much

higher water application efficiencies compared to the flood

and furrow irrigation systems used in the Sacramento Val-

ley and Mississippi Floodplain (see Fig. A1). Rainfall sea-

sonality is another potential reason for the underestimation

in the central U.S, where the climate transitions from arid

in the west to humid in the east. To investigate its impact,

we plotted the average number of days per growing season

where IWU > 0 (Fig. A3), which sums up to the number of

days that went into the IWU estimates shown in Fig. 4. It can

be seen that for SMAP-based IWU, a significant number of

days with irrigation (mean count) only is detected in the arid

west and southwest. For AMSR2, the mean counts are high-

est in California, although counts in the range of 20–30 occur

in the Snake River Valley, Mississippi Floodplain and other

agricultural regions. In agreement with the passive products,

mean counts for ASCAT are highest in California and south-

western states. There also is a clear pattern in the Mississippi

Valley and along the southeastern states.

Furthermore, the chosen global threshold of thresh2 =

12 % also masks irrigation signals in regions where the noise

level of the satellite soil moisture retrievals is rather low (see

Sect. A2). Thus, a more site-specific threshold at each pixel

might lead to an improved detectability of irrigation events.

5.3 Temporal behavior of soil moisture and IWU and

in the four focus regions

For a more detailed analysis on the impact of climate, crop

type and irrigation practice on the method performance, we

compared remotely sensed and modeled soil moisture time

series and monthly IWU estimates at an irrigated (green

crosses in Fig. 2) and a non-irrigated pixel (orange crosses

in Fig. 2) in the four focus areas (Fig. 5).

5.3.1 Central Valley

At the irrigated pixel in the San Joaquin Valley, the impact

of irrigation on the remotely sensed soil moisture signal is

evident (top panel in Fig. 5a). While MERRA-2 soil mois-

ture decline in the irrigated and non-irrigated pixels reflects
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Figure 4. Mean annual irrigation water use IWUA derived from

SMAP (a), AMSR2 (b), and ASCAT (c) SM in combination with

modeled SM from MERRA-2. All pixels with a cropland fraction

of < 5 % (as inferred from the CCI Land Cover product) were ex-

cluded from the analysis. Note that for SMAP the climatologies

represent the growing season mean of 2015 and 2016, while for

AMSR2 and ASCAT the estimates are derived from 4 years of data

covering the period of 2013–2016.

the absence of precipitation, typically from mid-May until

mid-October, ASCAT and SMAP soil moisture in the irri-

gated pixel start to increase in June until reaching their max-

imum in July–August and gradually declining towards the

end of the growing season. In contrast, remotely sensed soil

moisture in the adjacent non-irrigated pixel (bottom panel)

remains close to zero throughout the growing season. The

temporal behavior of SMAP at the irrigated pixel location

was extensively evaluated by Lawston et al. (2017), who

showed that SMAP soil moisture correctly reflects the on-

set of flood irrigation, the dry-down associated with plants

breaking through the water surface (which attenuates the SM

signal) and lastly field drainage. Even though Lawston et al.

(2017) used the enhanced 9 km sampling SMAP product,

we find very comparable temporal characteristics for the na-

tive 36 km resolution product (Fig. 5b). ASCAT soil mois-

ture seems to be impacted by specular reflection of the ac-

tive radar signal from the flooded rice fields, leading to very

low backscatter and, hence, soil moisture values. As a re-

sult, particularly during the 2013 growing season, ASCAT

soil moisture remains at or very close to its minimum early in

the growing season. ASCAT soil moisture starts to increase

in early to mid-July when the rice starts to break out of the

water. Initially, the increase is primarily the result of double-

bounce effects from the rice canopies, while at later growth

stages this turns into volume scattering (Nguyen et al., 2015).

