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Abstract

In a communication network, point-to-point traffic volumes over time are critical for de-

signing protocols that route information efficiently and for maintaining security, whether at the

scale of an internet service provider or within a corporation. While technically feasible, the

direct measurement of point-to-point traffic imposes a heavy burden on network performance

and is typically not implemented. Instead, indirect aggregate traffic volumes are routinely

collected. We consider the problem of estimating point-to-point traffic volumes, xt, from ag-

gregate traffic volumes, yt, given information about the network routing protocol encoded in

a matrix A. This estimation task can be reformulated as finding the solutions to a sequence of

ill-posed linear inverse problems, yt = Axt, since the number of origin-destination routes of

interest is higher than the number of aggregate measurements available.

Here, we introduce a novel multilevel state-space model of aggregate traffic volumes with

realistic features. We implement a naı̈ve strategy for estimating unobserved point-to-point

traffic volumes from indirect measurements of aggregate traffic, based on particle filtering.

We then develop a more efficient two-stage inference strategy that relies on model-based reg-

ularization: a simple model is used to calibrate regularization parameters that lead to effi-

cient/scalable inference in the multilevel state-space model. We apply our methods to corpo-

rate and academic networks, where we show that the proposed inference strategy outperforms

existing approaches and scales to larger networks. We also design a simulation study to explore

the factors that influence the performance. Our results suggest that model-based regularization

may be an efficient strategy for inference in other complex multilevel models.

Keywords: ill-posed inverse problem; polytope sampling; particle filtering; approximate in-

ference; multi-stage estimation; multilevel state-space model; stochastic dynamics; network

tomography; origin-destination traffic matrix.
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1 Introduction

A pervasive challenge in multivariate time series analysis is the estimation of non-observable

time series of interest {xt : t = 1 . . . T} from indirect noisy measurements {yt : t = 1 . . . T},

typically obtained through an aggregation or mixing process, yt = a(xt) ∀t. The inference prob-

lem that arises in this setting is often referred to as an inverse, or deconvolution, problem (e.g.,

Hansen, 1998; Casella and Berger, 2001; Meister, 2009) in the statistics and computer science

literatures, and qualified as ill-posed because of the lower dimensionality of the measurement vec-

tors with respect to the non-observable estimands of interest. Ill-posed inverse problems lie at the

heart of a number of modern applications, including image super-resolution and positron emission

tomography where we want to combine many 2D images in a 3D image consistent with 2D con-

straints (Shepp and Kruskal, 1978; Vardi et al., 1985); blind source separation where there are more

sound sources than sound tracks (i.e., the measurements) available (Liu and Chen, 1995; Lee et al.,

1999; Parra and Sajda, 2003); and inference on cell values in contingency tables where two-way

or multi-way margins are pre-specified (Bishop et al., 1975; Dobra et al., 2006).

We consider a setting in which high-dimensional multivariate time series x1:T mix on a net-

work. Individual time series correspond to traffic directed from a node to another. The aggregation

process encodes the routing protocol—whether deterministic of probabilistic—that determines the

path traffic from any given source follows to reach its destination. This type of mixing can be

specified as a linear aggregation process A. This problem setting leads to the following sequence

of ill-posed linear inverse (or deconvolution) problems,

yt = Axt, s.t. yt,xt ≥ 0 for t = 1 . . . T, (1)

since the observed aggregate traffic time series are low dimensional, yt ∈ R
m, while the latent

point-to-point traffic time series of interest are high-dimensional, xt ∈ R
n. Thus the matrix Am×n

is rank deficient, r(A) = m < n, in this general problem setting.

The application to communication networks that motivates our research is (volume) network

tomography; an application originally introduced by Vardi (1996), which has quickly become a

classic since (e.g., see Vanderbei and Iannone, 1994; Tebaldi and West, 1998; Cao et al., 2000;

Coates et al., 2002; Medina et al., 2002; Zhang et al., 2003b; Liang and Yu, 2003a; Airoldi and

Faloutsos, 2004; Castro et al., 2004; Lakhina et al., 2004; Lawrence et al., 2006b; Fang et al., 2007;

Blocker and Airoldi, 2011). An established engineering practice is at the root of the inference

problem in network tomography. Briefly, the availability of point-to-point (or origin-destination)

traffic volumes over time is critical for reliability analysis (e.g., predicting flows and failures), traf-
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fic engineering (e.g., minimizing congestion), capacity planning (e.g., forecasting requirements),

and security management (e.g., detecting anomalous traffic patterns). While technically possible,

however, the direct measurement of point-to-point traffic imposes a heavy burden on network per-

formance and is never implemented, except for special purposes over short time periods. Instead,

indirect aggregate traffic volumes are routinely collected. As a consequence, network engineers

must solve the ill-posed linear inverse problems in Equation 1 to recover point-to-point traffic. We

give pointers to a vast literature that spans statistics, computer science, and operations research in

Section 1.1.

Figure 1 provides an illustration of a communication network and the key mathematical quan-

tities in the application to network tomography. Dashed circles, rs a–e, represent routers and

switches. Solid circles, sn 1–11, represent sub-networks. Intuitively, messages are sent from a

subnetwork (origin) to another (destination) over the network. Routers and switches are special-

purpose computers that quickly scan the messages and route them according to a pre-specified

routing protocol. Black arrows represent represent physical cables connecting routers and switches

to subnetworks and indicate the direction in which traffic flows. On each router, a set of (software)

counters measure aggregate traffic volumes, yij , corresponding to incoming and outgoing cables,

routinely (every five minutes). The traffic recorded by each of these counters is the sum of a

known subset1 of non-observable point-to-point traffic, xij , represented by grey arrows, over the

same time window. For example, in Figure 1, traffic volumes x12, x13, x14 all contribute to counter

y1a, and traffic volumes x12, x13 both contribute to counter yab. To establish a formal connection

between measurements yij and estimands xij , it is convenient to simplify notation. Let’s order all

the (from-to) counter measurements collected over a five-minute window, into a vector yt ∈ R
m.

We have m = 32 measurements in Figure 1. Let’s also order 2 all the non-observable point-to-

point traffic volumes of interest over a five-minute window, into a single vector xt. We have

n = 112 point-to-point traffic volumes in Figure 1. Using this more compact notation, we can

write yit =
∑n

j=1 Aij xjt, where t denotes time, and the matrix Am×n is build using information

about the pre-specified routing protocol. In particular, Aij = 1 if point-to-point traffic i contributes

to counter j and Aij = 0 otherwise, in the case of deterministic routing. More complicated routing

schemes, including probabilistic routing and dynamic load-balancing protocols that minimize the

expected congestion, can also be formulated in terms of Equation 1, as discussed in Section 6.2.

From a statistical perspective, the application to communication networks we consider has ad-

ditional features that make the inference task harder, and more interesting, than in a traditional

deconvolution problem. First, we have low dimensional observations, xt, and high dimensional

1This information is encoded by the routing protocol.
2Any such two orderings can be arbitrary and defined independently of each other. Different pairs of orderings will

lead to different A matrices.
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Figure 1: Illustration of the mathematical quantities in network tomography. Traffic x13 from sn

1 to sn 3, contributes to counter Y1a into rs a, to counter Yab into rs b, to counter Ybc out of rs b
(which is the same as counter Ybc into rs c), and to counter Yc3 out of rs c. Traffic volumes on these

counters are recorded every few minutes. This routing information is summarized in the column

of the routing matrix A that corresponds to the origin-destination traffic volume x13.

estimands, yt. In Figure 1, for example, m = 32 and n = 121. In a general network with d

subnetworks, m = O(d) is often orders of magnitude lower than n = O(d2), depending on the

redundancy of some counters and on whether we are interested on traffic volumes on all possible

origin-destination pairs. Second, the space where the estimands live is highly constrained. We

prove in Section 2.2 that the solution space is a convex polytope of dimension n − m. The di-

mensionality of this convex polytope gives the true complexity of the problem, in a computational

sense. Working in a constrained solution space helps the inference to a point (e.g., see Theorem

1). We gain additional information from modeling traffic dynamics explicitly. Sampling from such

an extremely constrained solution space, however, proves to be a challenge. We approach this

sampling problem by combining a random direction sampler (Smith, 1984) with model-based reg-

ularization and a sequential sample-importance-resample-move (SIRM) particle filter (Gilks and
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Berzuini, 2001).

In this paper, we introduce a new dynamic multilevel model for aggregate traffic volumes that

posits two latent dynamic processes, in Section 2. The first is a heavy-tailed traffic process, in

which the amount of traffic on each origin-destination route is proportional to its variability up to

a scaling factor shared by all origin-destination routes. The second is an additional error process

for better capturing near-zero traffic volumes. We carry out inference via a sequential sample-

importance-resample-move particle filter, and we develop a novel two-stage strategy (inspired by

Clogg et al., 1991), in Section 3. A transformation of the heavy-tailed layer of the multilevel model

can be embedded into a Gaussian state-space formulation with identifiable parameters. We use the

fit for such a reformulation to calibrate informative priors for key parameters of the multilevel

model, and to develop an efficient particle filter that is statistically efficient, numerically stable

and scales to large problems. In Section 4, we show that the proposed methods are more accurate

than published state-of-the-art solutions on two time series data sets. In Section 5, we then design

experiments that combine real and simulated data to investigate comparative performance. In Sec-

tion 6, we offer remarks on modeling, inferential and computational challenges with the proposed

methods, and discuss limitations and extensions.

The R package networkTomography includes the two unpublished data sets we analyze, as

well as robust code implementing all the seven methods we compare. It is available on the Com-

prehensive R Archive Network at http://cran.r-project.org/.

