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Abstract

A Monte Carlo simulation was conducted to investigate the robustness of four latent variable
interaction modeling approaches (Constrained Product Indicator [CPI], Generalized Appended
Product Indicator [GAPI], Unconstrained Product Indicator [UPI], and Latent Moderated
Structural Equations [LMS]) under high degrees of non-normality of the observed exogenous
variables. Results showed that the CPI and LMS approaches yielded biased estimates of the
interaction effect when the exogenous variables were highly non-normal. When the violation of
non-normality was not severe (normal; symmetric with excess kurtosis < 1), the LMS approach
yielded the most efficient estimates of the latent interaction effect with the highest statistical
power. In highly non-normal conditions, the GAPI and UPI approaches with ML estimation
yielded unbiased latent interaction effect estimates, with acceptable actual Type-I error rates for
both the Wald and likelihood ratio tests of interaction effect at N ≥ 500. An empirical example
illustrated the use of the four approaches in testing a latent variable interaction between academic
self-efficacy and positive family role models in the prediction of academic performance.

Since Kenny and Judd’s (1984) seminal contribution, researchers have developed numerous
methods for estimating interactions between latent variables (e.g., Jöreskog & Yang, 1996;
Klein & Moosbrugger, 2000; Marsh, Wen, & Hau, 2004; Wall & Amemiya, 2001, 2003; see
Marsh, Wen, Nagengast, & Hau, 2012, for an overview). The following linear by linear
latent interaction model has been the primary focus of attention in the literature:

(1)

where η is the endogenous latent variable, ξ1 and ξ2 are the exogenous latent variables,
ξ1ξ2 represents the interaction term, α is the intercept, γs are the structural coefficients, and
ζ is the disturbance of η, with mean zero and variance ψ.

The measurement models for ξ1 and ξ2 and for η follow the traditional measurement
structure of CFA models for exogenous and endogenous latent variables, respectively (e.g.,
Bollen, 1989, p. 18, equations 2.8 and 2.9):

(2)

(3)
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where  and η = (η). X and Y are the observed exogenous and endogenous
variables, respectively. τX and τY are the latent intercepts, ΛX and ΛY are the factor
loadings, and δ and ε are the unique factors for the exogenous and endogenous variables,
respectively. In most latent variable interaction approaches, the elements in δ and ε are
assumed to be uncorrelated. The chief advantage of latent variable approaches over the
measured variable approach to estimating interaction effects is that the predictors are
theoretically free of measurement error, minimizing bias in the estimates of γ1, γ2, and γ3

(Aiken & West, 1991; Bollen, 1989). Some authors (e.g., Marsh et al., 2012, p. 438) have
claimed that latent variable approaches also raises statistical power; however, Fuller (1987)
and Ledgerwood and Shrout (2011) have shown in other contexts that correction for
measurement error may increase standard errors and hence decrease statistical power.

The present study focused on four approaches for estimating latent variable interactions that
have been used in practice and that can be estimated using standard computer software.
Three are variants of the Product Indicator (PI) approach: Constrained PI (CPI, Jöreskog &
Yang, 1996), Generalized Appended PI (GAPI, Wall & Amemiya, 2001), and
Unconstrained PI (UPI, Marsh et al., 2004). The final approach is a variant of the
distribution analytic approach: Latent Moderated Structural Equations (LMS, Klein &
Moosbrugger, 2000).

Product Indicator Approach

The PI approach was originally proposed by Kenny and Judd (1984), and several variants of
the general approach have been developed since that time (see Marsh et al, 2012). In the PI
approach, product terms of the variables in the vector X are computed to represent the

indicators of ξ1ξ2. Now ξ becomes  in equation (2). Following Jöreskog and Yang
(1996), a mean structure is included in the model because the mean of ξ1ξ2 will only equal 0
when ξ1 and ξ2 are uncorrelated, even when all of the observed X variables are centered.
The variants of the PI approach differ in the nonlinear constraints that they impose in the
specification of the factor loadings (ΛX), the exogenous latent variables covariance matrix
(Φ), and the exogenous unique factors covariance matrix (Θδ). The constraints proposed in
each variant of the PI approach are detailed in Table 1. Jöreskog and Yang’s (1996) CPI
approach imposes the largest number of constraints. These constraints are derived under the
assumption of multivariate normality. Among the PI approaches, the CPI approach is
theoretically expected to yield the most powerful tests of the latent variable interaction if the
multivariate normality assumption is met. Wall and Amemiya (2001) noted that these
constraints may not be correct when observed X variables are not multivariate normal. They
proposed the GAPI approach in which the elements in the covariance matrix Φ of the
elements in ξ are freely estimated, but the constraints on ΛX and Θδ are retained. Finally, to
minimize distributional assumptions Marsh et al. (2004) suggested the UPI approach which
eliminates all nonlinear model constraints with the exception that the mean of ξ1ξ2 is set
equal to the covariance between ξ1 and ξ2. This approach is theoretically expected to be less
powerful than the CPI approach when the assumption of multivariate normality of the
observed X variables is met, but far more robust to violations of this assumption in terms of
Type-I error rates.

Structural equation models are most commonly estimated using maximum likelihood (ML).
ML estimation provides high efficiency and consistency in parameter estimation under
conditions of multivariate normality of the observed variables (Bollen, 1989, p. 108). ML
estimation is also fairly robust to violations of the assumption of multivariate normality
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(e.g., Marsh et al., 2004). Estimation of the ξ1ξ2 term is potentially problematic because this
term is known to have a non-normal distribution (Jöreskog and Yang, 1996; Klein &
Moosbrugger, 2000), even when each of the exogenous X variables is normally distributed.
When the correlation between ξ1 and ξ2 is 0 and ξ1 and ξ2 are normally distributed, the
skewness and kurtosis1 of the ξ1ξ2 product term are 0 and 6, respectively; when the
correlation between ξ1 and ξ2 is 0.8, the skewness and kurtosis of the ξ1ξ2 product term are
approximately 2.8 and 11.7, respectively (Ma, 2010).