Of the three products, ASCAT soil moisture is the last to

reach its growing season maximum between mid- and late

August, followed by a decrease throughout September. At

the irrigated pixel, AMSR2 soil moisture shows large fluctu-

ations during the growing season, while at the non-irrigated

pixel it has few valid observations, which makes it difficult

to compare both pixels. AMSR2 soil moisture shows similar

characteristics with respect to SMAP and is able to sense the

onset of flood irrigation but reaches saturation a few weeks

earlier and already starts to dry down before SMAP reaches

its soil moisture maximum. Moreover, after reaching a mini-

mum in late July to early August, AMSR2 soil moisture starts

to increase again.

Comparing the estimated monthly IWU (bottom sub-

panels) at the adjacent irrigated and non-irrigated pixels sug-

gests that the method is skillful in detecting irrigation from

all considered sensors, especially during the comparatively

dry years of 2013 and 2014, when a prolonged drought af-

fected the State of California. AMSR2 provides highest IWU

estimates, possibly due to the high noise levels in the soil

moisture data. In general, a spurious irrigation signal remains

at the non-irrigated pixel, which may be due to noise in the

satellite soil moisture retrievals. At the non-irrigated pixel,

ASCAT- and AMSR2-based IWU retrievals seem to be more

affected by noise than SMAP. The 2015 growing season was

unusually wet, which at the non-irrigated pixel resulted in the

spurious detection of irrigation for all satellite products. Gen-

erally, SMAP and ASCAT products are especially skillful in

detecting the seasonality of irrigation over the San Joaquin

Valley.
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Figure 5. Comparison of satellite and model SM time series at irrigated (top two sub-panels) and non-irrigated pixels (bottom two sub-panels)

in five regions (Fig. 5a–e). Daily CPC precipitation is plotted in grey, while blue and orange shadings in the top sub-panels reflect growing

seasons with positive and negative rainfall anomalies, respectively. The second and fourth sub-panels show the estimated monthly irrigation

water use (IWUM) obtained for each satellite–model pair for the irrigated and non-irrigated pixels, respectively (non-growing season periods

have been masked).

5.3.2 Snake River Plain

At Snake River Plain, all satellite soil moisture products

show a clear irrigation signal at the irrigated pixel (Fig. 5c),

which is not visible in the non-irrigated pixel. Consequently,

considerable IWU is estimated for the irrigated pixel, while

for ASCAT and SMAP the estimated IWU at the non-

irrigated pixel is close to zero. AMSR2 soil moisture re-

trievals are noisier, which results in the detection of some

spurious irrigation at the non-irrigated pixel, although signif-

icantly smaller than at the irrigated pixel. We argue that the

higher spatial sampling of the employed ASCAT data is ad-
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vantageous for IWU estimation, as the irrigated area within

the Snake River Plain is quite narrow.

5.3.3 High Plains

ASCAT soil moisture content is higher than MERRA-2 dur-

ing the drier periods of the growing season, indicating sen-

sitivity to the typically employed supplemental irrigation

(Fig. 5d). However, the relative changes in ASCAT soil mois-

ture are < 12 % and therefore do not qualify as rigorous ir-

rigation events based on our methodology. AMSR2 provides

the largest derived IWU at the irrigated pixel but is also af-

fected by noise at the non-irrigated pixel. In this area, the

influence of irrigation on the remotely sensed soil moisture

signal is much more subtle, if significant at all. This can be

attributed to two factors. First, due to the abundant rainfall

during the growing season only supplemental irrigation is

applied in this area. Second, center pivot irrigation systems

usually have much higher application efficiencies (75 %–

95 %) than gravity irrigation systems (40 %–80 %). There-

fore, less water needs to be applied to achieve comparable

plant growth, rendering a less distinct irrigation signal in the

soil moisture product.

5.3.4 Mississippi Floodplain

The difference in soil moisture behavior between the irri-

gated and non-irrigated pixel is much more pronounced for

AMSR2 than for the other satellite products (Fig. 5e). This is

also reflected by AMSR2-derived IWU at the irrigated pixel,

which agrees well with the expected seasonality of irriga-

tion, which peaks in August. At the same time AMSR2-based

IWU estimates are close to zero at the non-irrigated pixel.

