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Abstract

An estimator for the load share parameters in an equal load-share
model is derived based on observing k-component parallel systems of iden-
tical components that have distribution function F (·) and failure rate r(·).
In an equal load share model, after the first of k components fails, failure
rates for the remaining components change from r(t) to γ1r(t), then to
γ2r(t) after the next failure, and so on. On the basis of observations on
n independent and identical systems, a nonparametric estimator of the
component baseline cumulative hazard function R = − log(1 − F ) is pre-
sented, and its asymptotic limit process is established to be a Gaussian
process. The effect of estimation of the load-share parameters is consid-
ered in the derivation of the limiting process. Potential applications can
be found in diverse areas, including materials testing, software reliability
and power plant safety assessment.
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1 Introduction

Most reliability methods are intended for components that operate indepen-

dently within a system. It is more realistic, however, to develop models that

incorporate stochastic dependencies among the system’s components. In many

systems, the performance of a functioning component will be affected by how

the other components within the system are operating or not operating (cf.,

Hollander and Peña, 1995). Statistical methods for analyzing systems with de-

pendent components are not yet well developed. Real examples of dependent

systems include fiber composites, software and hardware systems, power plants,

automobiles, and materials subject to failure due to crack growth, to name just

a few.

In the nuclear power industry, for example, components are redundantly

added to systems to safeguard against core meltdown. If the failure of one

back-up system adversely affects the operation of another, the probability of

core meltdown can increase significantly. If four to eight motor operated valves

can be employed to ensure the circulation of cooling water around the reactor,

the failure of one or two valves can induce a higher rate of failure of the remain-

ing valves due to increased water pressure, thus diminishing the effects of the

component redundancy.

Unfortunately, analysts have few options for modeling dependent systems.

Existing methods for such systems studied in engineering and the physical sci-

ences are typically based on two classes of models: shock models and load-share

models. Shock models, such as Marshall and Olkin’s (1967) bivariate exponen-

tial model, enable the user to model component dependencies by incorporating

latent variables to allow simultaneous component failures.

Load share models dictate that component failure rates depend on the oper-

ating status of the other system components and the effective system structure

function. Daniels (1945) originally adopted this model to describe how the

strain on yarn fibers increases as individual fibers within a bundle break. Fre-

und (1961) formalized the probability theory for a bivariate exponential load
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share model. In most applications, the shock model provides an easier avenue

for multivariate modeling of system component lifetimes. However, dynamic

models such as the load-share model are deemed more realistic in environments

where a component’s performance can change once another component in the

system fails or degrades.

Perhaps the most important element of the load-share model is the rule

that governs how failure rates change after some components in the system fail.

This rule depends on the reliability application and how the components within

the system interact, i.e., through the structure function. For researchers in the

textile industry who deal with the reliability of composite materials, a bundle of

fibers can be considered as a parallel system subject to a steady tensile load. The

rate of failure for individual fibers depends on how the unbroken fibers within

the bundle share the load of this overall stress. The load share rule of such a

system depends on the physical properties of the fiber composite. Yarn bundles

or untwisted cables tend to spread the stress load uniformly after individual

failures. This leads to an equal load-share rule, which implies the existence of a

constant system load that is distributed equally among the working components.

In more complex settings, a bonding matrix joins the individual fibers as a

composite material, and an individual fiber failure affects the load of certain sur-

viving fibers (e.g., neighbors) more than others. This characterizes a local load

sharing rule, where a failed component’s load is transferred to adjacent compo-

nents; the proportion of the load the surviving components inherit depends on

their ‘distance’ to the failed component. A more general monotone load sharing

rule assumes only that the load on any individual component is nondecreasing

as other items fail. Lynch (1999) characterized some relationships between the

failure rate and the load-share rule based on a monotone load share rule. Re-

lationships for some specific load share rules are studied in Durham and Lynch

(2000).

Past research has stressed reliability estimation based on �known load share

rules. To our knowledge, statistical methods have not been developed for char-

acterizing systems with dependent components by estimating unknown parame-
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ters of the load-share rule. In this paper, we consider estimating the component

baseline lifetime distribution based on observing dynamic systems of identical

components. Dependence between system components is modeled through a

load-share framework, with the load-sharing rule containing unknown param-

eters. Of primary interest in the model is the baseline distribution, but the

parameters of the load-sharing rule may also be of importance such as when

an estimate of the system reliability is desired, or they could just be viewed as

nuisance parameters. We focus on the equal load-share rule, where the failure

rate of the remaining functioning components within the system change uni-

formly after each component failure, but with the magnitudes of change being

unknown.