Latent Moderated Structural Equations Approach

An important alternative approach is the Latent Moderated Structural Equations approach
(LMS) developed by Klein and Moosbrugger (2000) and Schermelleh-Engel, Klein, and
Moosbrugger (1998). The LMS approach does not require the formation of product terms to
represent ξ1ξ2. Instead, the LMS approach partitions the relationships between the
exogenous and endogenous latent variables into linear and nonlinear components up to the
second-order effects (here, linear by linear interaction). If the tested model including a latent
variable interaction is correctly specified, the latent ξ1 and ξ2 variables are normally
distributed, the unique factors of X and Y are normally distributed, the disturbance is
normally distributed, and the conditional distribution of the endogenous latent variable on
exogenous latent variables will be normal. The nonlinear component is approximated by a
mixture model (see Kelava, Werner, Schermelleh-Engel, Moosbrugger, Zapf, Ma, Cham,
Aiken, & West, 2011 for details). The LMS approach is currently implemented in Mplus
(Muthén & Muthén, 1998–2010).

The Satorra-Bentler Correction

Among procedures proposed to address non-normality, the Satorra-Bentler (SB) correction,
which corrects the test statistic and the estimated standard errors of parameter estimates, is
widely available and has been shown to have good performance in simulation studies of
latent variable models without interactions (Chou, Bentler, & Satorra, 1991; Curran, West,
& Finch, 1996). However, the SB correction appears to be potentially incompatible with the
mixture modeling used in the LMS approach and the constraints used in the CPI approach --
these approaches would be expected to lead to inconsistent parameter estimates when the
variables in the X vector are severely non-normal as both approaches are based on strong
assumptions of normality. The GAPI and UPI approaches involve far less restrictive
constraints. These approaches are expected to provide consistent parameter estimates under
a non-normal X vector. The SB correction might improve the robustness of the GAPI and
UPI approaches.

Significance Testing of the Interaction Effect for the PI and LMS

Approaches

For the PI approach, researchers have traditionally used the Wald z-test of the latent
interaction effect (e.g., Marsh et al., 2004). Although asymptotically equivalent to the Wald
test under multivariate normality condition, the likelihood ratio (LR) test of the latent
interaction effect of the PI approach was also investigated in the present study, as it might
have advantages at smaller sample sizes or when the data are non-normal (Enders, 2010, pp.
79–80). In the LR test, the latent interaction effect is initially fixed to zero, and the increase
in deviance that occurs when the latent interaction effect is freely estimated is tested. For the
LMS approach, when the latent variables ξ1 and ξ2, the unique factors, and the disturbance
ζ of η are all multivariate normal, both the Wald and LR tests of the interaction effect

1Throughout this manuscript, kurtosis is defined as excess kurtosis having a value of 0 for a normally distributed variable.
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yielded acceptable actual Type-I error rates (Klein & Moosbrugger, 2000). For non-normal
X, Satorra and Bentler (2001, 2010) have proposed a method for implementing the LR test
using the SB correction.

Overview of Previous Literature

Several simulation studies investigating the robustness of the PI and LMS approaches to
non-normality have been previously conducted (Coenders, Batista-Foguet, & Saris, 2008;
Klein & Moosbrugger, 2000; Klein & Muthén, 2007; Klein, Schermelleh-Engel,
Moosbrugger, & Kelava, 2009; Marsh et al., 2004; Wall & Amemiya, 2001). To put these
studies into a common metric for comparison of findings, we initially computed indices of
skewness and kurtosis for the observed exogenous variables in previous simulation studies
(see Table 2). We then report the results of the previous literature using the following
criteria for acceptable performance, when reported, to evaluate the previous studies: (1)
Relative bias of parameter estimate ≤ |10%| (Flora & Curran, 2004). (2) Standard error (SE)
ratio (ratio of the mean of estimated SE to the empirical SE) within the range 0.9 to 1.1,
which parallels the criterion for relative bias. (3) Coverage rate greater than 90% (Collins,
Schafer, & Kam, 2001). (4) Actual Type-I error rate α falling within the binomial

confidence interval for α, which is , where k is the number of
replications (Savalei, 2010).

Univariate Skewness and Kurtosis

A key issue in the previous simulation studies is whether the univariate skewness and
kurtosis of the exogenous X variables has been sufficiently large to provide a stringent test
of the robustness of the four approaches for estimating latent variable interactions. We
calculated the univariate skewness and kurtosis of the exogeneous X variables used in prior
studies in two ways. First, Mattson’s (1997) mathematical derivations were used to calculate
the theoretical skewness and kurtosis of the variables, given the skewness and kurtosis of ξ
and δ. Second, to verify these theoretical calculations, we simulated one large dataset (N =
1,000,000) for each condition represented in the literature and calculated the univariate
skewness and excess kurtosis of the variables. The two methods of estimating the skewness
and kurtosis of the studies closely agreed. Across the studies, the minimum and maximum
values of the median skewness (0, 0.90) and kurtosis (−0.75, 1.56) of the observed
exogenous variables were not extreme. This result implies that existing studies of the
robustness of the PI and LMS approaches to non-normality have considered a range of
values under which ML estimation would be unlikely to be problematic (Curran et al., 1996;
West, Finch, & Curran, 1995). The effects of non-normality of observed variables on the
SEs of the parameter estimates and test statistic have been shown analytically to have
opposite effects under positively and negatively kurtotic conditions (Yuan, Bentler, &
Zhang, 2005); we summarize these conditions of previous studies separately.

PI Approach

In the second and third conditions of Coenders et al. (2008), the median skewness and
kurtosis of X were about 0.9 and 1.5, respectively. The CPI and UPI SB approaches yielded
unbiased estimates of the latent interaction and lower-order effects. The SB SEs of these
effects were also unbiased.

In the third distribution condition of study 4 of Marsh et al. (2004), the median skewness
and kurtosis of X were about 0.7 and 0.8, respectively. Under these conditions, the estimate
of latent interaction effect was unbiased using the CPI, GAPI, or UPI approaches. The ML
SE of interaction effect was slightly underestimated across all three variants of the PI
approach. The SB SE did not provide appropriate adjustment for the underestimation of the
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ML SE of the latent variable interaction effect. Both the GAPI and UPI approaches yielded
acceptable Type-I error rates for the Wald test of the interaction effect. Under some non-
normal conditions, the CPI approach yielded an inflated Type-I error rate of the Wald test.
The SB correction did not provide appropriate adjustment for the Type-I error rate inflation
of the Wald test with the CPI approach; indeed in some cases the use of the SB correction
led to Type-I error inflation of the Wald test of the interaction effect.