ASCAT soil moisture shows a similar seasonality at the irri-

gated pixel but is more affected by noise at the non-irrigated

pixel. SMAP soil moisture sustains saturation throughout

the first half of the growing season, which could either be

caused by flood irrigation for rice or point at a problem in

the soil moisture retrieval algorithm. At least for AMSR2,

IWU shows a meaningful derived seasonality.

5.4 Evaluation of estimated irrigation water use

against state-level reference water withdrawals

We evaluated the agreement between mean IWU, IWU, ag-

gregated for each satellite–model pair to the state level,

and reported irrigation water withdrawals from the 2013

FRIS (USDA, 2013) (IWWFRI). The median correlation R

values for SMAP-, AMSR2- and ASCAT-based IWU and

IWWFRIS are 0.80, 0.56 and 0.36, respectively (Fig. 6).

For all satellite data sets, California is correctly identified

as the largest consumer of irrigation water, which indicates

the overall potential of coarse-resolution microwave soil

moisture data in estimating IWU. However, the root-mean-

square difference (RMSD) and bias between observed IWU

and IWWFRIS indicate a clear underestimation. The lowest

RMSD of 5.21 km3 was found for AMSR2, but values for

SMAP and ASCAT are quite similar. ASCAT has the low-

est bias (−2.29 km3), but the bias based on the other prod-

ucts is similar. We further discuss the potential reasons for

the generally large biases observed in Sect. 5.6. On average,

IWU based on SMAP provides the closest similarity with

IWWFRI.

5.5 Evaluating irrigated area estimates with the

MIrAD-US data set

We compared spatial patterns of total mean IWU estimates

with the MIrAD-US data set at 0.25◦ resolution. In order

to compute a confusion matrix, we converted the continu-

ous ranges of the two data sets into binary representations

of irrigated areas. For MIrAD-US, this was accomplished by

labeling only areas with >=5 % irrigation fraction as irri-

gated. Estimated IWU was converted in a similar way by

considering only pixels where IWU ≥ X as irrigated, where

X (mm) is a binarization threshold. To compare irrigation

estimated from each satellite–model pair with MIrAD-US,

we computed the error of omission (EoO), the error of com-

mission (EoC), the overall accuracy (OA) and Cohen’s kappa

(κ), which is a measure of how the classification results com-

pare to values assigned by chance (Table 2). The binariza-

tion threshold X was determined by maximizing κ for each

satellite–model pair and focus region, respectively, as well as

for the whole CONUS (see Fig. A5).

In California, irrigated area estimates based on IWU show

very good agreement with MIrAD-US. SMAP-based irri-

gated areas provides the highest scores for all metrics: the

overall accuracy is 76.79 %. A commission error (EoC) of

23.30 % in combination with an omission error (EoO) of

2.47 % indicates that we somewhat overestimate the refer-

ence, and a kappa score of κ = 0.33 illustrates a fair agree-

ment. ASCAT has a similar performance but shows a slightly

higher overestimation (EoC = 22.68 %), thus resulting in a

lower overall accuracy and κ score. In California, AMSR2

performs worst but still shows an acceptable overall accuracy

of 68.75 %. In Idaho, of all satellite products AMSR2 shows

the highest agreement with the reference (OA = 59.84 %),

but EoC and EoO are equally high at approximately 40 %,

indicating a moderate amount of confusion in the classifi-

cation. As a result of a strong under-classification, in Ne-

braska there is hardly any agreement between IWU-based

and MIrAD-US irrigated area. Over the Mississippi Flood-

plain, AMSR2- and ASCAT-based IWU shows moderately

good agreement with the reference data (OA ≈ 70 %, κ >

0.30). We argue that, due to the previously observed prob-

lems regarding the representation of soil saturation, SMAP

soil moisture data are unreliable in this region. ASCAT-

based IWU depicts a high overestimation (EoC = 50 %)

while SMAP-based IWU does not classify any irrigated ar-

eas at all (EoO = 100 %). For CONUS as a whole, ASCAT

and SMAP depict the best spatial agreement with MIrAD-
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Figure 6. Comparison of estimated mean annual irrigation water use and reported irrigation water withdrawals. For each satellite–model

pair, observed IWUA was aggregated at the state level. Reported irrigation withdrawals were taken from the 2013 FRIS report and only

reflect volumes applied in open fields (e.g., excluding crops grown and irrigated in greenhouses). The data are presented in logarithmic units

to reflect both small and large water volumes. Note that the names of the 10 states accounting for the highest irrigation water withdrawals are

annotated. R, RMSE and bias between observed and reported estimates are shown in the bottom right of each subplot.