2 Examples of Load-Share Systems

The load share rule has obvious potential for application in modeling systems

with interdependent components, as described in the preceding section. The

load-sharing framework also applies to problems of detecting members of a finite

population. Suppose the resources allocated toward finding a finite set of items

are defined globally, rather than assigned individually. Once items are detected,

resources can be redistributed for the problem of detecting the remaining items,

and this action gives rise to a load sharing model. In most cases, the items

are identical to the observer, and an equal load-share rule is appropriate for

characterizing the system dependence.

Unlike load-share models for fiber strength, these more general models give

no indication of how load share parameters might change as other components

fail. In this case, inference based on known load share parameters seems unre-

alistic and the problem of estimating those parameters becomes crucial.

We have already discussed two examples for which the load-share rule might

apply: risk assessment in power plants, and the study of fiber strength in relation

to fiber composites in textile engineering. Other important examples include

the following:

4



Software Reliability: The load-sharing model generalizes the dynamic model

suggested by Jelinski and Moranda (1972), among others, for software reliability.

The most basic problem is to assume that an unknown number of faults exist

in the system (i.e., software). After a fixed time, some number of faults are

found, and the number of remaining faults is to be estimated. The load-share

model represents a more flexible and realistic method of predicting the detection

of faults by acknowledging the dynamic nature of fault detection when some

faults have already been found. For instance, in problems where the number

of software bugs is relatively small, the discovery of a major defect can help

conceal or reveal other existing bugs in the software.

Civil Engineering: With a large structure supported by welded joints, the

structure fails only after a series of supporting joints fail. The failure of one

or two welded joints in a bridge support, for instance, might cause the stress

on remaining joints to increase, thus causing earlier subsequent failures. Static

reliability models fail to consider the changing stress in this setting, which con-

stitutes a load-sharing model.

Materials Testing: Fatigue and material degradation is often characterized by

crack growth, especially in large structures such as an airplane engine turbine or

a commercial airplane fuselage. At the microscopic level, these materials have

an intractable number of cracks, with only a few becoming large enough to be

measurable, usually at stress centers such as edges, rivets, etc. It is known that

the largest crack in a (predefined) local area will inherit much of the test stress,

and thus will grow at a faster rate than the other measurable cracks; see Carlson

and Kardomateas (1996) for instance. This provides a platform for extending

the load-share model to degradation data. Certainly, the interdependence be-

tween crack growths cannot be modeled using simple physical principles, thus

a nonparametric load-share model has potential application.

A similar approach, used in modeling the incubation period for the Hu-

man Immunodeficiency Virus (HIV) in Jewell and Kalbfleisch (1996), is based

on marker processes. Rate changes can be incorporated into the model via
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time-dependent stochastic markers that carry covariate information. Marker

processes are based on the shock model approach to describing component de-

pendence, but are closely related to load-sharing models. As an illustrative

reliability example, a car’s odometer serves as an obvious marker for the car’s

chronological lifetime. This approach serves as a natural one for modeling crack

growth in materials using observed degradation (e.g., crack size) as a stochastic

marker.

Population Sampling: In wildlife studies, population sizes are estimated from

relatively small samples. Capture/recapture methods can be used for these es-

timation methods, and involve finding previously tagged animals in order to

deduce the sample’s size relative to the larger population. In some cases, the

detection of a tagged animal may affect the detection rate of the remaining

sample. When recapture probabilities are significantly nonzero, the load-share

framework allows the experimenter to modify the detection model after a re-

capture occurs.

Combat Modeling: The attrition of military hardware and personnel in com-

bat situations is highly dynamic, and the loss of one component in combat can

easily change the success rate (or death rate) of the remaining components in

the field; see Kvam and Day (2001). Specific load share models could be used to

model the natural dependence between components within the system as well

as their relative status within the group (e.g., even with combat machines, the

components are not generally identical in effectiveness or constitution).

3 Estimation of Load-Share Model Parameters

Consider a system with k identical components for which stochastic component

dependencies are induced via a load sharing model. Suppose we observe n

independent and identical systems over an observation period [0, τ ], where τ is

possibly random and could be the time of the last component failure among all

nk components. We monitor the times of component failures of these systems.
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For i = 1, 2, 3, . . ., let Si,1 < Si,2 < . . . be the successive component failure times

for the ith system whose values are less than or equal to τ , so that Si,j is the jth

smallest component failure time for the ith system. Denote by F the baseline

component failure time distribution. The hazard function (or cumulative hazard

rate) corresponding to F is R(x) = − log(1 − F (x)), and the hazard rate is

r(x) = f(x)/[1 − F (x)], where f(x) is the density of F . Thus, the hazard

function can be expressed as R(x) =
∫ x

0
r(u)du.