In Wall and Amemiya’s (2001)  distribution condition, the median skewness and kurtosis
of X were about 0.7 and 0.8, respectively. The GAPI approach yielded unbiased latent
interaction effect estimate. In the normal condition, the GAPI approach did not yield an
acceptable coverage rate for the interaction effect. The SB correction improved the coverage

rate. However, in the  condition, the GAPI approach yielded an unacceptable coverage
rate, whereas the SB correction improved the coverage rate to an acceptable level.

In the negatively kurtotic conditions of Marsh et al. (2004) and Wall and Amemiya (2001),
the minimum median kurtosis of X was −0.75. The GAPI and UPI approaches yielded
unbiased latent interaction effect estimate. The ML SE of the latent interaction effect was
slightly underestimated, whereas the actual Type-I error rate and coverage rate were
acceptable. The SB correction did not adjust for the underestimation of the ML SE under the
negatively kurtotic conditions.

LMS Approach

The non-normal conditions of Klein and Moosbrugger (2000), Klein and Muthén (2007),
and Klein et al. (2009) were identical (median skewness and kurtosis of X = 0.5 and 1.1,
respectively). When the variables were multivariate normal, the LMS approach yielded
unbiased estimates of the latent interaction and lower-order effects. The ML SE of the
interaction effect estimated using the LMS approach was much smaller than the ML SE
estimated using the CPI approach. The LMS approach was more efficient, yielding higher
statistical power of the Wald test of the interaction effect.

In the non-normal conditions of Klein and Moosbrugger (2000) and Klein and Muthén
(2007), the interaction effect estimates using the LMS approach were acceptable, but the ML
SE of the interaction effect was underestimated. This resulted in an inflated Type-I error
rates for both the Wald test (Klein et al., 2009) and the LR test of interaction effect using the
LMS approach (Klein & Moosbrugger, 2000). In the non-normal conditions of Coenders et
al. (2008), the LMS approach yielded biased latent interaction effect estimate.

Research Questions

The present study extends previous simulation research by examining the performance of
estimators under substantially more extreme violations of multivariate normality to surface
possible limitations of the four approaches. Specifically, we examined the performance of
the four different approaches (CPI, GAPI, UPI, LMS) under five different distributional
conditions of the observed exogenous variables (normal, uniform, symmetric and
moderately leptokurtic, symmetric and highly leptokurtic, and skewed and moderately
leptokurtic). The generality of the findings was probed by considering five different sample
sizes ranging from 100 to 5000 and two different magnitudes of the interaction effect. The
performance of the SB correction for non-normality was also investigated for the PI
approaches. Finally, the performance of the Wald and the LR tests of the latent variable
interaction was compared. Two primary research questions were addressed in the present
study:
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1. How robust is each of the PI and LMS approaches, when the observed exogenous
variables represent a range of types of non-normality?

2. In cases in which the estimates of the latent interaction and lower-order effects are
unbiased, how do the actual Type-I error rates and statistical power of the Wald and
LR tests of the interaction effect compare with one another?

Method

The design of the simulation study was adapted from Ma (2010), Marsh et al. (2004), Wall
and Amemiya (2001). Below are the details of the conditions manipulated in the simulation
study.

(1) Sample size N: 100, 200, 500, 1000, 5000

The range of sample sizes covers the full range of those commonly seen in published
research reports within psychology. N = 200 approximates the median sample size used in
regression analysis (Jaccard & Wan, 1995). N = 5000 represents an upper bound sample size
for psychological research at which the asymptotic properties of the estimators might be
approximated. These sample sizes have been used in previous research (e.g. Curran et al.,
1996; Hu & Bentler, 1998; Wall & Amemiya, 2001).

(2) Interaction Model

The latent interaction model in equation (1) was tested. The structural and measurement
models were identical to the model used by Marsh et al. (2004), with three indicators of each
latent variable. The population parameters values are summarized in Table 3. The
population correlation between ξ1 and ξ2 was 0.5. We varied the effect size of the
interaction by manipulating γ3 and the disturbance variance ψ. Our theoretical calculations
assumed ξ1 and ξ2 were bivariate normal, that ξ1, ξ2, and η could be measured directly
without measurement error and therefore could be analyzed using OLS regression. Under
these assumptions, the parameters for the interaction model yielded a population R2 = 0.4
for the combined linear effects. The statistical power for the test of the interaction effect was
manipulated to equal 0.7 or 0.9 (see Aiken & West, 1991, chapter 8). A condition in which
γ3 equaled zero was used to investigate the Type-I error rate for the tests of the latent
variable interaction.

(3) Distributions of ξ1, ξ2, and δ
In practice, investigators can only estimate the skewness and kurtosis of observed variables.
We sought to create conditions in which the observed exogenous variables were (a) normal,
(b) uniform, (c) symmetric and moderately kurtotic, (d) symmetric and highly kurtotic, and
(e) skewed and moderately kurtotic. ζ and ε were normally distributed in all conditions. The
distributions of ξ1, ξ2, and δ were specified as follows to create observed exogenous
variables with the desired properties (see also Wall & Ameniya, 2001).

a. Normal. ξ1, ξ2, and δ follow a normal distribution.

b. Uniform. ξ1, ξ2, and δ follow a uniform distribution.

c. Symmetric and Moderately Leptokurtic (K1). Adapted from Hu and Bentler

(1998), a random t5 variable and a random  variable were generated. The random

K1 variable was defined as ( ). ξ1, ξ2, and δ followed this distribution.
Given an extremely large sample size, this procedure results in X indicators that are
symmetric with kurtosis ≈ 11 (Table 4).
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d. Symmetric and Highly Leptokurtic (K2). A random K1 variable and a random 

variable were generated. A random K2 variable is defined as ( ). ξ1, ξ2,
and δ follow this distribution. Given an extremely large sample size, this procedure
results in X that are symmetric with kurtosis ≈ 31 (Table 4).

e. Skewed and Moderately Leptokurtic . ξ1, ξ2, and δ followed a  distribution.