1.1 Related work

Applied research related to the type of problems we consider can be traced back to literature

on transportation and operations research (Bell, 1991; Vanderbei and Iannone, 1994). There the

focus is on estimating a single set of origin-destination traffic volumes, y, from integer-valued

traffic counts over time, xt. The line of research in statistics with application to communication

networks is due to Vardi (1996) who coined the term network tomography by extending the ap-

proach to positron emission tomography by Shepp and Vardi (1982). In this latter setting, statistical

approaches may be able to leverage knowledge about a physical process, explicitly specified by a

model, to assist the inference task. In the network tomography setting, in contrast, we can only

rely on knowledge about the routing matrix and statistics about traffic time series.

From a technical perspective, Vardi (1996) develops an estimating equation framework to esti-

mate a single set of origin-destination traffic volumes from time series data; the same data setting

and estimation task considered in the transportation and operations research literature. Tebaldi and

West (1998) develop a hierarchical Bayesian model that can be fit at each epoch independently,
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thus recovering time-varying origin-destination traffic volumes. They point out that the hardness

of the problem lies in having to sample from a very constrained solution space. Informative priors

are advocated as a means to mitigate issues with non-identifiability and multi-modality that arise

when making inference from aggregated traffic volumes at each point in time. In previous work

(Airoldi and Faloutsos, 2004) we extended their approach by explicitly modeling complex dynam-

ics of the non-observable time series. Cao et al. (2000) develop a local likelihood approach to

attack the non-identifiability issue. They develop a Gaussian model with a clever parametrization

that leads to identifiability of the point-to-point traffic volumes, if they are assumed independent

over a short time window—approximately 1-hour. Cao et al. (2001) extend this approach to infer-

ence on large networks by adopting a divide-and-conquer strategy . Zhang et al. (2003b) develop

gravity models that can scale to large networks and use them to analyze point-to-point traffic on

the AT&T backbone in North America. This approach has been extended by Fang et al. (2007)

and Zhang et al. (2009). Work in this area by Soule et al. (2005) and Erramilli et al. (2006) pro-

vide slightly different approaches to this class of problems. Recent reviews of this literature are

available (Castro et al., 2004; Lawrence et al., 2006b).

One of the key technical problems that we face during inference is that of sampling solutions

from a convex polytope. In this sense, the problem of sampling a feasible set of origin-destination

traffic volumes given aggregate traffic is equivalent to that of sampling square tables given row

and column totals, when the routing matrix corresponds to a star network topology. As we con-

sider more complicated topologies, the equivalence still holds for more elaborate specifications

of marginal totals. Airoldi and Haas (2011) characterize such a correspondence using projective

geometry and the Hermite normal form decomposition of the routing matrix A. Leveraging this

equivalence, the iterative proportional fitting procedure (Deming and Stephan, 1940; Fienberg,

1970, IPFP, ) provides a baseline for the traffic matrix estimation at each epoch in Section 5.2.

Other approaches to the problem of sampling tables given row and column margins include a

sequential MCMC approach (Chen et al., 2005), a dynamic programming approach that is very

efficient for matrices with a low maximum marginal total (Harrison, 2009; Miller and Harrison,

2011), and sampling strategies based on algebraic geometry (Diaconis and Sturmfels, 1998; Dobra,

2011) or on an explicit characterization of the solution polytope (Airoldi and Haas, 2011).

A related body of work on tomography focuses on the problem of delay (network) tomogra-

phy, in which the times traffic reaches/leaves the routers are recorded at the router level, instead

of the volumes (Presti et al., 2002; Liang and Yu, 2003b; Lawrence et al., 2006a; Deng et al.,

2012). However, inference in delay tomography has a different structure from inference in volume

tomography, which we focus on in this paper.
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2 A model of mixing time series on a network

Given m observed traffic counters over time, yt = {yit : i = 1 . . .m}, the aggregate traffic

loads, we want to make inference on n non-observable point-to-point traffic time series, xt =

{xjt : j = 1 . . . n}. The routing scheme is parametrized by the routing matrix A, of size m × n.

Without loss of generality, we consider the case of a fixed routing scheme. In this case, the matrix A

has binary entries; element Aij specifies whether counter i includes the traffic on the point-to-point

route j. Extensions to probabilistic routing and dynamic protocols for congestion management are

discussed in Section 6.2.

The main observation that informs model elicitation is that the measured traffic volumes, yt, are

heavy–tailed and sparse. For instance, peak traffic may be very high during certain hours of the day,

and traffic is often zero during night hours. We develop a multilevel state-space model to explain

such a variability profile of the observed aggregate traffic volumes. The proposed multilevel model

involves two latent processes: {λt : t ≥ 1} at the top of the hierarchy, and {xt : t ≥ 1} in the

middle of the hierarchy. The observation process is at the bottom of the hierarchy. Intuitively,

we posit a heavy tailed {λt} process, and a thin tailed {xt|λt} process, specifying xt | λt as

additive error around λt, constrained to be positive. The key point is that we need both temporal

correlation and independent errors to induce positive density for near-zero traffic. In previous

work, we assumed a heavy tailed {λt} process and a heavy tailed {xt} process, specifying xt | λt

as independent log-normal variation conditionally on λt (Airoldi and Faloutsos, 2004). This set of

choices, however, leads to some computational instability during inference when actual point-to-

point traffic is zero (or nearly zero), as the likelihood for xt had zero density at xj,t = 0.

In detail, we posit that each point-to-point traffic volume xj,t has its own time-varying intensity

λj,t. This underlying intensity evolves through time according to a multiplicative process

log λj,t = ρ log λj,t−1 + εj,t

where εj,t ∼ N(θ1 j,t, θ2 j,t). Such a process leads to heavy-tailed traffic volumes that are not sparse.

Moreover, small differences between low traffic volumes receive quite different probabilities under

the log-normal model. Thus, conditional on the underlying intensity, we posit that the latent point-

to-point traffic volumes xj,t follow a truncated normal error model,

xj,t|λj,t, φt ∼ TruncN(0,∞)

(

λj,t, λ
τ
j,t(exp(φt)− 1)

)

,

where τ and φt regulate temporally independent variation. The mean-variance structure of the

error model is analogous to that of a log-normal distribution for τ = 2; in particular, if log(z) ∼
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N(µ, σ2), E(z) = exp(µ + σ2/2) and Var(z) = exp(2µ + σ2) · (exp(σ2) − 1). Thus, λj,t is

analogous to exp(µ+ σ2/2), and φt is analogous to σ2. The observed aggregate traffic is obtained

by mixing point-to-point traffic according to the routing matrix, yt = Axt. The model specification

is complete by placing diffuse independent log-Normal priors on λj,0. We also place priors on φt

for stability, assuming φt ∼ Gamma(α, βt/α).

This multilevel structure provides a realistic model for the aggregate traffic volumes we mea-

sure, which are both heavy-tailed and sparse. The error model induces sparsity while maintaining

analytical tractability of the inference algorithms, detailed in Section 3, by decoupling sparsity

control from the bursty dynamic behavior. The log-Normal layer provides heavy-tailed dynamics

and replicates the intense traffic bursts observed empirically, whereas the truncated Normal layer

allows for near-zero traffic levels with non-negligible probability. By combining these two levels,

we induce a posterior distribution on point-to-point traffic volumes, the estimands of interest in

this problem, which can account for both extreme volumes and sparsity.

In summary, we developed a model for observed m-dimensional time series {yt} mixing on a

network according to a routing matrix A. The model involves two n-dimensional latent processes

{λt, xt}, a set of latent variables {φt}, and constants ρ, τ, α, {βt} and {θ1t, θ2t}. While the parame-

ters τ, ρ, and α provide some flexibility to the model and can be calibrated through exploratory data

analysis on the observed traffic time series, the parameters {θ1t, θ2t, βt} are key to the inference.

Strategies for parameter estimation and posterior inference are discussed in Section 3.

2.1 Qualitative model checking

As part of the model validation process, we looked at whether the simulated time series from

the model in Section 2 possessed qualitative features of real time series; namely, sparse traffic

localized in time, and heavy tails in distribution of the traffic loads.

We generated a number of time series using parameter values τ = 2, ρ = 0.92, θ1t = 0,

θ2t = 2 log(5)
4

for all t. In addition, we set φt = 0.25, rather than setting the constants α, βt

underlying the distribution of φt, for simplicity. These are realistic values for the constants; they

were calibrated on the actual point-to-point traffic volumes from the Bell Labs data set in Section

4.1. We used the empirical mean, standard deviation, and autocorrelation of {log xit} for each of

these time series combined with the observed level of sparsity to create the results below.

Figure 2 shows the empirical CDF of the two latent processes {λt} and {xt} for one simulated

time series. The {λt} process places more mass in any ǫ ball around zero relatively to the {xt}

process. The figure confirms our intuition about how the truncated Gaussian error operates.
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Figure 2: Comparison of CDFs for λi,t (solid black line) and xi,t (solid grey line).

Figure 3 shows an origin-destination traffic time series, in the left panel, and a simulated {xt}

time series, in the right panel. Real point-to-point traffic volumes from the router/switch to the

local subnetwork were measured using special software installed on the routers, for validation

purposes, courtesy of Bell Labs. The Bell Labs data is further discussed in Section 4.1. The

simulated time series displays two key qualitative characteristic of the real point-to-point traffic

time series. Specifically, we observe sudden traffic surges, typical for a heavy tail distribution

of traffic volumes, and localized periods of low traffic, as expected from our (truncated) additive

Gaussian correction.

The anecdotal findings above hold for most of the real point-to-point traffic volumes and sim-

ulated time series we considered. This suggests that the proposed model is capable of generating

data that qualitatively resemble real traffic volumes. There are two important ways in which ob-

served and simulated traffic differs, though. First, simulated point-to-point traffic peaks last longer

than real traffic peaks. This is due to the autoregressive dependence in λj,t. Second, simulated

point-to-point traffic volumes are more variable than real traffic volumes in low traffic regimes.