Inter-component dependencies are due to the fact that the system’s envi-

ronment can possibly become more or less harsh on the remaining functioning

components upon failure of other components. This framework is based on

applications for which failure rates or detection rates of all items within the

system are equal, but the change in rate after a component failure depends on

the set of functioning components in the system. Note that upon a component

failure, the effective system structure function also changes (cf., Hollander and

Peña, 1995). For the specific model considered in the present paper, until the

first component failure, the failure rate of each of k components in the system

equals the baseline rate r(x). Upon the first failure within a system, the failure

rates of the k − 1 remaining components jump to γ1r(x), and remain at that

rate until the next component failure. After this failure, the failure rates of the

k − 2 surviving components jump to γ2r(x), and so on. The failure rate of the

last remaining component is γk−1r(x). The (equal) load share rule can be char-

acterized by the k − 1 unknown parameters γ1, γ2, . . . , γk−1 and the unknown

baseline distribution or hazard function. For example, a system with a constant

load would assign γj = k/(k − j), j = 1, ..., k − 1. In the sequel, we let

γ = (γ0 ≡ 1, γ1, . . . , γk−1)
′.

Estimating the underlying baseline functions F or R may be of primary

interest. For this nonparametric estimation problem, we can adopt the general-

ized maximum likelihood approach introduced by Kiefer and Wolfowitz (1956).

In some situations such as when estimation of the system reliability is desired,

estimation of the load share parameters γ will also be of interest; otherwise
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it may be viewed as a vector of nuisance parameters. In the ith system, the

conditional hazard function of the (j + 1) smallest component lifetime Si,j+1,

given the first i component failure times Si,1, . . . , Si,j , is

R∗(s|Si,1, . . . , Si,j) = γjR(s) + (γj−1 − γj)R(Si,j) + . . . + (1− γ1)R(Si,1)

for s > Si,j . This is immediately evident if we express R∗ in terms of r and note

that r changes at times of component failures: r(x) to γ1r(x) to γ2r(x), and so

on. We write dR∗(s) = R∗(s)−R∗(s−), so dR∗(Si,j) = γj−1[R(Si,j)−R(Si,j−)],

where for a function h, h(s−) = lima↓0 h(s − a). In terms of R∗, the observed

likelihood corresponding to the n systems and assuming that all nk components

fail can be expressed via

n∏

i=1

k∏

j=1

dR∗(Sij) exp{−R∗(Sij)}.

In terms of the baseline hazard function R and the unknown load share param-

eters,

L(R,γ|{Si,j , i = 1, . . . , n, j = 1, . . . , k})

=




n∏

i=1

k∏

j=1

dR(Si,j)






k−1∏

j=1

γn
j


×

exp


−

n∑

i=1

k∑

j=1

[
γj−1R(Si,j) +

j−1∑

r=1

(γr−1 − γr)R(Si,r)

]
 . (1)

A standard approach to obtaining the estimator of R(·) from (1) is to first

fix γ, and then maximize the likelihood with respect to R to obtain R̂(·;γ).

This R̂(·;γ) is then plugged into (1) to obtain the profile likelihood for γ, which

is maximized in γ to obtain the estimator γ̂. The final estimator of R(·) is

R̂(·; γ̂). Instead of directly proceeding as described, we approach the problem

using point process theory which allows us later to derive asymptotic properties

of the estimator of R(·) in a broader framework. The resulting estimators of γ

and R(·) in this stochastic process approach are, however, the same estimators

that arise by proceeding in the approach outlined above.
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To shift into this stochastic process framework, in the sequel we sometimes

write γ[j] for γj , and define the counting processes

Ni(t) =
k∑

j=1

I(Si,j ≤ t), i = 1, 2, . . . , n,

where I(W ) equals one if event W occurs, and is zero otherwise. Ni(t) represents

the number of component failures for the ith system that occurred on or before

time t. Then, we may write

γ[Ni(w)] =

k−1∑

j=0

γjI(Ni(w) = j).