Table 4 shows the asymptotic univariate skewness and kurtosis of the observed indicators

based on Mattson (1997) for the normal, uniform, and  conditions, and simulation results
based on N = 1,000,000 for K1 and K2 conditions. The empirical univariate skewness and
kurtotsis of X based on 1000 randomly generated data sets at N = 100, 200, 500, 1000, and

5000 are also shown. The empirical kurtosis of X for the K1, K2, and  conditions
decreased as sample size decreased (see Reinartz, Echambadi, & Chin, 2002, for a
discussion).

Figure 1 shows multivariate QQ plots of the X indicators (Friendly, 1991) that depict the
degree of multivariate non-normality for each distributional contribution. In this plot the Y-
axis is the observed quantile which represents the squared Mahalanobis distance of each
point from the centroid based on the p observed X variables (here, 6 total, 3 indicators for
each latent exogenous variable). The X-axis is the expected quantile from a χ2 distribution
with p degrees of freedom. The deviation of the line formed by the points from the 45-
degree reference line indicates the degree to which multivariate normality does not hold.
Figure 1 shows the multivariate QQ plots of the observed X variables from one simulated
dataset, N = 1000, for each distributional condition. The normal condition has been
extensively investigated in previous literature (e.g., Coenders et al., 2008; Klein &
Moosbrugger, 2000; Ma, 2010; Marsh et al., 2004; Wall & Amemiya, 2001). The negatively
kurtotic uniform condition was investigated by Marsh et al. (2004) and Wall and Amemiya
(2001).

(4) Latent variable interaction estimators

Following Aiken and West (1991) and Marsh et al. (2004), the elements of X were mean-
centered. For the PI approaches, the PI match procedure proposed by Marsh et al. (2004)
was adopted, resulting in three product indicators for ξ1ξ2: X1X4, X2X5, X3X6. In total,
seven approaches were investigated: (a) CPI ML, (b) CPI SB, (c) GAPI ML, (d) GAPI SB,
(e) UPI ML, (f) UPI SB, and (g) LMS ML. Mplus 6.12 (Muthén & Muthén, 1998–2010)
was used for all the approaches. Default starting values were used. A maximum of 10,000
iterations were allowed for each replication (dataset) within each cell of the design. For the
LMS approach, Hermite-Gaussian integration with 16 integration points was used, as
suggested by Klein and Moosbrugger (2000).

Taken together, there were 525 conditions (5 sample sizes × 3 interaction effects × 5
distributions × 7 approaches to estimation). For each condition, 1500 replications were
generated. Data were generated using SAS/IML Version 9.2.

Results

Model Convergence Rates

In each condition, a model with a freely estimated interaction effect γ3 and a nested model
with γ3 fixed to zero were estimated. For each approach, a replication was defined as a
converged case if the model converged using both the ML and SB procedures with no
negative variance estimates, no estimated correlations that were out of range (−1 < ϕ or ϕ >
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1), and no estimated standard errors for parameters that were negative. The convergence rate
was calculated based on the proportion of the 1500 replications that converged in each
condition.

Most (85%) of the conditions had convergence rates greater than 95%. In the normal and
uniform conditions, convergence rates were close to 1.0 except for N = 100, where
convergence rates were lower (e.g., UPI mean convergence = 94%). In the leptokurtic K1,

K2, and  conditions, convergence rates were substantially lower at N = 100: CPI (average
91%), GAPI (average 82%), and UPI (average 84%). As sample size increased, convergence
rates increased for each of the three PI approaches, with all approaches exceeding a 95%
rate by N ≥ 500. In contrast, the convergence rates for LMS were high (> 98%) at N = 100
for all distributional conditions, but decreased as sample size increased in the leptokurtic K1
and K2 conditions. At N = 5000, the convergence rate was 91% for the K1 condition and
75% for the K2 condition. These results stem from the lack of consistency of LMS estimates
with kurtotic X, particularly as kurtosis becomes more extreme.

Relative Bias of Latent Interaction Effect Estimate

Table 5 presents the relative bias (RB) of γ̂3, RB = (γ̂3 − γ3)/γ3, calculated when γ3 was
non-zero in the population. RB ≤ |10%| was considered acceptable (Flora & Curran, 2004).

In the normal distribution condition, all approaches provided acceptable estimates of γ̂3 at N
≥ 500. CPI and LMS also produced unbiased estimates of γ̂3 at N < 500, whereas GAPI and
UPI tended to overestimate γ̂3. In contrast, GAPI and UPI produced acceptable estimates of

γ̂3 in the lepokurtoic K1, K2, and  conditions at N ≥ 500, whereas CPI and LMS yielded

substantial overestimates. These overestimates were the most severe in the  distribution
condition, exceeding 200% at N = 5000. In the negatively kurtotic uniform condition, the
CPI and LMS approaches tended to underestimate γ̂3, but were in the acceptable range. In
contrast, GAPI and UPI tended to overestimate γ̂3, with these estimates no longer being
acceptable at N < 500.

Mean Square Error, Standard Error Ratio, and Coverage Rate of Estimates of the Latent
Interaction Effect

We considered four additional indices of the performance of the approaches for both the ML
and SB procedures: the mean square error, the standard error ratio, the coverage rate, and the
non-coverage rates. We used identical criteria to evaluate the performance of the different
estimation approaches on these measures as in our earlier literature review. Few important
differences were found as a function of the interaction effect size, ML versus SB estimation,
or the use of the ML Wald versus likelihood ratio tests. Comparisons are only reported
below when differences were found.

1. Mean square error. The mean square error (MSE) of the interaction effect γ3 is
defined as Σ(γ̂3 − γ3)2/k, where k is the number of replications (= 1000). The MSE
represents the combination of the squared bias and the variance of γ̂3. MSE is used
as a criterion when an estimator may be biased. Smaller values indicate higher
precision of the parameter estimates when the estimate is unbiased.

2. Standard error ratio. The standard error ratio (SE ratio) is the mean of the ratio of
the estimated standard error to the empirical standard error (standard deviation) of
γ̂3. Paralleling the criterion of ≤ |10%| for the relative bias of parameter estimate, a
SE ratio between 0.9 and 1.1 was considered to be acceptable.

3. Coverage rate. The coverage rate is the proportion of the 95% Wald confidence
intervals of γ3 across the replications that actually include the population value γ3.