Table 2. Accuracy assessment of irrigated area estimates. For each satellite–model combination a confusion matrix between observed IWUA

and reference irrigated area from the spatially aggregated 2012 MIrAD-US data set was computed after converting the continuous data to a

binary representation. Specifically, pixels with observed IWUA ≥ X mm and reported Acrop-fraction ≥ 5 % were respectively assigned to the

irrigated classes. The binarization thresholds X were found by maximizing the respective kappa scores for each satellite–model combination

within each region (see Fig. A5). Results are shown for the four states selected in the regional analysis and the whole CONUS. Italics indicate

the best scores within each region, while bold scores show the overall best.

Region SM X (mm) EoO (%) EoC (%) OA (%) κ (–)

California SMAP 6 2.47 23.30 76.79 0.26

AMSR2 20 17.28 23.86 68.75 0.16

ASCAT 21 7.41 22.68 75.00 0.26

Idaho SMAP 4 44.26 45.16 54.92 0.10

AMSR2 9 36.07 40.91 59.84 0.20

ASCAT 7 65.57 41.67 54.92 0.10

Nebraska SMAP 0 68.88 17.57 38.84 0.01

AMSR2 3 35.71 15.44 61.57 0.10

ASCAT 2 23.47 18.48 66.94 0.02

Mississippi SMAP 12 100 100 64.44 -0.02

AMSR2 6 35.48 44.44 70 0.36

ASCAT 21 6.45 50 65.56 0.37

CONUS SMAP 8 86.75 58.61 72.96 0.09

AMSR2 5 49.63 68.37 59.38 0.11

ASCAT 21 86.09 48.79 74.55 0.12

US irrigated area, which is reflected by an overall accuracy

of 74.55 % and 72.96 %, respectively. However, SMAP fails

to correctly classify approximately 90 % of areas irrigated

according to the MIrAD-US. AMSR2 shows an agreement

of OA = 59.38 % and misses fewer pixels than ASCAT and

SMAP (EoO = 49.63 %) but in contrast shows a higher over-

estimation (EoC = 68.37 %).

The results obtained for California are encouraging and

emphasize the potential of coarse-scale microwave soil mois-

ture retrievals in correctly detecting the spatial patterns of ir-

rigation. However, consistent with the findings of estimated

irrigation volumes, irrigated area estimates reflect a general

pattern of underestimation with respect to the MIrAD-US

data set. The results further indicate that in areas such as Ne-

braska, where the climate is semi-humid in large parts of the

state and irrigation is mostly supplementary, the method fails

in detecting the irrigation signal.
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5.6 Sensitivity of microwave soil moisture products to

irrigation

By qualitatively examining the obtained results, we find that

the sensitivity of the employed microwave soil moisture re-

trievals to irrigation and the performance with respect to re-

ported irrigation data particularly depend on the following

factors.

1. Spatial resolution of the microwave soil moisture prod-

ucts and topography. Likely, the largest restriction is the

coarse scale of the satellite soil moisture retrievals with

respect to the average field size. For instance, the area

irrigated by a typical center pivot system (i.e., 500 m) is

approximately 50 ha, which only accounts for approx-

imately 0.0003 % of the satellite footprint area. Thus,

around 3200 center pivot systems are needed to create a

uniformly irrigated area covering the remotely sensed

footprint. In the CONUS, areas with large irrigation

fractions exist in the eastern half of the country, but ir-

rigation in the arid western half is a lot more heteroge-

neous. In these areas, irrigation usually mainly depends

on surface water supply and is therefore reserved to

narrow river valleys such as the Colorado River valley.