To express the likelihood in terms of stochastic processes, we let

Yi(w) = (k −Ni(w−)) I(τ ≥ w). (2)

Define Fit = σ {(Ni(w), Yi(w+));w ≤ t} to be the filtration generated by the

ith system up to time t, and let Ft =
∨n

i=1 Fit. The load-share model can now

be equivalently described by specifying the intensities of the Ni(·)’s to be

Pr {dNi(t) = 1|Fit−} = r(t)Yi(t)γ[Ni(t−)]dt, i = 1, ..., n. (3)

If we denote by

Ai(t) =

∫ t

0

γ[Ni(u−)]r(u)Yi(u)du, (4)

then M = {(Mi(t) = Ni(t)−Ai(t), 0 ≤ t ≤ τ) , i = 1, .., n} is a vector of orthog-

onal square-integrable zero-mean martingales (cf., Andersen, et al., 1993). We

will also make use of the process J(w) = I(
∑k

i=1 Yi(w) > 0). In particular,

J(w) = 0 indicates all nk components have already failed at time w−. Note

also that J(·) is a predictable and bounded process.

If γ is known, by using the zero-mean property of the martingale
∑n

i=1 Mi(·)
analogously to the derivation of the Nelson-Aalen estimator (Aalen (1978)), we

immediately obtain the estimator

R̂(s;γ) =

∫ s

0

J(w)dN(w)∑n
i=1 Yi(w)γ[Ni(w−)]

. (5)
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The estimator in (5) is similar in structure to the hazard function estimator

for tensile strengths derived by Ryden (1999). To obtain the estimator of R(·) for

the more general case where γ is unknown, we first obtain the profile likelihood

for γ by plugging in R̂(·;γ) from (5) into the likelihood function in (1). From

(1) and (3) we obtain this profile likelihood for γ to be

Lp(s;γ) =

n∏

i=1

π
0≤w≤s

[
Yi(w)γ[Ni(w−)]∑n
l=1 Yl(w)γ[Nl(w−)]

]dNi(w)

, (6)

where the second product in (6) denotes the product-integral. This profile

likelihood may also be viewed as a partial likelihood process. Once γ̂ is obtained

from (6), the estimator of R becomes

R̂(s) = R̂(s; γ̂).

By virtue of the product representation of F̄ = 1 − F in terms of R given by

F̄ (s) =π0≤w≤s[1−R(dw)], we then obtain an estimator of F̄ via

ˆ̄F (s) = π
0≤w≤s

[
1− R̂(dw)

]
.

To find R̂(s) and to facilitate the presentation of asymptotic properties of

the estimators R̂ and γ̂, we introduce the following notation:

• Qi,j(t) = Yi(t)I(Ni(t−) = j), 1 ≤ i ≤ n, 0 ≤ j ≤ k − 1;

• Qi(t) = (Qi,0(t), ..., Qi,k−1(t))
′, 1 ≤ i ≤ n;

• Q(t) = (
∑n

i=1 Qi,0(t), ...,
∑n

i=1 Qi,k−1(t))
′;

• δi(t) = (δi,0(t), ..., δi,k−1(t))
′, with δi,j(t) = I(Qi,j(t) > 0), 1 ≤ i ≤ n;

• γ−1 ≡ (1/γ0, ..., 1/γk−1);

• q(s) = (q0(s), . . . , qk−1(s)), with

qj(w) = E(Qi,j(w)) = (k − j)P (τ ≥ w,N1(w−) = j);

• ρ̂(t;γ) =
∑n

i=1 γ ∗Qi(t)/γ′Q(t);
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• ρ(t;γ) = E[
∑n

i=1 γ ∗Qi(t)]/E[γ′Q(t)] = γ ∗ q(t)(γ′q(t))−1.

Here, ∗ represents component-by-component multiplication. With this notation,

R̂(·,γ) becomes

R̂(s;γ) =

∫ s

0

J(w)(γ′Q(w))−1dN(w),

while the profile log-likelihood becomes

`p(s;γ) = log Lp(s;γ)

=

n∑

i=1

∫ s

0

log[γ′Qi(w)]dNi(w)−
∫ s

0

log[γ′Q(w))]dN(w).

The corresponding profile (partial) score function for γ is

U(s;γ) ≡ ∇γ`p(s;γ) =

n∑

i=1

∫ s

0

[
Qi(w)

γ′Qi(w)
− Q(w)

γ′Q(w)

]
dNi(w) (7)

and the profile information matrix is

I(s;γ) ≡ −∇γ′∇γ`p(s;γ) =
n∑

i=1

∫ s

0

[
Qi(w)Qi(w)′

(γ′Qi(w))2
− Q(w)Q(w)′

(γ′Q(w))2

]
dNi(w).