This is due to the truncated Normal noise. Thus, the proposed model is not a perfect generative

mechanism for point-to-point traffic. However, the structure the model captures is sufficient to

provide useful posterior inference, as we demonstrate in Section 4.

8



Time

T
ra

ff
ic

50000

100000

150000

Router/Switch -> Local

5 10 15 20

Simulated

5 10 15 20

Figure 3: Actual (left panel) versus simulated (right panel) point-to-point traffic volumes.

2.2 Theory

Multi-modality has been reported in the literature as an issue in network tomography. This

issue has previously been illustrated only in a toy example; a small network with Poisson traffic

(Vardi, 1996). We investigated multi-modality from a geometric perspective. Intuitively, our main

result is that whenever a well-behaved distribution is used as a prior for the individual origin-

destination traffic volumes, however diffused, the posterior cannot have disconnected modes. The

main result applies directly to the case of real-valued traffic volumes (e.g., Cao et al., 2000; Airoldi

and Faloutsos, 2004, and this paper). For the case of integer-valued traffic volumes, analyzed by

others (e.g., Vardi, 1996; Tebaldi and West, 1998), only a weaker condition is possible.

Consider the case of real-valued non-negative traffic volumes. Feasible traffic volumes xt must

be non-negative and satisfy yit ≥
∑

j Aij xjt. In other words, the space where xt lives can be char-

acterized as the intersection between the positive orthant and m half-spaces in n−m dimensions.

This is a convex polyhedron. Since both yt and Aij are non-negative, the polyhedron is bounded

and the space of feasible solution is a convex polytope. The main result is a consequence of the

fact that the space in which solution vectors xt to Equation 1 is a convex polytope.

Theorem 1. Assume f(xt) is quasi-concave. Let yt = Axt. Then, f(xt|yt) will also be quasi-

concave, and will have no separated modes. The set {z : f(z|yt) = maxw f(w|yt)} is connected.
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Proof. f(xt|yt) ∝ I(yt = Axt)f(xt), so f(xt|yt) has support on only a bounded n −m dimen-

sional subspace of Rn, which forms a closed, bounded, convex polytope in the positive orthant.

Denote this region B(yt). Denote the mode of f(xt) as x̂t. We now consider two cases.

Case 1. x̂t ∈ B(yt). Then, the mode of f(xt|yt) is also x̂t.

Case 2. x̂t /∈ B(yt). Then, we must do a little more work. Consider the level surfaces of

f(xt|yt), denoting C(z) = {u : f(u|yt) = z}. Define z∗ = maxB(yt) f(xt|yt); this is well-

defined and attained as B(yt) is closed. Now, denoting C0(z) = {u : f(u) = z}, we have C(z) =

C0(z)
⋂

B(yt). As f(xt) is quasiconcave, its superlevel sets U0(z) = {u : f(u) ≥ z} are convex.

Thus, the superlevel sets of f(xt|yt), denoted U(z) = U0(z)
⋂

B(yt) analogously, are also convex.

So, we have that the set U(z∗) = C(z∗) is convex and non-empty. Therefore, we have established

that set of modes for f(xt|yt) is convex, hence connected.

Next, consider the case of integer-valued non-negative traffic volumes. To precisely state con-

ditions under which pathological behavior is not possible in the integer-valued case we need to

introduce some concepts from integral geometry. A square integer matrix is defined to be unimod-

ular if it is invertible as an integer matrix (so its determinant is ±1). By extension, we define a

rectangular matrix to be unimodular if it has full rank and each square submatrix of maximal size

is either unimodular or singular (its determinant is 0).

With integer-valued traffic, the inferential goal is to sample solutions to Equation 1, where A is

a given unimodular m × n matrix with {0, 1} entries and yt is a given integer positive vector. In

the case of real-valued traffic, it was straightforward to show that the space of solutions to 1 is a

convex polytope. In the case of integer-valued traffic we have:

Theorem 2 (Airoldi & Haas, 2011). The space of real solutions x to equation y = Ax, x ≥ 0, is

an integral polytope, whenever A is unimodular.

Proof. The vertices are the intersections of the affine solution space of Ax = y with the (n−m)-

coordinate planes bordering the non-negative orthant. So a vertex x has n −m zero coordinates.

Let’s gather the rest of the coordinates into a positive integer vector x′ of dimension m. And let’s

gather the corresponding columns of A into a square matrix A1; so we get the equation A1x
′ = y.

If A1 was singular, the latter system would have either none or infinitely many solutions, which

would contradict that x is a vertex. So A1 is unimodular and x′ = A−1
1 y. And since y is integer, x′

is also integer, and so is x.

We can precisely characterize the space of feasible traffic volumes in the integer case, however,

we cannot directly address multi-modality. The concept of multiple modes and local maxima are
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not well-defined in this setting. This results, however, provides insight into the connection between

our results and the pathological case demonstrated by Vardi (1996).

The theory above helps us settle an important question about our model: how will posterior

inference behave under dynamic updates? If dynamic updates were allowed to “grow” modes over

time or exhibit other pathological behavior, the computation would be quite difficult and inference

results would be less credible. Fortunately, this is not the case. In general, we have established

that the quasiconcavity of a predictive distribution f(xt|yt−1, . . .) implies the quasiconcavity of

the posterior f(xt|yt,yt−1, . . .); thus, the set of maxima for f(xt|yt,yt−1, . . .) will form a convex

set under the given condition. Since we initialize our model with a unimodal (quasiconcave) log-

Normal distribution and impose log-Normal dynamics on the underlying intensities λt, Theorem

1 provides a useful limit on pathological behavior during inference with our model.

The situation is somewhat similar, but less constrained, in the case of integer traffic volumes,

for unimodular routing matrices. While it is not known under what conditions a network routing

scheme translates into a unimodular routing matrix A, the routing matrices in the cited literature

are all unimodular. Thus, extreme forms of multi-modality can be ruled out from the literature on

dynamic network tomography in many cases. Our theory also suggests that models based upon

real-valued traffic volumes will exhibit more predictable behavior under posterior updates than

those based upon integer-valued volumes, making the former much more attractive for inference

in cases where integer constraints provide little addditional information.

3 Parameter estimation and posterior inference

Here we develop two inference strategies to produce estimates for the point-to-point traffic time

series of interest, using the model described in the previous section. The first strategy is based

on a variant of the sequential sample-importance-resample-move (SIRM) particle filter (Gilks and

Berzuini, 2001). This filter is simple to state and implement, but is computationally expensive

due to the large number of particles needed to explore probable trajectories in high-dimensional

polytopes. Details are given in Section 3.1. The second strategy combines the sequential SIRM

filter with a model-based regularization step that leads to efficient particles. This strategy prefer-

entially explores trajectories in regions of the solution polytopes with high posterior density. The

model-based regularization step involves fitting a Gaussian state-space model with an identifiable

parametrization, which leads to informative priors for the multilevel model that are leveraged by a

modified SIRM filter. Details are given in Section 3.2.
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3.1 A SIRM filter for multilevel state-space inference

Inference in the multilevel state-space model is performed with a sequential sample-resample-

move algorithm, akin to Gilks and Berzuini (2001). Its structure is outlined in Algorithm 1.

Sample-Importance-Resample-Move algorithm

for t← 1 to T do
Sample step:

for j ← 1 to m do

Draw a proposal log λ
(j)∗
i,t ∼ N(θ1 i,t + log λ

(j)
i,t−1, θ2 i,t)

Draw φ
(j)
t ∼ Gamma(α, βt/α)

Draw x
(j)∗
t from a truncated Normal distribution with mean µ∗ = ρ/m

∑m

j=1 λ
(j)
t−1

and covariance matrix Σ∗ = (exp(βt)− 1)diag (µ∗2) on the feasible region given by

x
(j)∗
t ≥ 0, yt = Ax

(j)∗
t using Algorithm 2

Resample our particles (λ
(j)∗
t , φ

(j)∗
t ,x

(j)∗
t ) with probabilities proportional to our weights

w
(j)
t

Move each of our resampled particles (λ
(j)
t , φ

(j)
t ,x

(j)
t ) using a MCMC algorithm

(Metropolis-Hastings within Gibbs, with proposal on xt given by Algorithm 2)

return (λ
(j)
t , φ

(j)
t ,x

(j)
t ) for j ← 1 to m, t← 1 to T

Algorithm 1: SIRM algorithm for inference with multilevel state-space model

In Algorithm 1 we use a random-walk prior on the latent intensities λt. Thus, we fix θ1 i,t = 0

for all i, t, and calibrate the constants {θ2 i,t}, {βt}, α, τ and ρ as discussed in Section 3.1.1.

Sampling particles that correspond to feasible trajectories, that is, to point-to-point traffic vol-

umes xt in the convex polytope implied by yt = Axt, is non-trivial. The use of a random direction

proposal on the region of feasible point-to-point traffic is a vital component of the SIRM filter.