As a consequence, coarse-scale microwave soil mois-

ture products may be insensitive to locally significant

(but insignificant with respect to the scale of the satel-

lite footprint) irrigation due to the small scale of the

irrigation practices and surrounding complex topogra-

phy (e.g., mountains, valley transitions, water bodies).

As discussed in Sect. 5.1, in the Columbia River basin

correlation patterns based on the ASCAT soil moisture

product (which has a significantly higher nominal spa-

tial resolution than the passive products) matched very

well with the MIrAD-US product. An investigation of

time series over this region (not shown) revealed that,

there, ASCAT soil moisture carries a distinct seasonal

irrigation signal. The reason why this pattern cannot be

observed in Fig. 4c is that the regional noise level is well

below the global threshold and thus irrigation is actually

being masked. Lastly, as depicted by Fig. A1, irrigation

water application rates are the highest in arid climates.

We therefore expect that these drawbacks significantly

contribute to the underestimation of reported irrigation

water withdrawals.

2. Climate. As discussed in Appendix A, the method in

its current formulation is only applied to rain-free pe-

riods during the growing season. We believe that this

constraint accounts for a substantial part of the under-

estimation of IWU with respect to reported IWW. If

rainfall cannot meet the plant’s total daily evaporative

demand, farmers may decide to irrigate even on rainy

days. Farmers often irrigate on days with rainfall, on

which evapotranspiration rates are lower and, hence, ir-

rigation water loss decreases. Nevertheless, we did not

come up with an adequate way of decomposing the im-

pact of rainfall and irrigation in the soil moisture signal

on a daily basis. At daily temporal sampling, in some

cases satellite and model soil moisture show markedly

different responses to precipitation events both in terms

of temporal characteristics and intensity. This results in

spurious irrigation events, which motivated us to con-

strain the method to dry periods. When full irrigation

is applied in arid climates, the microwave soil moisture

retrievals generally show promising skills in detecting

the irrigation signals. In contrast, for the predominantly

semi-humid climate (e.g., High Plains and Mississippi

Floodplain) irrigation mainly aims at increasing yield

or bridging dry periods (i.e., supplementary irrigation).

Consequently, less irrigation water is applied and thus

the microwave soil moisture retrievals may not appro-

priately capture less pronounced soil wetting.

3. Crop type and irrigation system. Water requirements

naturally vary between crop types. Of the main crop

types grown in the CONUS, alfalfa and rice typically

require most irrigation water. In particular, flood irri-

gation for rice leads to a strong irrigation signal in the

Sacramento Valley. The signal of flood irrigation is less

distinct in the semi-humid climate of the Mississippi

Floodplain, yet SMAP sensed a prolonged period of

soil saturation which may be attributed to flooded fields

(Sect. 5.3, Fig. 5e). However, the consistent rainfall in

this region reduces the method performance, as the irri-

gation and precipitation signals in the soil moisture data

cannot be disentangled. On the other hand, the extensive

supplementary irrigation applied by center pivot sys-

tems in the High Plains does result in a minor irrigation

signal in the soil moisture retrievals (Sect. 5.3, Fig. 5d).

Intriguingly, the same dynamic was observed for other

irrigated areas along the Ogallala Aquifer (Kansas, Ok-

lahoma, Texas; not shown).

We suggest that the differences in detectability may be

related to the application efficiency of a particular ir-

rigation system, which is defined as the ratio between

the average low quarter depth of water added to root

zone storage and the average depth of water applied to

the field (in mm) (Pereira et al., 2002). Gravity irriga-

tion systems have the lowest efficiency (approximately

60 %), followed by sprinkler (approximately 75 %) and

micro-irrigation systems (approximately 90 %). Conse-

quently, microwave soil moisture retrievals are expected

to be most sensitive to flood irrigation, followed by

sprinkler and micro-irrigation. The highest irrigation

water consumption per area occurs in the western parts

of the CONUS, particularly in the southwest (Fig. A1).