Cham et al. Page 8

Multivariate Behav Res. Author manuscript; available in PMC 2014 January 17.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



The coverage rate is jointly determined by the bias of γ̂3 and the value of its
estimated SE. Coverage rate was considered to be acceptable when the coverage
rate exceeded 90% (Collins et al., 2001).

4. Non-coverage rates > γ3 and < γ3. The non-coverage rate is the proportion of the
confidence intervals both of whose limits are either greater than or less than the
population value of the parameter (i.e., intervals > γ3 or < γ3, respectively). The
non-coverage rates potentially provide valuable information when the empirical
sampling distribution is asymmetric. A substantial discrepancy between the
coverage failures of the Wald confidence intervals > γ3 versus < γ3 relative to α/2
can indicate problematic asymmetry of the confidence intervals. As a criterion for
acceptable non-coverages, we used the binomial confidence interval of α/2 (=

0.025), which is , where k (= 1000) is the number of
replications (Savalei, 2010).

Table 6 shows the MSE and SE ratio of γ̂3. Table 7 shows the coverage rate of γ3. In the
normal condition at N ≥ 500, LMS had the lowest and UPI had the highest MSE. All the SE
ratios were all close to the ideal value of 1.0, and the coverage rates for all four approaches
(ML/SB) met the criterion. Non-coverage > γ3 was slightly smaller than non-coverage < γ3

across four approaches, although they typically met the criterion for acceptable rates of non-
coverage. At N = 100 and 200, the SE ratio was acceptable only for LMS. The overall
coverage rates for all four approaches were acceptable. The non-coverage < γ3 for all
approaches consistently exceeded the criterion. Finally, primarily reflecting smaller standard
errors, the MSE was smaller for LMS than CPI, which, in turn, was smaller than GAPI and
UPI.

In the negatively kurtotic uniform condition, the coverage rates were typically acceptable for
all approaches. At N ≤ 500, all approaches had smaller non-coverage > γ3 than non-
coverage < γ3. In contrast, the non-coverages by both GAPI and UPI were close to balanced
at N ≥ 1000. The SE ratios of all approaches were acceptable at N ≥ 500. The SB SE ratios
were generally smaller than those of ML. The MSE was smaller for LMS than CPI, which,
in turn, was smaller than the GAPI and UPI for all sample sizes.

In the symmetric and leptokurtic K1 and K2 conditions, coverage rates were influenced by
interaction effect size. Both the GAPI and UPI approaches met the criterion for acceptable
overall coverage rates for K1 and K2 in the power = 0.7 condition; acceptable coverage rates
for K1 and K2 were not achieved until N = 5000 in the power = 0.9 condition. GAPI and
UPI SB generally had lower coverage rates than those by ML. CPI and LMS had
unacceptably low coverage rates at N ≥ 500. Coverage rates for CPI and LMS decreased as
sample size increased, providing an indication of the lack of consistency of these approaches
with leptokurtic data. GAPI and UPI had close to balanced non-coverage rates for > γ3 and
< γ3 at N ≥ 500. At N < 500, GAPI and UPI had smaller non-coverage > γ3 than non-
coverage < γ3. The SE ratios for GAPI and UPI were typically too low, reaching the
criterion in the K1 condition only at N = 1000 in the power = 0.7 condition. At N ≥ 500,
MSE, reflecting the combination of squared bias and variance of γ3 estimates, was
consistently lower for both GAPI and UPI than CPI and LMS.

In the skewed and modestly leptokurtic  condition, at N ≥ 500 both GAPI and UPI had
acceptable overall coverage rates. Once again, the coverage rates of CPI and LMS decreased
as sample size increased (failing miserably at the larger sample sizes), providing an
indication of the lack of consistency of the CPI and LMS approaches with skewed and
leptokurtic data. At N ≥ 500, GAPI and UPI were close to balanced for non-coverage > γ3

and < γ3. The SE ratios did not meet the criterion until N =5000. At N ≥ 500, MSE was
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substantially lower for both GAPI and UPI than for CPI, with LMS clearly having the worst
performance.

Several conclusions are warranted. (1) In the normal and negatively kurtotic uniform
conditions, the LMS and CPI approaches showed the best performance, with LMS being
preferred due to the combination of lack of relative bias, acceptable coverage rates, and the
smallest MSE. (2) In the symmetric and leptokurtic K1 and K2 conditions, both GAPI and
UPI provided the best performance at larger sample sizes in terms of relative bias, MSE, and
coverage rates, with their performance being very similar. (3) In the skewed and moderately

leptokurtic  condition, GAPI and UPI clearly outperformed the CPI and LMS approaches
at larger sample sizes in terms of bias and coverage rates. (4) When γ̂3 was unbiased, each
approach tended to produce symmetric non-coverage rates at N ≥ 500. (5) There was little
evidence that the SB corrected standard errors improved the performance of any of the
approaches.

Performance of Lower Order Effects

The same measures were calculated for the estimates of the lower order effects, α, γ1, and
γ2. GAPI and UPI produced unbiased α̂, γ̂1, and γ̂2 at N ≥ 200 for all distributions. Both
GAPI and UPI had acceptable overall coverage rates for all lower order effects. Failures of
coverage tended to be smaller than the population parameters across distributions and

sample sizes. Paralleling their poor performance in estimating γ̂3 in the K1, K2, and 
conditions, both CPI and LMS underestimated α̂, γ̂1, and γ̂2 and provided low coverage
rates for these effects. In the normal and uniform conditions, the ascending order of the

MSEs of lower order effect estimates was LMS < CPI < GAPI ≈ UPI. In the K1, K2, and 
conditions when N ≥ 500, GAPI and UPI had similar MSEs for lower order effect estimates
that were substantially lower than those for either CPI or LMS.

Type-I Error Rate and Statistical Power

The actual Type-I error rate and statistical power of the interaction effect was examined. As
a criterion for Type-I error rate, we used the binomial confidence interval for α (= .05),

which is , where k (= 1000) is the number of replications (Savalei,
2010). Here, the criterion is [0.036, 0.064]. The actual Type-I error rates (Table 8) and
statistical power (Table 9) of the Wald and LR tests of γ3 are presented.