We use the random directions algorithm (RDA, Smith, 1984) to sample from the distributions

of feasible traffic volumes on a constrained region, in the SIRM filter. This method constructs a

random-walk proposal on a convex region, such as the feasible regions for xt, by first drawing

a vector d uniformly on the unit sphere. It then calculates the intersections of a line along this

vector with the surface of the bounding region, and samples uniformly along the feasible segment

of this line. Computing the feasible segment is facilitated by decomposing A. We decompose

A as [A1 | A2] by permuting the columns of A, and the corresponding components of xt, so

that A1 (r × r) is of full rank. Then, splitting the permuted vector xt = [x1
t ,x

2
t ], we obtain

x1
t = A−1

1 (yt − A2x
2
t ). This formulation can be used to construct an efficient random directions

algorithm to propose feasible values of xt. We have included pseudocode for this algorithm in

Algorithm 2.
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Random Directions Algorithm

Initialization

begin
Decompose A into [A1 A2], A1 (r × r) full-rank

Store B := A−1
1 ; C := A−1

1 A2

Metropolis step

given xt

begin

Draw z ∼ N(0, I), z ∈ R
c−r

Set d := z/‖z‖
Calculate w := C · d
Set h1 := max{mink:wk>0(x1,t)k/wk, 0}
Set h2 := max{mink:dk<0−(x2,t)k/dk, 0}
Set h := min{h1, h2}
Set l1 := max{maxk:wk<0(x1,t)k/wk, 0}
Set l2 := max{maxk:dk>0−(x2,t)k/dk, 0}
Set l := max{l1, l2}
Draw u ∼ Unif(l, h)
Set x∗

2,t := x2,t + u · d; x∗

1,t = x1,t − u · w; x∗

t = (x∗

1,t,x
∗

2,t)
Set xt := x∗

t with probability min{f(x∗

t )/f(xt), 1}

return xt

Algorithm 2: RDA algorithm for sampling from f(xt), truncated to the feasible region given by

A · xt = yt

All draws from this proposal have positive posterior density, since they are feasible. This prop-

erty allows our sampler to move away from problematic boundary regions of the extremely con-

strained solution polytope. In contrast, methods that use Gaussian random-walk proposal rules,

for instance, can perform quite poorly in these situations, requiring an extremely large number of

draws to obtain feasible proposals. For example, with xt ∈ R
16, it can sometimes require on the

order of 109 draws to obtain a feasible particle, when using the conditional posterior from t − 1

as proposal. This is a situation we encountered with alternative estimation methods described in

Section 4.

3.1.1 Setting the constants

To carry out inference, we must set values for the constants underlying the distributions at the

top layer of the multilevel model; {θ1 j,t}, {θ2 j,t}, {βt}, α, ρ, and τ . Choices can be evaluated

using small sets of point-to-point traffic collected for diagnostic purposes, as in Section 2.1

The (fixed) autocorrelation parameter ρ drives the dynamics of log λj,t. We typically set ρ =

0.9. A high value for ρ is a practically plausible assumption, as point-to-point traffic volumes tend
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to be highly autocorrelated in communication networks (Cao et al., 2002).

The parameter τ controls the skew of point-to-point traffic volumes. The distribution of point-

to-point traffic has been found to be extremely skewed empirically (Airoldi, 2003), and this skew

is comparable to the skew of the aggregate traffic volumes. Cao et al. (2000) found that the local

variability of the aggregate traffic volumes is well-described by τ = 2. In our analyses, we fix

τ = 2. This assumption was checked on pilot data as in Cao et al. (2000).

The inference strategy based on the SIRM filter is amenable to a wide range of techniques for

regularization. The simplest of these is a random walk prior on logλt. For this, we fix θ1 i,t = 0

for all t and set {θ2 i,t} by looking at the observed variability of {yt}. On the data sets we consider,

θ2 i,t =
2 log 5

4
appeared reasonable based on the variability of the observed aggregate traffic. That

is, we set θ2 by rescaling the average variance of log yj,t − ρ log yj,t−1 to correct for aggregation.

This is a somewhat crude approach, but it provides a reasonable starting point.

The collection of constants {βt} controls the common scale of variation in the point-to-point

traffic. These constants were set by examining the observed marginal distribution of {yt}. We

selected βt = 1.5 as reasonable value based on the observed excess abundance of values near zero.

Last, the constant α is a fixed tuning parameter. We set it to n/2 to provide a moderate degree of

regularization for our inference, providing a weight equivalent to 1/2 of the observed data.

The random walk prior is a simple starting point for our inference and provides cues of compu-

tational issues. Its use is not recommend in practice. The inverse problem we confront in network

tomography is too ill-posed for such a simplistic approach to regularization. A more refined, adap-

tive strategy is necessary to provide useful answers in realistic settings.

3.2 Two-stage inference

Here, we develop an inference strategy that improves the SIRM filter in Algorithm 1 by adding

a regularization step that guides our inference, focusing our particle filter and sharing informa-

tion across multiple classes of models. The idea is to leverage a first-stage estimation step to

calibrate informative priors for key parameters in the multilevel model, in the spirit of empirical

Bayes (Clogg et al., 1991). Different forms of model-based regularization are feasible (and use-

ful) depending upon traffic dynamics and the topology of a given network. One approach is to

use simple, well-established methods such as gravity-based methods (Zhang et al., 2003a,b; Fang

et al., 2007). Another approach, developed below, uses a specific parametrization of a Gaussian

state-space model to approximate Poisson traffic. We find that these two approaches are useful in

different situations (namely, local area networks and internet backbone networks) as we discuss in

Section 4.
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3.2.1 Model-based regularization

Here we describe a simple model used to calibrate key regularization parameters {θ1t, θ2t, βt}

of the multi-level state-space model. We posit that xt follows a Gaussian autoregressive process,

{

xt = F · xt−1 +Q · 1+ et

yt = A · xt + ǫt.
(2)

This model can be subsumed into a standard Gaussian state-space formulation, as detailed in Eq. 3.

=























[

xt

1

]

=

[

F Q

0 I

][

xt−1

1

]

+

[

et

0

]

yt = [A|0 ]

[

xt

1

]

+ ǫt

=

{

x̃t = F̃ · x̃t−1 + ẽt

yt = Ã · x̃t + ǫt.
(3)

We estimate Q and Cov et, fixing the remaining parameters. F is fixed at ρI for simplicity

of estimation, with 0.1 a typical value for ρ. We also fix Cov ǫt at σ2I , with 0.01 a typical value

for σ2. We assume Q to be a positive, diagonal matrix, Q = diag (λt), and specify Cov et as

Σt = φ diag (λt)
τ
, where the power is taken entry-wise. We obtain inferences from this model via

maximum likelihood on overlapping windows of a fixed length. We develop an inference strategy

for this model in Section 4, and provide computational details in Appendix A.

The model in Eq. 2 contains the local likelihood model of Cao et al. (2000) as a special case,

when ρ = 0. The marginal likelihood for this model depends only upon the means and covari-

ances of the data. A desirable property of this model is that its parameters are identifiable, under

conditions analogous to those given in Cao et al. (2000), for a fixed value of ρ.

3.2.2 Identifiability

Identifiability in network tomography is a delicate and complex issue (Singhal and Michailidis,

2007). For the proposed model, however, it suffices to consider the marginal distribution of the yt’s.

Under the conditions on the routing matrix A analogous to those in Cao et al. (2000), the marginal

mean and covariance of yt is an invertible function of the parameters λ and φ. This argument is

straightforward with the steady-state initialization discussed in Appendix A, but it extends to more

general settings. In the case of steady-state initialization, the following result holds.

Theorem 3. Assume y1, . . . ,yT are distributed according the model given by Eq. 3 and described
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above. Further assume that |ρ| < 1 and the model is initialized from its steady state—that is,

x0 ∼ N
(

1
1−ρ

λ, φ

1−ρ2
D
)

, where D = diag (λt)
τ
. Then, (λ, φ, ρ) is identifiable under the same

conditions required for the identifiability of the locally IID model of Cao et al. (2000).

Proof. The observations (y1, . . . ,yT ) are jointly normally distributed under the given model. Fur-

ther, assuming |ρ| < 1 and steady-state initialization, yt ∼ N
(

1
1−ρ

Aλ, φ

1−ρ2
ADA⊤ + σ2I

)

marginally for t = 1, . . . , T . Define B as the matrix containing the rows of A and all distinct

pair-wise component-wise products of A’s rows. Fixing ρ, these marginal moments are invertible

functions of (λ, φ) if and only if the matrix B has full column rank by Theorem 1 of Cao et al.

(2000). Further, as Cov(yt,yt+k) =
φρ|k|

1−ρ2
ADA⊤, ρ is also identifiable from the component-wise

autocorrelations of yt.

A sufficient condition for B to have full column rank is for A to include aggregate incoming

and outgoing (source and destination) traffic for each node, as discussed in Cao et al. (2000). This

condition holds for all examples we consider and can be checked in practice with pilot studies;

such aggregate traffic volumes are easily obtained via network management protocols such as

SNMP and are standard input for the widely-used gravity method. Less restrictive conditions are

possible based on the results of Singhal and Michailidis (2007); however, they are not needed for

the situations we consider.

Next, we describe how this model is used to calibrate priors for {λt} and {φt} in the multi-level

state-space model.

3.2.3 Calibrating key regularization parameters

To calibrate priors for {λt} and {φt} in the multilevel state-space model, we follow a few

steps. First obtain estimates from the Gaussian state-space model in the previous Section. We

correct the estimates at each epoch through the iterative proportional fitting procedure (IPFP) to

ensure positivity and validity with respect to our linear constraints. We then smooth the corrected

estimates using a running median with a small window size (consisting of 5 observations) to obtain

a final set of x̂t estimates. This smoothing step is important as it removes outlying estimates, which

often originate from computational errors, from the prior calibration procedure. These outliers can

otherwise degrade the effectiveness of the regularization. We have observed some sensitivity to the

choice of window sizes—too broad and it smooths out bursts of traffic, too narrow and outlying

estimates compromise our regularization. We selected 5 as the narrowest window that empirically

removed outliers; we recommend this as a guideline for other settings. These final x̂t estimates are
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used to set the mean traffic intensity for λt as follows,

θ1 j,t = log x̂j,t − ρ log x̂j,t−1.