Besides, farmers separately control their fields and fo-

cus on a different variety of crops based on market

conditions, which in turn require different irrigation

amounts and timing. This means that between satellite
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overpasses only a fraction of the fields within the satel-

lite footprint will have received irrigation (based on the

individual water management of each farmer). In addi-

tion, a center pivot irrigation system takes between 12

and 24 h to complete a full rotation circle, which means

that at the time of satellite overpass only a fraction of

a field has recently received irrigation. The same is true

for other irrigation techniques, as irrigation equipment

(e.g., pipes) has to be manually transferred across fields.

4. Satellite observation system and wavelength. Our re-

sults indicate that the observation systems (i.e., active or

passive remote sensing system) have an impact on the

sensitivity of soil moisture retrievals to irrigation. For

instance, the water applied by certain types of irrigation

(i.e., flood irrigation for rice) could not be comprehen-

sively detected by the active ASCAT sensor due to spec-

ular reflection of the radar signal (see Sect. 5.3, Fig. 5b).

On the other hand, the active microwave data (i) pro-

vided valuable information on the timing of both flood

irrigation onset and field drainage and (ii) additionally

allowed insights into the crop development cycle (i.e.,

backscatter increases when the vegetation starts to break

through the standing water surface, potentially causing

double-bounce effects, Nguyen et al., 2015). These dy-

namics largely agree with the observations reported by

Lawston et al. (2017). Regarding the observation wave-

length, we found that the SMAP L-band data showed

more sensitivity than AMSR2 C-band data to the flood

maintenance flow that is commonly established after the

start of the growing season at the rice irrigated site in

the Sacramento Valley, California. However, we cannot

safely conclude whether this is actually due to the ob-

servation wavelength or to differences in the retrieval

algorithms.

6 Conclusions and outlook

In this paper we presented a new methodology to derive ir-

rigation water use at monthly timescales by combining mi-

crowave remote sensing and modeled soil moisture data. We

first assessed whether irrigation impacts the correlation be-

tween remotely sensed and modeled soil moisture and found

that the growing season correlations between each satellite–

model pair (SMAP, AMSR2 and ASCAT against MERRA-2)

are significantly lower over major irrigation areas through-

out the CONUS. Hence, deriving IWU from differences be-

tween satellite and model data is theoretically possible. We

then derived IWU estimates over the CONUS for the period

2013–2016 and evaluated our estimates, aggregated per state,

with reports on state-level irrigation water withdrawals from

the 2013 Farm and Ranch Irrigation Survey (USDA, 2013).

Of all satellite products, SMAP-derived IWU showed the

highest correlation between state-aggregated observed and

reported irrigation volumes (r = 0.80), followed by AMSR2

(r = 0.56) and ASCAT (0.36). Moreover, we compared the

spatial IWU patterns against the MIrAD-US data set (Per-

vez and Brown, 2010). Again, SMAP-derived IWU patterns

showed highest agreement with MIrAD-US, followed by

AMSR2 and ASCAT.

However, for all satellite products, derived IWU is sig-

nificantly lower than reported irrigation water withdrawals.

In line with previous studies (Escorihuela and Quintana-

Seguí, 2016), we argue that this discrepancy can be mainly

attributed to the coarse resolution of the satellite soil mois-

ture retrievals, which in many regions does not allow for re-

solving the irrigation signal at the field scale or for areas of

small-scale irrigation. Besides, the derived IWU relies on the

quality of the soil moisture observations, which are impacted

by topography, vegetation effects, instrument noise and the

observation principle itself (active versus passive microwave

observations). Furthermore, the ability to extract IWU is con-

trolled by the sensitivity of the overall soil moisture signal to

irrigation, which is driven by the type and frequency of ir-

rigation, its timing with respect to the satellite overpass and

climate. For example, our method failed to detect IWU in

areas with humid growing seasons where irrigation is only

supplemental. Despite these major drawbacks, we found that

the seasonality of observed irrigation water use is meaningful

over several irrigation hot spots such as the California Cen-

tral Valley, the Snake River Plain and the Mississippi Flood-

plain.