Actual Type-I Error Rate of Latent Interaction Effect—In the normal and uniform

conditions at N ≥ 500 all ML approaches had Type-I error rates at or below .05 for the Wald
and LR tests of γ3. Some of the approaches produced slightly conservative tests. At N <
500, the ML approaches provided acceptable, sometimes conservative, Wald tests. The LR
test and the SB correction often led to slightly increased Type-I error rates at small sample
sizes (< 500). In the symmetric and leptokurtic K1 and K2 conditions, both GAPI and UPI
ML had correct Wald and LR tests at N ≥ 500, except that Type-I error rates were slightly
inflated at that largest sample size (N = 5000) in the K2 condition. In the skewed and

moderately leptokurtic  condition, surprisingly, all approaches typically had slightly

inflated Type-I error rates for the Wald and LR tests at N ≥ 500. In the K1, K2, and 
conditions, the CPI and LMS approaches had substantially inflated Type-I error rates (.10 or
more) for both the Wald and LR tests.

Actual Statistical Power of Latent Interaction Effect—Recall that the simulation

was designed so that the theoretical statistical power of the test of γ3 would equal 0.7 or 0.9.
The theoretical calculations assumed that ξ1 and ξ2 are bivariate normal, and ξ1, ξ2, and η
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could be measured directly without measurement error and analyzed using OLS regression
(Aiken & West, 1991, chapter 8). Table 9 shows the actual statistical power of the tests of
the interaction effect. In Table 9, conditions in which the Type-I error rate was too low
(conservative) or too high (liberal) are identified by # and +, respectively. Perhaps the most
striking feature of the table is the very low level of actual statistical power relative to the
theoretically expected values. In the normal condition, actual power ranged from 0.12 to
about 0.33 when the theoretical power was 0.7 and from 0.18 to 0.50 when the theoretical
power was 0.9. These findings echo previous findings by Fuller (1987) and Ledgerwood and
Shrout (2011) about the lack of power in latent variable models that correct for measurement
error. In the normal condition, LMS had higher statistical power than CPI, which, in turn,
had higher power than GAPI and UPI. In the uniform condition, a similar ordering of the

approaches was found. In leptokurtic K1, K2, and  conditions at N ≥ 500, UPI had slightly
greater power than GAPI. The LR test usually had higher power than the Wald test.

Illustrative Example

Description

Our example compares the results of the four approaches with a real data example in which
the non-normality of the observed X variables is modest. The example uses data from
Proyeto: La Familia (The Family Project, Roosa, Liu, Torres, Gonzales, Knight, & Saenz,
2008), a longitudinal study of Mexican American families. We tested whether there is a
possible interaction of child’s reported academic self-efficacy and positive family role
models on the child’s academic performance (e.g., Roosa, O’Donnell, Cham, Gonzales,
Zeiders, Tein, Knight, & Umaña-Taylor, 2012). Our analyses are based on 669 families with
complete data.

The two exogenous scales were measured in 5th grade using different informants. For the
measure of academic self-efficacy, self-reports were obtained from each children on 5 items
assessing the extent to which they believed they could master schoolwork (items taken from
the Patterns of Adaptive Learning Survey; Midgley, Maehr, Hruda, Anderman, Anderman,
Freeman, et al., 2000). Items were measured on a five-point Likert scale, from 1 (none of
them) to 5 (all of them). Mother’s report of positive family role models was measured using
a 5-item scale assessing the extent to which the adults in the family had experiences with
academic engagement and success and full-time jobs. Items were measured on a five-point
Likert scale, from 1 (not at all true) to 5 (very true). The outcome variable of academic
performance was measured in 7th grade. English and math teachers reported the final grades
(0.0 = F to 4.0 = A) they would give to the interviewed children in their courses up to the
day of interview. The English and math grades were averaged.

Analysis

The 10 items from the two exogenous scales were mean centered. We checked the univariate
skewness and kurtosis of each items. The academic self-efficacy items were negatively
skewed (median skewness = −1.61) and positively kurtotic (median kurtosis = 2.67). The
positive family role models items were symmetric (median skewness = 0.04) and slightly
negatively kurtotic (median kurtosis = −0.49). A multivariate QQ plot of the exogenous

indicators against a  distribution which would be obtained if multivariate normality held
reflected only a modest violation of multivariate normality (Figure 2). We report the results
of each of the four approaches considered above (CPI, GAPI, UPI, and LMS) using both
ML and SB estimation. For N = 669 and modestly non-normal data, our simulations
suggested that the UPI approach would provide unbiased estimates, whereas the LMS
approach would provide the greatest statistical power of the test of γ3. However, the degree
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of non-normality was sufficient so that this increase in power might come at a cost of a
modest increase in the Type-I error rate.

Following Marsh et al. (2004), each item from the academic self-efficacy scale was matched
with an item from the positive family role models scale to form the product terms for the
product indicator approaches. Items were matched according to the magnitude of their factor
loadings on the underlying construct in a one factor measurement model. Table 10 shows the
ML estimates of the interaction model, their ML and SB estimated standard errors, and ML
and SB likelihood ratio tests of interaction effect by the four approaches. The estimates of
the intercepts and the first order (average) effects (maximum difference = 3.4%), ML SEs
(1.2%), and SB SEs (7.4%) differed only slightly. The differences in the estimates and
standard errors for the interaction effect γ3 across estimation approaches was more
substantial: Differences in estimates of γ3 ranged from 2.1% to 18.2%, differences in ML
SEs for γ̂3 ranged from 0% to 44.0%, differences in SB SEs for γ̂3 ranged from 3.9% to
33.8%. The ML Wald tests of γ3 varied from z = −2.72 (p = 0.007) for GAPI to z = −1.64 (p

= 0.10) for UPI, and the ML LR tests of γ3 varied from , p = 0.006 for GAPI to

, p = 0.10 for UPI. In the present empirical example, of course, we do not know
which of these results is correct.

Figure 3 probes the interaction effect using simple slope procedures (Aiken & West, 1991;
Kelava et al., 2011) based on the results of the conservative UPI approach. The academic
performance in 7th grade was regressed on the academic self-efficacy latent variable in 5th

grade at three levels of positive family role models latent variable in 5th grade: 1 SD below
the mean, at the mean, and 1 SD above the mean. At the mean of positive family role
models, effect of academic self-efficacy on academic performance was positive. This
positive effect tended to increase as positive family role models decreased, whereas this
effect flattened at 1 SD above mean of positive family role models. The children’s self-
efficacy latent variable tended to have an increasing effect on the academic performance
latent variable as positive family role models latent variable decreased.