The variability of the traffic intensity θ2 j,t is set using the estimated variance of the final estimates

x̂j,t. Denoting the estimated final variances with V̂j,t, we set θ2 j,t as follows,

θ2 j,t = (1− ρ2) log(1 + V̂j,t/x̂
2
j,t).

The estimated {φ̂t} in the Gaussian state-space model are used to calibrate the prior for the

corresponding parameter {φt} in the multilevel state-space model. In particular, we set βt =

log(1+φ̂t). The form of this calibration is based on the log-Normal variance relationship described

in Section 2. Remaining constants are calibrated as described in Section 3.1.1.

Alternative calibration approaches are possible, which use estimates from simple models to

calibrate regularization parameters. For instance, in Section 4 we consider a simple gravity model

in addition to the state-space model described above. We take each gravity estimate to be x̂j,t, and

we set each θ1 j,t as above. With simpler model we recommend using an empirical approach to

setting θ2; using the gravity model estimates, we set each θ2 j,t equal to the overall variance of θ1 j,·.

4 Empirical analysis of traffic data

Here, we present the analysis of three aggregate traffic data sets, for which origin-destination

(OD) traffic volumes were also collected with special software over a short time period. The first

data set involves traffic volumes on a local area network with 4 nodes (16 OD pairs) at Bell Labs,

previously analyzed in Cao et al. (2000). The second data set involves traffic volumes on a local

area network with 12 nodes (144 OD pairs) at Carnegie Mellon University, previously analyzed

by Airoldi and Faloutsos (2004). The final data set consists of traffic volumes from the Abilene

network, an Internet2 backbone network with 12 nodes (144 OD pairs) previously analyzed in Fang

et al. (2007). We use these three data sets to evaluate the proposed deconvolution methods. We

compare the performance of our approach to that of several previously presented in the literature

for this problem, focusing on accuracy, computational stability, and scalability.

We find that, of the seven methods we compare, the proposed methods consistently outperform

all others both in terms of L1 and L2 estimation error. The empirical evaluation we provide below

uses communication networks that are among the largest ever tried on this problem in the statistics

and computer science literature. A quantitative evaluation is possible, since ground-truth origin-
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destination traffic was laboriously collected for the three network we consider.

An R package that includes these three data sets and code to replicate the analyses below is

available on CRAN, in the networkTomography package.

4.1 Data sets

The first data set was provided courtesy of Jin Cao of Bell Labs. We analyze the traffic volumes

measured at router1, with four subnetworks organized as in Figure 4 (left panel). These yield eight

observed aggregate traffic volumes (seven of them are independent, since the router does not send,

nor receives traffic) and 16 origin-destination traffic volumes (Cao et al., 2000). The aggregate

traffic volumes are measured every five minutes over one day on the Bell Labs corporate network.

This yields multivariate measurements at 287 points in time. The small size of this network allows

us to focus on the fundamentals of the problem, avoiding scalability issues.

The second data set was collected at the Information Networking Institute of Carnegie Mellon

University, courtesy of Russel Yount and Frank Kietzke. For the purpose of this paper, given

that the topology of Carnegie Mellon network is sensitive, we built a data set of aggregate traffic

volumes by mixing two days of origin-destination traffic volumes on a slightly modified network

topology. The network topology we use consists of 12 subnetworks, organized as in Figure 4

(right panel). These are connected by two routers, one with four of the nodes, the other with the

remaining eight nodes. The routers are linked via a single connection. This configuration yields

26 observed aggregate traffic volumes and 144 origin-destination traffic volumes, observed every

five minutes at 473 points in time. This larger data set allows us to compare network tomography

techniques in a richer, more realistic setting. In combination with the router1 data, it also allows us
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Figure 4: Topologies of the Bell Labs and Carnegie Mellon networks. The Abilene network has a

more complex topology, an illustration of which is available in Fang et al. (2007). We also include

these data sets in the networkTomography package.
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to explore the effect of dimensionality on performance and computational efficiency on real traffic

data. Neither data set contained any missing observations.

Our third data set comes from the Abilene network, courtesy of Matthew Roughan. We use the

X1 dataset analyzed in Fang et al. (2007), which consists of aggregate and point-to-point traffic

volumes measured every five minutes over a 3-day period. The underlying network has 12 nodes,

yielding 144 point-to-point traffic time series. A total of 54 aggregate traffic volumes are observed

at each time, consisting of 30 inner links and 24 edge links. Abilene is an Internet2 backbone net-

work. Abilene’s traffic volumes, dynamics and variability are quite different from those observed

on local area networks such as Carnegie Mellon’s and Bell Labs’. Abilene’s topology is more

complicated than simple star and dual-loop configurations. Thus this data set provides a different

scenario for testing tomography methods.

We did not apply any seasonal adjustment or other more complex dynamic models to these

data sets, given the short time period they span. We would recommend such an extension for time

series spanning longer periods; indeed, even for data spanning only two days, usage patterns by

time-of-day can be present. However, we endeavor to compare our deconvolution algorithms on

equal footing—our focus is dynamic deconvolution. Thus, all methods are implemented with only

local dynamics, without seasonal adjustment.

4.2 Competing methods

We tested locally IID and smoothed Gaussian methods (Cao et al., 2000), a Bayesian MCMC

approach (Tebaldi and West, 1998), a simple gravity method (e.g., see Fang et al., 2007), a to-

mogravity method (Zhang et al., 2003b), the Gaussian state-space model developed for regular-

ization in Section 3.2.1, the multilevel state-space model with naı̈ve regularization developed in

Section 3.1, and the proposed two-stage estimation procedure with model-based regularization.

All approaches were implemented in R with extensions in C to avoid computational bottlenecks

(e.g., IPFP). For the methods of Cao et al. (2000) and the Gaussian state-space model, which use

windowed estimates, we selected a window width of 23 observations on the basis of prior work

(Airoldi, 2003). The final point-to-point traffic volume estimates were generally insensitive to a

range of window sizes—this is largely attributable to the use of estimated xt’s instead of λt’s for

regularization. For the Abilene data, we considered the alternative model-based regularization pro-

cedure for the dynamic multilevel model, based on a simple gravity model as detailed at the end of

Section 3.2.3.

For the approach of Tebaldi and West (1998), we tested both the original implementation and

our own modification in which (following the authors’ original notation) λj and Xj are sampled

19



with a joint Metropolis-Hastings step. The proposal distribution for this step is constructed by first

proposing uniformly along the range of feasible values for Xj given all other values, then drawing

λj from its conditional posterior given the proposed Xj . This greatly improves the efficiency of

the MCMC sampler, leading to improved convergence (we observed multivariate Gelman-Rubin

diagnostics reduced by approximately an order of magnitude) and better predictions. These im-

provements allow us to compare the approach of Tebaldi and West (1998) on a more level playing

field, focusing on the underlying model while mitigating computational issues.

For inference in the proposed dynamic model, we used 1000 particles and 10 MCMC iterations

(in the move step of the SIRM filter) per time point in all experiments. We selected the former

based on the number of effectively independent particles per time point, targeting a minimum of

10 in pilot runs. The number of MCMC iterations was chosen as a balance between computational

burden and particle diversity. For the tomogravity method of Zhang et al. (2003b), we set λ to 0.01.

Results were insensitive to the choice of λ across a wide range of values, as previously reported

(Zhang et al., 2003b). These choices were kept consistent across experiments because they offered

acceptable trade-offs and enabled a meaningful comparison of the competing methods.

4.3 Performance comparison

We summarize performance of the methods described above on all three data sets in Tables 1,

2, and 3. Each row corresponds to a method, and the columns provide mean L1 and L2 errors over

time for the estimates of OD traffic in each data set with corresponding standard errors. For the

Bell Labs data set, we provide errors in kilobytes; for the CMU and Abilene data, we provide errors

in megabytes. We also provide Figure 5 below and Figures S1–S5 in the supplemental material as

a visualization of our results on the Bell Labs data set. We compare and discuss performance in

terms of accuracy, computational stability, and scalability.

Accuracy. We obtain favorable performance for the two-stage approach (corresponding to the

bottom rows of Tables 1–3) for all three data sets. For the Bell Labs data, mean (time-averaged)

L1 and L2 errors are statistically indistinguishable (within 1 SE) between the calibration procedure

and dynamic multilevel model with model-based regularization. Both of these methods reduce

average L1 and L2 errors by 60-80% compared to the other approaches presented, representing a

major gain in predictive accuracy. For the CMU data, we obtain a reduction of 53% in average L2

error and 44% in average L1 error from the algorithm of Cao et al. (2000) to our multilevel state-

space model; we observe 14-15% reductions in average L1 and L2 errors from our Gaussian SSM

to the multilevel state-space models. Furthermore, we observe large gains in filtering performance

for both data sets compared to inference using naı̈ve regularization with our multilevel state-space
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BELL LABS

Method L2 Error SE L1 Error SE

Gravity 62.96 3.16 182.58 7.69

Tomogravity (Zhang et al., 2003b) 62.96 3.16 182.58 7.69

Locally IID model 104.59 5.54 160.24 6.53

Smoothed locally IID 104.25 5.52 157.87 6.48

Tebaldi & West (uniform prior) 76.60 4.91 173.94 7.49

Tebaldi & West (joint proposal)* 49.43 2.58 147.66 6.18

Gaussian State-Space model 19.35 0.72 57.66 2.06

Dynamic multilevel model (naı̈ve prior) 63.29 3.35 178.43 8.09

Dynamic multilevel model (SSM prior) 19.93 0.87 58.20 2.39

Table 1: Performance comparison with Bell Labs data, all results in KB. * Denotes our own im-

provement on the original algorithm by Tebaldi & West. Note that the performance of simple

gravity and tomogravity are identical on this network due to its star topology.