Many of the current limitations can be overcome by using

imagery of higher spatial resolution (providing improved ca-

pacity to resolve the local irrigation signal within the satellite

footprint area) and temporal resolution (providing observa-

tions closer to the actual irrigation time). Suitable candidates

are, for example, the spatially interpolated SMAP enhanced

9 km product (Chan et al., 2018), the SCATSAR-SWI prod-

uct with a 1 km spatial and daily temporal resolution obtained

from the fusion of active microwave remote sensing 25 km

Metop ASCAT soil moisture (Bauer-Marschallinger et al.,

2018), or soil moisture products at approximately 1 km based

on Cyclone Global Navigation Satellite System (CYGNSS)

(Chew and Small, 2018). Also multi-satellite products, such

as the ESA Climate Change Initiative Soil Moisture product

(Dorigo et al., 2017; Liu et al., 2012), offer a great potential

to increase spatial and temporal resolutions, provided that the

original soil moisture variations are maintained in the merged

product.

Despite the current limitations observed, our findings

highlight the potential of using microwave soil moisture re-

trievals for estimating intra- and inter-annual variations in ac-

tual IWU and indicate the overall usefulness of the proposed

method. IWU estimates based on microwave soil moisture

observations can provide both stand-alone information and

synergistic value in combination with methods commonly

used to estimate irrigated area or potential evaporative de-

mand from optical or thermal data. Based on past and current

microwave satellite missions, remotely sensed soil moisture
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has the potential to provide information on irrigation water

use over the last four decades, which can be used to force cli-

mate models and assess the impact of irrigation on regional

climate.

Data availability. Data from the ESA CCI Land Cover project

are available under https://www.esa-landcover-cci.org/ (last ac-

cess: 8 January 2018). CPC US Unified Precipitation data were

provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado,

USA, from their website at https://www.esrl.noaa.gov/psd/

(last access: 5 June 2018). SMAP soil moisture data

were downloaded from NSIDC (O’Neill et al., 2018;

https://doi.org/10.5067/SODMLCE6LGLL). In addition, we

want to thank Robin van der Schalie from VanderSat B.V. for

providing the AMSR2 LPRMv06 soil moisture data and Sebas-

tian Hahn from TU Wien for providing the modified version of the

H111 soil moisture product.
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Appendix A: Optimization of the noise threshold

thresh2

A1 Optimization based on the correlation of estimated

irrigation water use with reported water

withdrawals

We examined how different thresh2 values affect the agree-

ment between observed IWU and reported irrigation water

withdrawals IWWFRIS. For this purpose, annual mean irriga-

tion water use IWU derived from each satellite–model pair

by applying different thresholds was aggregated at the state

level and compared to reported irrigation water withdrawals

IWWFRIS from the 2013 FRIS (USDA, 2013) (Table A1). It

is important to point out that there is a temporal mismatch;

however these data were the most up to date official refer-

ence covering the whole CONUS. The correlation coefficient

R between observed IWU and IWWFRIS for SMAP is 0.72

when using thresh2 = 0.04 but is much smaller for AMSR2

(0.35) and ASCAT (0.15). When increasing thresh2 to 0.08,

R increases for all soil moisture products (0.79 0.47 and 0.23

for SMAP, AMSR2 and ASCAT, respectively). A thresh2

value equal to 0.12 further increases correlations to 0.80, 0.56

and 0.36 for SMAP, AMSR2 and ASCAT SM, respectively.

However, with an increase in the correlation coefficient, the

bias and RMSD progressively increase. For this reason, the

final threshold thresh2 = 0.12 is a trade-off of optimal cor-

relation, bias and RMSD.

Table A1. Sensitivity of IWU to optimization of tresh2 for the en-

tire CONUS. State-level agreement between estimated annual mean

IWU and reference irrigation water withdrawals reported by the

2013 FRIS. The noise threshold tresh2 is applied to the relative

increases in satellite soil moisture d2sat

2sat
t−n

in rain-free periods. Bold

performance scores indicate the best scores within each category.