Discussion

Previous research has been primarily focused on testing latent variable interactions using
normal distribution or leptokurtic distributions with modest degrees of skewness and
kurtosis of the observed elements in X (< 0.9 and <1.6, respectively). Under these modestly
non-normal conditions, the three PI approaches have typically yielded unbiased estimates of
the latent interaction effect. The LMS approach yielded unbiased latent interaction effect
estimates, but with underestimated SEs when the observed elements in X had |skewness| <
0.5 and kurtosis < 1 (Klein & Moosbrugger, 2000). The modest values of skewness and
kurtosis of the observed exogenous variables in previous simulation studies were the result
of combining the non-normally distributed exogeneous latent variables ξ1 and ξ2 with
normally distributed unique factors.

In practice, researchers have no method of estimating the distributions of latent variables
and can only use sample values to estimate the population skewness and kurtosis values of
the observed variables. Previous research (e.g., Curran et al., 1996; Hu, Bentler, & Kano.,
1992) has detected problems (e.g., elevated Type-I error rate) in structural equation
modeling without latent variable interactions when data are non-normally distributed. These
prior studies have used transformation procedures (e.g., Fleishman, 1978; Vale & Maurelli,
1983) that produce more extreme degrees of non-normality in observed variables than those
investigated previously in studies of latent variable interactions.
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Wall and Amemiya (2001) pointed out that the latent interaction effect estimate could be
biased and inconsistent using the CPI approach when the observed variables in X are
nonnormal. In the present simulation study, the symmetric and moderately leptokurtic K1
(kurtosis ≈ 11), the symmetric and highly leptokurtic K2 (kurtosis ≈ 31), and the skewed

and moderately leptokurtic  (skewness ≈ 2, kurtosis ≈ 6) distribution conditions generated
exogenous observed variables with higher levels of kurtosis than those considered in
previous research (Table 2). In these more non-normal conditions, the CPI and LMS
approaches overestimated the latent interaction effect and produced inflated Type-I error
rates, whereas the UPI and GAPI approaches showed generally unbiased estimates of both
the latent interaction and lower-order effects with produced acceptable Type-I error rates
once N reached 500.

The present study produced similar findings to those of previous research on the PI
approaches with negatively kurtotic distribution conditions (Marsh et al., 2004; Wall &
Amemiya, 2001). The results of the uniform condition (skewness = 0; kurtosis ≈ −0.6)
generally replicated previous findings using negatively kurtotic distributions: Both the GAPI
and UPI approaches yielded unbiased latent interaction and lower-order effects estimates at
N ≥ 500. The ML Wald test of CPI and LMS approaches showed acceptable performance in
terms of Type-I error rates. The present study is the first to investigate the performance of
LMS under negatively kurtotic condition.

In terms of the efficiency of the different approaches, the current results were also consistent
with previous findings (e.g., Klein & Moosbrugger, 2000; Marsh et al., 2004). In the normal
and uniform conditions, LMS was the most efficient approach, with the lowest mean
squared error and smallest SE for the latent interaction effect. The GAPI and UPI
approaches were the least efficient in the normal and uniform conditions. Given the
substantial bias in the CPI and LMS approaches in the leptokurtic K1, K2, and skewed and

leptokurtic  conditions, the GAPI and UPI approaches produced the lowest mean squared
error at N ≥ 500.

In the normal and uniform conditions, all approaches with ML yielded acceptable Type-I
error rates for the Wald test of latent interaction effect. In the symmetric and leptokurtic K1
and K2 conditions, GAPI and UPI approaches yielded acceptable Type-I error rates for the
Wald test at N ≥ 500, except at N = 5000 in the K2 condition. In the skewed and moderately

leptokurtic  condition, all approaches typically had slightly inflated Type-I error rates for
the Wald test at N ≥ 500. The SB correction was unnecessary in these distribution
conditions. Indeed, the results showed that in some conditions, the SB correction yielded
inflated Type-I error rates for the Wald and LR test, mitigating against its usage.

The present study was the first to consider the LR test of the latent interaction effect for the
PI approaches; this test has previously been considered for the LMS approach (Klein &
Moosbrugger, 2000). In linear SEM models, the LR test is asymptotically equivalent to the
Wald test. However, the LR test has the advantage of scale independence over the Wald test
(Gonzalez & Griffin, 2001), and can produce theoretically more accurate tests of parameters
with small sample size (Enders, 2010, pp. 79–80). Similar to the findings for the Wald test,
all approaches with ML yielded acceptable Type-I error rates for the LR test of the latent
interaction effect at N ≥ 500. Again, the SB correction was unnecessary. Indeed, inflated
actual Type-I error rates for the SB LR test occurred in some conditions and estimation
failures occurred in others. Comparing the results of the ML LR and Wald tests of the latent
interaction effect in terms of statistical power under appropriate conditions (unbiased
parameter estimates and acceptable actual Type-I error rates), the LR test had a slight
advantage over the Wald test in terms of statistical power.
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Contrary to the hope of many SEM researchers (e.g., Marsh et al., 2012), the statistical
power of the significance tests of the latent variable interaction under multivariate normality
was substantially lower across the four approaches than the theoretical statistical power
based on OLS assuming that ξ1, ξ2 and η were measured without error. In other words,
current SEM approaches to latent variable interaction modeling can correct for bias in the
regression coefficients, but may often do so at a substantial cost in statistical power. This
finding of a lack of statistical power replicates previous findings by Ma, Aiken, and West
(2011) and is consistent with Fuller’s (1987) and Ledgerwood and Shrout’s (2011)
observation that latent variable models that correct for measurement error minimize bias, but
decrease statistical power. Both the PI and LMS approaches were unable to solve the
problem of loss of statistical power due to measurement error (e.g., Aiken & West, 1991).