CMU

Method L2 Error SE L1 Error SE

Gravity 499.24 11.32 1521.66 30.09

Tomogravity (Zhang et al., 2003b) 310.61 5.95 1096.38 18.68

Locally IID model 592.49 9.91 1169.15 17.11

Smoothed locally IID — — — —

Tebaldi & West (uniform prior) — — — —

Tebaldi & West (joint proposal)* 167.94 4.42 712.37 14.68

Gaussian State-Space model 110.47 6.19 389.14 16.72

Dynamic multilevel model (naı̈ve prior) 311.21 6.25 1109.68 19.58

Dynamic multilevel model (SSM prior) 93.42 5.20 334.74 13.64

Table 2: Performance comparison with CMU data, all results in MB. * Denotes our own improve-

ment on the original algorithm by Tebaldi & West.

ABILENE

Method L2 Error SE L1 Error SE

Gravity 7.51 0.05 4.05 0.02

Tomogravity (Zhang et al., 2003b) 5.26 0.05 3.06 0.02

Locally IID Model 12.17 0.07 7.03 0.03

Tebaldi & West (joint proposal)* 12.74 0.07 7.44 0.04

Gaussian State-Space model 15.48 0.09 8.42 0.05

Dynamic multilevel model (SSM prior) 14.89 0.08 8.09 0.05

Dynamic multilevel model (Gravity prior) 4.01 0.03 2.49 0.01

Table 3: Performance comparison with Abilene data, all results in MB. * Denotes our own im-

provement on the original algorithm by Tebaldi & West.

model. Overall, our approach outperforms existing methods in accuracy, with greater gains from
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Figure 5: Actual and fitted (dynamic multilevel model with SSM prior) traffic for Bell Labs data.

Actual traffic is in gray, fitted traffic is in black.

the Gaussian SSM to the multilevel state-space model in our higher-dimensional setting. The

multilevel state-space model also outperforms gravity-based techniques substantially in these local

area networks.

The comparative performance is somewhat different on the Abilene data. Gravity and tomo-

gravity perform very well on this backbone network, while the locally IID and Poisson models

(Cao et al., 2000; Tebaldi and West, 1998) perform relatively poorly. The same is true for the

Gaussian SSM and the performance of the dynamic multilevel model suffers when using the SSM

for regularization. Using a simple gravity model for regularization, improves the performance of

the dynamic multilevel model, leading to a reduction in mean L1 and L2 error of approximately

20%. The variability in traffic volumes requires a smoothing based on instantaneous dynamics,

rather than one based on a constant scaling fixed across point-to-point routes.

A combination of three factors can be used to understand the performance of our methods,
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listed on the bottom three rows in Tables 1–3: explicit dynamics, heavy tails, and regularization.

The multilevel state-space model fit with the naı̈ve SIRM filter incorporates explicit dynamics

and heavy tails, but its performance suffers because the distribution of λ is quite diffuse. The

network tomography inverse problem requires more constraints and outside information to yield

useful solutions. The Gaussian state-space model used for calibration purposes is identifiable (as

we show in Section 3.2.1) and incorporates explicit dynamics, but does not account for heavy

tails. It performs well on the Bell Labs data set, where the distributions of origin-destination traffic

are relatively symmetric (on the log scale), but suffers on the extremely heavy tailed CMU traffic

volumes. The multilevel state-space model fit with the two-stage procedure overcomes the ill-

posedness of the underlying inverse problem and accounts for heavy tails, attaining comparable

performance on the Bell Labs data and outperforming considerably on the CMU data as a result.

However, the Gaussian state-space model is not realistic for every setting. Gravity methods offer

a better source of regularization in backbone networks like Abilene. This last finding agrees with

previous research (e.g., see Zhang et al., 2003b, 2009).

Computational stability. We found a surprising amount of variation in computational stability

among the methods evaluated. The local likelihood methods (Cao et al., 2000) remained stable

across data sets, but the original method of Tebaldi and West (1998) encountered issues. On the

Bell Labs data, it required a very large number of iterations to obtain convergence (as indicated

by the Gelman-Rubin diagnostic); 150,000 iterations per time were used to provide the given esti-

mates, 50,000 of which were discarded as burn-in. This method failed completely on several time

points in the CMU data, becoming trapped in a corner of the feasible region. Our revised version

of the original MCMC algorithm performed better, requiring far fewer iterations for convergence;

50,000 iterations were sufficient for all examined cases, although 150,000 iterations were used for

the results presented for comparability.

Our calibration procedure proved computationally stable across all three data sets. The direct

use of marginal likelihood, for maximum likelihood estimation, proved effective in both the low-

and high-dimensional data sets. The multilevel state-space model was also stable in both settings;

however, it proved to be sensitive to some of the alternative specifications mentioned in Section

3. In particular, major problems arose in experiments using the posterior on xt from the previous

time as a proposal (as is common in applications of particle filtering); several time points in the

Bell Labs data required over 10 million proposals to obtain a single feasible particle. Additional

care was needed with the “move” step due to similar issues. Furthermore, the use of a naı̈ve,

random-walk regularization caused some computational difficulties, as the particles often became

extremely diffuse in the feasible region. Overall, we found inference with the multilevel state-
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space model computationally stable so long as sampling methods for highly constrained variables

(xt in particular) explicitly respected said constraints, proposing only valid values. Our random

directions algorithm (detailed in Algorithm 2) handles this task well.

Scalability. All methods we evaluated fared well in scalability, including the computationally-

intensive, sequential SIRM inference we used for the multilevel state-space model. On the Carnegie

Mellon data set, for each time point, the methods of Cao et al. (2000) required approximately 225

seconds to obtain maximum likelihood estimates with a 23 observation window. Our modification

of the sampler by Tebaldi and West (1998)required approximately 1500 seconds to obtain 150,000

samples for a single time points—the original MCMC sampler required 2250 seconds on average

and often did not complete. In contrast, the simulation-based filtering method for the multilevel

state-space model required 270 seconds per time point on average, on the Carnegie Mellon data,

and 210 seconds per time on average, on the Abilene data. Approximately 70% of this time was

spent in the move step (MCMC) of the SIRM algorithm, with the vast majority of the remainder

used for the random direction sampler. On the Bell Labs data set, the filtering method required

approximately 8 seconds per time, whereas our modification of the sampler by Tebaldi and West

(1998) required 150 seconds per time—the original algorithm required approximately the same

time.

These results are encouraging: the filtering algorithm is reasonably efficient (even written in

R) and can run faster than real-time with 144 point-to-point traffic volumes at 5-minute sampling

intervals. We note that the Abilene data set required less computation per time than the Carnegie

Mellon data set, even though both involved 144 point-to-point traffic time series. This is because

the effective dimensionality of the the ill-posed linear inverse problem is substantially lower for

Abilene; we observe 24 linearly-independent aggregate traffic time series for Carnegie Mellon and

42 for Abilene, yielding 120 and 102 undetermined point-to-point traffic time series, respectively.

The reduction in undetermined dimensions closely tracks the reduction in computation for the

SIRM filter, as expected—the key computations of this sampler scale in complexity as the product

of effective dimension and the number of point-to-point time series. The proposed method takes

advantage of the geometric structure of each data set to simplify sampling and guide inference.

Given more efficient implementation and parallelization, which are feasible for all sampling

steps, the two-stage approach can scale to networks with many time more nodes. This is espe-

cially true given the sparsity of the traffic on many such point-to-point routes; the prevalence of

zero (observable) aggregate traffic volumes in real-world data further reduces the effective size of

the deconvolution problem. By more efficient implementation, we refer to the actual code for the

SIRM filter. In the networkTomography package, all parts of the SIRM filter itself are imple-
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mented in R. Moving this algorithm to a compiled language (C or Fortran) and eliminating many

memory allocations promises an order of magnitude speedup, based on initial development.

5 Simulation studies

Here we further explore the relative performance of the methods we applied to the real data in

Section 4.3 by designing two experiments that involve a mix of simulated and real data.

We sought to understand the source of the performance of the competing inference methods

with two experiments. In the first experiment, we simulated data from the model and compared the

performance of the naı̈ve random-walk prior with the two-stage estimation strategy. The results

show that the two-stage inference strategy leads to consistently better computational performance.

The second experiment involves a large-scale simulation study that compares the available methods

by combining real origin-destination traffic with simulated network topologies. We simulate a

number of such scenarios by changing the degree of sparsity in the traffic and the complexity of

the routing matrix, according to an experimental design that allows for an ANCOVA analysis. The

results show that significant error reduction can be expected by using the two-stage estimation

strategy.

5.1 Evaluation of the two-stage inference strategy

In the first experiment, we sought to quantify whether the two-stage estimation strategy pro-

posed in Section 3.2 leads to consistently lower L1 and L2 errors, on average, over time and origin-

destination routes.

We simulated origin-destination traffic from our multilevel state-space model under 3 network

topologies: a 3-node bidirectional chain, a 3-node star topology, and a 4-node star topology, cor-

responding to 2, 4, and 9-dimensional solution polytopes for inference on xt. For each of these

cases, we produced 30 data sets consisting of 300 time-points by drawing from the given multilevel

model. We drew all initial origin-destination traffic from log-Normal distributions with median 500

and geometric standard deviation 6. Subsequent evolution of these traffic volumes was simulated

with ρ = 0.5 and all other parameters as described in Section 3.1.1. We then computed the implied

aggregate traffic volumes for each replicate and fit the multilevel model to these data using the

two-stage estimation strategy. In addition to the two-stage approach outlined previously, we also

performed filtering using our multilevel state-space model with a naı̈ve random-walk regulariza-

tion on the origin-destination traffic; that is, we set θ1 i,t = 0 ∀(i, t) and θ2 i,t = log(5)/2. This

allows us to directly evaluate the effects of regularization and the plausibility of our model.
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Figure 6: Relative L2 error for naı̈ve vs. two-stage method against dimensionality

The primary quantity of interest in our simulations are the relative mean L2 and L1 errors in

estimated origin-destination traffic for the naı̈ve SIRM particle filter compared to our two-stage

method. The distributions of these relative L2 errors is summarized in Figure 6. The magnitude of

the errors is unchanged for the relative L1 errors.