Threshold Satellite R RMSE Bias

(km3) (km3)

d2sat

2sat
t−n

>4 % SMAP V5 0.72 5.25 −2.40

AMSR2 0.35 5.17 −2.19

ASCAT 0.15 5.15 −2.01

d2sat

2sat
t−n

>8 % SMAP V5 0.79 5.29 −2.44

AMSR2 0.47 5.19 −2.26

ASCAT 0.23 5.19 −2.17

d2sat

2sat
t−n

>12 % SMAP V5 0.80 5.32 −2.47

AMSR2 0.56 5.21 −2.32

ASCAT 0.36 5.23 −2.29

A2 Optimization based on soil moisture time series in

the four focus regions

To further investigate the plausibility of the choice of thresh2

in Sect. 5.4 at pixel scale and in several climatic settings (i.e.,

in the chosen focus regions), we applied a minimum thresh-

old thresh2 to separate increases in soil moisture stemming

from actual irrigation from disturbing impacts like data set

noise. We optimized thresh2 by maximizing the relative dif-

ference between IWU estimated at an irrigated (PI) and a

non-irrigated pixel (PNI) in each focus area (Sect. 2.2) and

for each satellite product. By assuming that those locations

are spatially correlated in terms of climate and land cover,

doing so allows us to find the minimum thresh2 where the

estimated irrigation at the non-irrigated location actually is

zero. This is accomplished by minimizing the cost function

h(IWU):

h(IWU) =
IWUPNI − IWUPI

IWUPI

→ min, (A1)

where IWUPI and IWUPNI are mean annual IWU estimated

at PI and PNI, respectively (Fig. A4). It can be seen that

the minimum thresholds vary across regions, indicating the

range of noise levels within the respective soil moisture re-

trievals. In the scope of this study, however, we chose a global

threshold, and even though there is no single thresh2 that

leads to a minimum for all sensors and all focus areas, simi-

larly to section 5.4, we find an overall mean thresh2 of 0.11–

0.12 across the focus regions, which supports the choice

made in Sect. A1. Moreover, the data clearly show that

SMAP soil moisture has a lower noise level (no data points

mean that IWUPNI is zero) in comparison with AMSR2 and

ASCAT soil moisture across the different climatic conditions

and irrigation practices reflected by the four focus regions.

The reason why the estimated IWU at the PNIs is nonzero is

twofold: first, the true spatial resolution of the satellite SM

products (approximately 40 km for SMAP and AMSR2, and

approximately 25 km for ASCAT) is coarser than the spatial

sampling of the common data grid (25 km) and, thus, if the

choice of PNI is very close to PI, the soil moisture retrieval

at PNI may as well be affected by irrigation. Second, noise

or deficiencies in the soil moisture retrieval can result in spu-

rious irrigation signals.
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Figure A1. Per-state irrigation water application rates (m3 ha−1)

by irrigation technique for 2013. In accordance with Fig. 1, the data

were derived from the 2013 FRIS and only reflect irrigation opera-

tions in open fields.

Figure A2. Absolute differences between the mean correlations for

wet and dry periods |rwet − rdry|.
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Figure A3. Mean number of days per growing season where IWU > 0. Absolute counts were normalized by the number of growing seasons

covered, i.e., four seasons for ASCAT and AMSR2 and two for SMAP.
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Figure A4. Local optimization of the noise threshold thresh2. For each focus area, the relative differences in irrigation water use (IWU)

estimated at a representative pixel covering a non-irrigated (PNI) and irrigated pixel (PI), respectively,
(

IWUPNI−IWUPI

IWUPI

)

are plotted against

thresh2 choices of 0–0.2.

Figure A5. Determination of the binarization threshold X. Accuracy metrics were calculated between a binary representation of estimated

IWU and irrigated areas based on the MIrAD-US product. Example for the State of California.
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