Conclusions and Limitations

Based on the current findings, we recommend the LMS approach when the observed
exogenous variables are symmetric (skewness = 0), and with kurtosis < 1, because it had an
advantage in terms of efficiency over the PI approach (see also Kelava et al., 2011). With
modestly negatively kurtotic observed variables (kurtosis > −0.75), the LMS approach also
outperforms the PI approaches in terms of efficiency, with acceptable bias at larger sample
sizes. In distributions with higher levels of positive kurtosis, we recommend the UPI
approach which had the best performance at sample sizes ≥ 500. Neither GAPI nor UPI
performed well at smaller sample sizes with highly leptokurtic observed variables. Finally,
no support for the use of the SB correction was found.

Like other simulation studies, the present study only investigated a limited set of conditions;
the results can only be generalized to those conditions. The population effect sizes of the
latent interaction effect at the larger sample sizes in the normal condition were small (e.g., N
= 1000, f2 = .0062; N = 100, f2 = .0630 when power = 0.7). The effect size for each sample
size was chosen to achieve a theoretical statistical power of 0.7 or 0.9 based on calculations
for OLS regression with measurement error free (perfectly reliable) variables. The actual
values of statistical power achieved by the SEM approaches were far less than these
theoretical values of statistical power. In addition, at the larger sample sizes these values
were smaller than the effect sizes that have characterized the empirical literature as
summarized by Chaplin (1991), on average 4% of incremental variance accounted for by
interaction above and beyond first order effects. Nevertheless, the present findings and
conclusions should be generalizable to situations in which the effect sizes of the latent
interaction effect are larger. The noncentrality parameter for the latent interaction effect is
not available in standard computer software for the PI and LMS approaches, limiting the
application of theoretical power analysis procedures (Mooijaart & Satorra, 2009). Mooijaart
and Bentler (2010) have proposed an extended ML estimation procedure using third-order
moments (i.e., skewness) of some observed variables to estimate the latent interaction effect
and noncentrality parameter for power analysis.

A second limitation of current study resulted from a shortcoming of the available procedures
for generating non-normal data (Reinartz et al., 2002). The smaller the sample size, the

smaller was the univariate kurtosis of the observed variables of X in the K1, K2 and 
conditions (Table 4). We investigated several methods of generating non-normal data; all
methods shared this limitation. In addition, the population effect sizes of the interaction
effect were different in the five sample size conditions. Our study investigated a wide range
of different values of kurtosis. However, we did not investigate conditions in which kurtosis
was < −0.6 or greater than 31. More negative values of kurtosis appear to be relatively rare
in psychological data. Micceri’s (1989) investigation of 440 large scale achievement and
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psychometric data sets found the most extreme negative value of kurtosis was −1.70 and the
most extreme positive value was +37.7.

In summary, our simulation study investigated the performance of four approaches to
estimating latent variable interactions over a greater range of distributions of observed
exogenous variables than have previously been considered. These conditions included
normally distributed, symmetric and negatively kurtotic (kurtosis = −0.60), symmetric and
positively kurtotic (kurtosis ≈ 11 and ≈ 31), and moderately skewed and kurtotic (skewness
≈ 2, kurtosis ≈ 6). We recommend the LMS approach when the distribution is
approximately normal as it has the greatest statistical power, but maintains acceptable Type-
I error and coverage rates. Maximizing statistical power will often be an important
consideration since interactions in practice are often small in magnitude and latent variable
approaches do not appear to have high statistical power relative to OLS regression of
observed scale scores (Ma, 2010; Ma et al., 2011). For distributions with appreciable
kurtosis or both skewness and kurtosis, the UPI approach was clearly preferable at larger
sample sizes (N ≥ 500). Neither the use of the ML LR test nor the SB correction of the
standard errors appreciably improved the performance of any of the approaches.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Multivariate QQ Plots of Observed Exogenous Variables (Excluding Product Indictors) of
Each Distribution Condition (From One Randomly Generated Dataset with Sample Size =
1000)
Note. Y-axis is the observed quantile (squared Mahalanobis distance).

X-axis is the expected quantile of  distribution.
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Figure 2.
Multivariate QQ Plot of Observed Exogenous Variables (Excluding Product Indictors) of the
Illustrative Example
Note. Y-axis is the observed quantile (squared Mahalanobis distance).

X-axis is the expected quantile of  distribution.
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Figure 3.
Interaction Plot of Positive Family Role Models × Academic Self-Efficacy at 5th Grade on
Academic Performance at 7th Grade
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TABLE 1

Summary of Parameter Constraints and Assumptions of Various Product Indicator Approaches (Sources:
Jöreskog & Yang, 1996; Kelava et al., 2011; Ma, 2010; Wall & Amemiya, 2001)

Model Specification CPI GAPI UPI

1. Factor loadings of the product indicators on ξ1ξ2. For example, λX1X4 = λX1λX4 Yes Yes No

2. E(ξ1ξ2) = Cov(ξ1, ξ2) Yes Yes Yes

3. Var(ξ1ξ2) = Var(ξ1)Var(ξ2) + Cov2 (ξ1, ξ2) Yes No No

4. Cov(ξ1,ξ1ξ2) = Cov(ξ2, ξ1ξ2) = 0 Yes No No

5. Variances of the unique factors of the product indicators. For example, Var(δX1X4) = λX1

Var(ξ1)Var(δX4) + λX4 Var(ξ2)Var (δX1) + Var(δX1)Var(δX4)
Yes Yes No

6. Zero covariances between the unique factors of exogenous indicators and those of product indicators
(assuming zero covariances among the unique factors of exogenous indicators)

Yes Yes Yes

7. Covariances between unique factors of product indicators that share the same exogenous indicators
(assuming zero covariances among the unique factors of exogenous indicators). For example,
Cov(δX1X4, δX1X5) = λX4λX5Var(ξ2)Var(δX1)

Yes Yes No

8. Normality assumptions of exogenous indicators from model specification Yes More Liberal Most Liberal

Note. CPI means constrained product indicator approach. GAPI means generalized appended product indicator approach. UPI means unconstrained

product indicator approach. As noted in 8, model constraints 3, 4, 5, 6, and 7 assume multivariate normality for the CPI approach. Constraint 7 is

not a concern if the two exogenous latent variables have equal numbers of indicators. The distributional assumptions are relaxed for the GAPI and

UPI approaches.
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