We find that our two-stage method clearly outperforms the naı̈ve SIRM particle filter when the

dimensionality of the solution polytope is larger than two. Specifically, we have a mean relative

error of 1.09±0.49 in two dimensions, increasing to 1.57±0.45 in four dimensions and 1.40±0.26

in nine dimensions.

Our experience with these simulations also highlighted the computational benefits of the pro-

posed two-stage strategy. During iterations with the naı̈ve SIRM filter, the effective number of par-

ticles rarely climbed above 2, whereas we typically obtained 10− 50 with the two-stage approach,

with an equivalent actual number of particles. With real data, we expect additional benefits from

the two-stage estimation; in particular, we would expect it to have greater robustness to model

misspecification. Essentially, we are using information from a simpler model to rein-in potential

issues with the more delicate multilevel model. This strategy is expected to stabilize inference in

the latter and limit problems of non-identifiability. These intuitions are further explored in Section

5.2.
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5.2 Quantifying the factors that affect performance

In the second experiment, we sought to quantify the performance of the proposed method and

existing methods relative to a the simple IPFP as baseline, explicitly controlling for the size for the

network and the sparsity of the origin-destination traffic volumes over time.

To get a better sense of the relative performances on real data, we designed experiments using

real traffic time series. We selected a subset of the 1024 most active origin-destination traffic

volumes from the CMU data set as the population of time series for designing these experiments.

The remaining CMU origin-destination pairs had negligible amounts of traffic. We used realistic

but artificially designed routing matrices based on star topologies with 3, 4, 5, and 9 nodes, and we

generated 10 data sets for each topology by randomly sampling from the population of time series.

This combination of active origin-destination traffic volumes and star topologies defines a dif-

ficult scenario for inference underlying the network tomography problem. In cases with extremely

sparse OD traffic time series, we can deterministically infer many of them from aggregate traffic,

since a large portion of measurements will be zero. Hence, using high OD traffic volumes reduces

the number of cases with deterministic solutions and puts the methods to a stringent test.

The star topology also creates a stringent test for our method. As noted by Singhal and Michai-

lidis (2010), the star case is not worst with respect to, for instance, mean identifiability. However,

it does provide the fewest measured aggregate traffic time series for a given number of OD routes.

That is, given d nodes with n = d2 OD routes, and assuming all communications are bidirec-

tional, any connected topology will have at least 2d aggregate time series. Star topologies attain

this lower bound, maximizing the dimension of the feasible region for OD traffic volumes given

observed aggregate traffic. This dimension is the relevant measure of difficulty for inference in

network tomography, so the star topology provides an appropriate benchmark.

On each generated data set, we ran five methods to estimate the OD traffic volumes: IPFP, the

locally IID method of Cao et al. (2000), our implementation of the Poisson model from Tebaldi and

West (1998), and the multilevel model with a naı̈ve random-walk prior, the proposed calibration

procedure, and the proposed two-stage inference strategy.

The outcomes of interest are average L1 and L2 errors, over time and origin-destination routes.

We performed an ANCOVA analysis using the average errors from each of our experiments to

understand what drives performance in this problem. The primary factor of interest for this analysis

is the method used. We coded network size as a factor with three levels. We included sparsity

as a covariate as well to capture the effect of having deterministically zero observed traffic as

described above. Sparsity enters the ANCOVA analysis as log10(average proportion of measured
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Table 4: Log-linear ANCOVA model for simulation study; log10(L1 errors) is outcome.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.526 0.115 56.60 0.000

Dim=4 0.058 0.111 0.53 0.599

Dim=5 0.908 0.108 8.42 0.000

Dim=9 2.103 0.108 19.47 0.000

Locally IID method 2.205 0.130 17.03 0.000

Tebaldi & West -0.116 0.130 -0.89 0.373

Naı̈ve prior -0.021 0.130 -0.16 0.870

Calibration model -0.241 0.130 -1.86 0.065

Two-Stage Inference -0.244 0.130 -1.88 0.061

log10 sparsity -8.237 3.179 -2.59 0.010

traffic volumes that are not deterministically 0).

Table 4 summarizes the results of this analysis for L1 errors. We used a log-linear model for

this analysis; initial diagnostics suggested that its variance structure is more appropriate for this

experimental data than an untransformed model. We checked for interactions between dimension-

ality and method, but found no support in the data (p = 0.996 for a standard F test). It appears that

any such interactions would require larger networks to identify.

We find that the proposed methods significantly outperform the baseline IPFP approach, while

the locally IID method performs significantly worse. The performance of the Bayesian model by

Tebaldi and West (1998) and the multilevel methods fit with the naı̈ve SIRM filter are inconclu-

sively better then IPFP. The multilevel model consistently under-performs the model of Tebaldi and

West (1998), as well as our other approaches, when used with naı̈ve random-walk priors. How-

ever, the calibration procedure alone performs quite well despite its simplicity. The performance

of the proposed two-stage approach is not significantly higher than that for the calibration proce-

dure in this setting, which suggests that our calibration procedure is the driver of our performance

improvements at this scale. This agrees with our empirical findings with the Bell Labs data set

and is compatible with the observed increase in performance at larger scales, on the CMU data

set, in Table 2. These results are essentially unchanged (qualitatively and quantitatively) when we

substitute L2 for L1 errors.
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6 Concluding remarks

In this paper, we address the problem of (volume) network tomography in a dynamic filtering

setting. For this application, we develop a novel approach to this problem by combining a new

multilevel state-space model that posits non-Gaussian marginals and nonlinear probabilistic dy-

namics with a novel two-stage inference strategy. Our results and analyses substantiate several

claims and suggest points for further discussion.

We analyzed three networks (Bell Labs, Carnegie Mellon, and Abilene) which span a wide

range of dimensions, with different inference methods. The results demonstrate a clear improve-

ment of the proposed methodology over previously published methods in estimating point-to-point

traffic volumes. Comparison between Bell Labs and Carnegie Mellon results suggests that this gain

increases with the dimensionality of the problem. Our results with the Abilene network highlight

the differences between local-area and Internet2 backbone networks. They differ in both topology

and traffic dynamics, requiring different approaches to regularization.

6.1 Modeling choices

Our model explicitly captures two critical feature of point-to-point traffic—namely, skewness

and temporal dependence. The substantial improvements in accuracy over existing methods can be

attributed to these modeling improvements, to a large extent. The gains in computational efficiency

are responsible for the improvements in accuracy only in part, as we discuss below. Previous mod-

eling approaches have accounted for skewness (Tebaldi and West, 1998), but never for explicit

temporal dependence of the point-to-point traffic volumes. The inter-temporal smoothing algo-

rithm of Cao et al. (2000) includes elements of temporal dependence; however, the model assumes

temporally independent time series and the dependence is imposed indirectly having observations

within a time window that contribute to inference at any given time point. In summary, previous

work has not accounted for the range of properties addressed by our model. The performance

gains that stem from our modeling assumptions are clear on the three data sets tested; in particular,

the gains from the model of Tebaldi and West (1998) to the Gaussian SSM and to the dynamic

multilevel model for the CMU data set reinforce the benefits of positing realistic dynamics in this

problem.

We chose to increase the probability of near-zero traffic volumes using a truncated Gaussian er-

ror, rather than a log-Normal or Gamma distribution whose support is naturally on the non-negative

reals. From a computational perspective, given that the particle filter involves a Metropolis step,

the truncated Gaussian error is not particularly more tractable than log-Normal or Gamma errors.
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However, the truncated normal increases the probability assigned to any [0, ǫ) interval, relatively

to Gamma or log-Normal with same mean and scale. To obtain similar behavior with these non-

truncated noise structures would either be impossible, e.g., with a log-Normal distribution, or re-

quire ad-hoc re-parametrization linking the shape (intuitively, variability) and center (magnitude of

point-to-point traffic volumes), e.g. with a Gamma distribution. We believe that using a truncated

distribution with the mode calibrated using the underlying intensity process (λt in our notation)

provides a cleaner solution. However, several alternatives are viable.

Fundamentally, we estimate the point-to-point traffic volumes by projecting aggregate traffic

volumes onto the latent space point-to-point traffic inhabits; that is, we want to compute E[xt | yt]

under a given probabilistic structure. The relative variability of origin-destination flows over time

plays a large role in inference, as there is typically a strong relationship between the mean and

variance of point-to-point traffic. Because of this, simple methods that do not model variabil-

ity explicitly and realistically, including Moore-Penrose generalized inverse (Harville, 2008) and

independent component analysis (Hyvärinen et al., 2003), are of limited use in this context. Sur-

prisingly, however, we found that the iterative proportional fitting procedure (Fienberg, 1970) often

produces reasonable solutions, likely because each such solution corresponds to a feasible set of

origin-destination flows. Liang et al. (2006) have recently capitalized on this finding. In contrast,

our approach, models this variability with a probabilistic structure, improving inference by using

this additional information.

6.2 Applicability to more complicated routing schemes

Routing schemes other than deterministic routing, such as probabilistic routing and dynamic

load-balancing, can be subsumed within the modeling framework we developed in Section 2.

A probabilistic routing scheme would be captured by a probabilistic A matrix. Column j of the

A matrix specifies the m proportions of point-to-point traffic volume j that is measured at the m

counters. In deterministic routing, each point-to-point traffic volume either contributes to a counter

or does not, Aij ∈ {0, 1}. In probabilistic routing, each point-to-point traffic volume contributes

to multiple counters with different probabilities, Aij ∈ [0, 1].

Routing schemes that carry out dynamic load balancing to manage congestion would be cap-

tured by a time- and traffic-dependent matrix, A(t). However, congestion can only be monitored at

the router level, in practice, using the observed aggregate traffic counters. Thus the counters can be
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considered as covariates, and the routing matrix can be modeled as a function of these covariates,

A(t) =

{

AHigh if yt is high

ALow if yt is low,

More nuanced specifications are possible. The key point is that implemented routing and switching

protocols can only make use of the measurements collected at the router level, yt.

6.3 Computational challenges and scalability

Our inference method is computationally efficient and scales to larger inference problems than

have been previously addressed. The problem is fundamentally O(n−m) for each time point, so we

cannot hope to do better than quadratic scaling in the number of nodes d in our network (excepting

cases where a few aggregate traffic measurements are zero). Despite the sophistication of our

dynamic multilevel model, the sequential Monte Carlo technique allows for inference in better

than real-time for a network with 144 = n ≈ O(d2) origin-destination routes and 26 = m ≈ O(d)

router level measurements. As SIRM is the portion of the inference algorithm that would be used

in an online application, we have demonstrated a scalable technique for inference with a model of

greater complexity and realism than has been previously found in the literature.

These gains in computational efficiency also reduce numerical instability and are ultimately re-

sponsible for additional gains in accuracy. Computational issues can be appreciated by considering

the amount of effort needed to maintain Cov et positive-definite in the EM algorithm of Cao et al.

(2000), especially when the traffic approaches zero. We can see some artifacts in the correspond-

ing point-to-point traffic estimates in Supplemental Figure S1 (green lines) due to this issue in low

traffic OD routes, e.g., see “orig local → dest local”. We further quantified the effects of com-

putational efficiency on inference in the original methods by Tebaldi and West (1998) in Table 1

by comparing the uniform prior and component-wise proposal to the joint proposal we developed.

In addition to the gains in speed and convergence discussed in Section 4.3, we observe a large

reduction in average error from the component-wise to joint proposal (35% in L2 error, 15% in L1)

which correspond to no changes in priors nor to the underlying model.

The random directions algorithm plays an important role in the sequential Monte Carlo sam-

pler. Without such an algorithm to sample directly from the feasible region of point-to-point traffic

volumes, we would be forced to use a naı̈ve proposal distribution. In our testing, such distribu-

tions proved extremely problematic (as discussed in Section 3), especially in higher dimensional

settings. In such cases, intelligent sampling techniques that fully utilize the geometric constraints

implied by the data are necessary to obtain high accuracy and efficiency. This is particularly
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salient comparing the results presented here to our previous work (Airoldi and Faloutsos, 2004);

the method presented there suffered from computational instabilities. It was hampered both by in-

efficient sampling on the feasible space of solutions and by distributional assumptions that assigned

low probability to low point-to-point traffic volumes.

Multi-modality of the marginal posterior on point-to-point traffic volumes xit appears negligible

in our analyses. Our theoretical results suggest that multi-modality in these problems is limited to

that due to flat regions in the case of real-valued traffic volumes and models assuming independent

traffic. We suspect that the issues with multi-modality discussed in the literature are due to mainly

to the inefficiency of the samplers. This further reinforces the importance of efficient computation

for inference in highly complex, poorly identified settings; even a simple model can falter on poor

computation, and complex models require great care to obtain reliable inference results.

6.4 A novel two-stage inference strategy in dynamic multilevel models

As previously argued by Tebaldi and West (1998) in the static setting, informative priors are

essential to identify the peak in the likelihood that correspond to the true configuration of point-

to-point traffic. This conclusion holds in the dynamic setting we consider, despite the additional

information that temporal dependence makes relevant for the inference of point-to-point traffic

volumes. The technical choices at issue are: (i) where to find such information—it is not obvious

in the data; (ii) what parameters are most convenient to put priors on; and (iii) how do we translate

the additional information into prior information for the chosen parameterization.

We use a simple identifiable model to find rough estimates of the point-to-point traffic volumes

(in our first stage). These estimates provide some information about where the point-to-point traffic

volumes live in the space of feasible solutions, enabling us to identify high-probability subsets of

the feasible region at each time point before embarking on computationally-intensive sampling.

The expected benefits from this strategy are larger in higher dimensions, as the proportion of

the feasible region’s volume with high posterior density decreases rapidly with dimensionality

(the classical curse of dimensionality). Practically, informative priors increase the efficiency of

the particle filter by focusing the sampler on promising regions of the parameter space, avoiding

wasted computation and improving inference.

In order to pass the first-stage information to the (non-Gaussian) dynamic multilevel model,

we moved away from a standard linear state-space formulation with additive error to a non-linear

formulation with stochastic dynamics, which effectively provides a multiplicative error (second-

stage). The stochastic dynamics assumed for λt provide our parameters of choice for incorporating

information obtained in the first stage of estimation. Prior calibration for the dynamics of λt guides
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inference without placing too tight of a constraint on the inferred point-to-point traffic volumes.

In Section 3.2.3 we describe how we solve the problem of translating the first-stage estimates into

priors for the parameters of the second-stage model. Essentially, we trade-off the need to pass as

much information as possible from the first stage of estimation to the second with the controlled

inaccuracy of the first-stage modeling assumptions.

Our two-stage procedure suggests a more general strategy for inference in dynamic hierarchical

models with weak identifiability constraints. The use of simpler models to guide inference in more

sophisticated, realistic models, and (if necessary) to provide regularization, can result in large

performance gains, as we have demonstrated here. This strategy implements a principled approach

to cutting corners (Meng, 2010). Ultimately, the proposed two-stage approach has allowed us to

use a sophisticated generative model for inference, leveraging the power of multilevel analysis,

while maintaining efficiency for real-time applications.
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A Efficient inference for the Gaussian state-space model

Inference on the latent point-to-point time series xt in the Gaussian state-space model specified

by Equation 3 can be carried out with standard Kalman filtering and smoothing. Estimating the

constants underlying the model via maximum likelihood can be approached with two strategies:

Expectation-Maximization (EM, Dempster et al., 1977) and direct numerical optimization. The

EM approach for unconstrained Gaussian state-space models requires Kalman smoothing for the

E-step and maximization of the expected log-likelihood for the M-step (Ghahramani and Hinton,

1996). While the E-step is straightforward and efficient to calculate using standard algorithms,

the M-step requires expensive numerical optimization in our case. Due to the constraints on Q

and Cov et and the dependence of the observations, there is no analytic form for the maximum

of the expected log-likelihood. Since the EM requires numerical optimization, we decided to use

direct numerical optimization on the marginal likelihood obtained from the Kalman smoother. This

amounts to maximizing

ℓ(Y | θ) = −
∑

t log |Σ̂t| −
1
2

∑

t(yt − ŷt)
′Σ̂−1

t (yt − ŷt)

where ŷt and Σ̂t are the estimated mean and covariance matrices from the Kalman smoother. With

a fast (Fortran) implementation of the Kalman iterations, this approach yields favorable run-times

and stable results.

Such efficient computation is, however, sensitive to certain modeling decisions. Enforcing a

steady-state starting value within each window is particularly useful. Formally, suppose that we

index each window of width w with t = 1, . . . , w. We must specify a starting value x0 for each

window. By linking x0 to λ, we can simplify our computation. For a given choice of λ, the steady-

state mean of the process specified in Equation 3 is 1
1−ρ

λ. Fixing x0 = 1
1−ρ

λ allows us to reduce

the dimensionality of Equation 3. Formally, we can rewrite it as

xt −
1

1− ρ
λ = F (xt−1 −

1

1− ρ
λ) + et (4)

yt = A(xt +
1

1− ρ
λ) + ǫt .

This reduces the dimensionality of our state variable by a factor of two, greatly accelerating all

Kalman filter and smoother calculations. As said calculations have complexity quadratic in the

problem’s dimensionality, this reduces the computational load by approximately a factor of 4.
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B Actual vs. fitted traffic for Bell Labs and CMU data

In this appendix, we show the actual vs. fitted OD flows for the methods presented previously.

We plot all OD flows for the Bell Labs data and the 12 most variable OD flows for CMU. Ground

truth is always in black, with estimated values in color. Figures S1 through S5 cover the Bell Labs

data, and Figures S6 through S10 cover the CMU data.
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Figure S1: Fitted values vs. ground truth for Bell Labs data. Ground truth in black; Locally IID

model in green.
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Figure S2: Fitted values vs. ground truth for Bell Labs data. Ground truth in black; Tebaldi &

West (joint proposal) in blue.
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Figure S3: Fitted values vs. ground truth for Bell Labs data. Ground truth in black; Calibration

model (stage 1) in purple.
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Figure S4: Fitted values vs. ground truth for Bell Labs data. Ground truth in black; Dynamic

multilevel model (stage 2) in red.
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Figure S5: Fitted values vs. ground truth for Bell Labs data. Ground truth in black; Naı̈ve prior in

orange.
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Figure S6: Fitted values vs. ground truth for CMU data. Ground truth in black; Locally IID model

in green.
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Figure S7: Fitted values vs. ground truth for CMU data. Ground truth in black; Tebaldi & West

(joint proposal) in blue.
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Figure S8: Fitted values vs. ground truth for CMU data. Ground truth in black; Calibration model

(stage 1) in purple.
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Figure S9: Fitted values vs. ground truth for CMU data. Ground truth in black; Dynamic multilevel

model (stage 2) in red.
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Figure S10: Fitted values vs. ground truth for CMU data. Ground truth in black; Naı̈ve prior in

orange.
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