(8)

If we ignore differentiation by the known constant γ0 = 1, U is a vector of

length (k − 1), and I is a (k − 1)× (k − 1) matrix.

Using the notation defined earlier, (7) and (8) can be further simplified by

noting that Qi(w)(γ′Qi(w))−1 = γ−1 ∗ δi(w) and Q(w)(γ′Q(w))−1 = γ−1 ∗
ρ̂(w;γ). In terms of ρ̂,

U(s;γ) = γ−1 ∗
n∑

i=1

∫ s

0

[δi(w)− ρ̂(w;γ)] dNi(w).

We let the symbol D(η) represent a diagonal matrix with diagonal elements

η. Because Qi(w)Qi(w)′ = D(Qi,j(w)), j = 0, ..., k − 1, the first term in the

integrand in (8) can be written as D(γ−1)D(δ(w))D(γ−1), and the second

term as D(γ−1)ρ̂(w;γ)ρ̂(w;γ)′D(γ−1), so equations (7) and (8) become

U(s;γ) = D(γ−1)
∑n

i=1

∫ s

0
[δi(w)− ρ̂(w;γ)] dNi(w),

I(s;γ) = D(γ−1)
(∑n

i=1

∫ s

0
[D(δi(w))− ρ̂(w;γ)ρ̂(w;γ)′] dNi(w)

)
D(γ−1).
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Solving the set of k − 1 nonlinear equations

U(τ ;γ) =

n∑

i=1

∫ τ

0

[
Qi(w)

γ′Qi(w)
− Q(w)

γ′Q(w)

]
dNi(w) = 0 (9)

does not lead to a closed form solution for the MLE of γ. However, solving the

set of equations is not a difficult numerical problem. For instance, a Newton-

Raphson method could be implemented, which has the iterations

γnew ← γold + I(τ,γold)
−1U(τ ;γold).

Other approaches could also be used to solve (9); a similar set of equations

is in Kvam and Samaniego (1993) for solving the likelihood equations in an

exponential factorial model, and as in that paper, applying Theorem 2.1 of

Mäkeläinen, Schmidt and Styan (1981) establishes that there exists a unique

solution γ̂ ≥ 0 satisfying U(τ ; γ̂) = 0. In Kvam and Samaniego (1993), a

nonlinear Gauss-Seidel iterative method (see Ortega and Rheinboldt (1970), for

example) was applied to solve the set of equations.

4 Asymptotic Properties

To obtain the asymptotic properties of the estimator γ̂ which solves U(τ, γ̂) = 0

in (9), we re-express the martingale M in terms of {Qi,Q}. First, note that

from (4), the compensator of Mi is

Ai(s) =

k−1∑

j=0

γj

∫ s

0

Qi,j(w)dR(w) =

∫ s

0

γ′Qi(w)dR(w), (10)

so the quadratic variation process of Mi is

〈Mi(·;γ)〉(s) =

∫ s

0

γ′Qi(w)dR(w).

Result 1: In terms of M , the score function in (9) can be simplified to

U(s;γ) =

n∑

i=1

∫ s

0

[δi(w)− ρ̂(w;γ)] dMi(w).

The proof of this result is presented in the Appendix. This simplification

leads us to the following asymptotic properties for the score process. Their

proofs are also relegated to the Appendix.
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Lemma 1 If {Ni(·), i = 1, ..., n} are independent and identically distributed,

and

inf
0≤w≤τ

k−1∑

j=0

(k − j)γjP (N1(w−) = j) > 0,

then the score function in (7), which equals

U(s;γ) =

n∑

i=1

∫ s

0

[δi(w)− ρ̂(w;γ)] dMi(w), (11)

is a square-integrable martingale with quadratic variation process 〈U(·;γ)〉(s)
whose in-probability limit is

Υ(s;γ) ≡
∫ s

0

[D(ρ(w;γ))− ρ(w;γ)ρ(w;γ)′]γ′q(w)dR(w).

Furthermore, n−1/2U(·;γ) converges weakly to a zero-mean Gaussian process

with covariance matrix function Υ(·;γ).

Based on the asymptotic properties of U(s;γ), the asymptotic properties of

γ̂ and R̂(s) are presented in the following theorems.

Theorem 1 Under the conditions of Lemma 1,

(i) γ̂ converges in probability to γ; and

(ii)
√

n(γ̂ − γ)
d→ N(0,Σ(τ,γ)) where Σ(τ,γ) = D(γ)Υ(τ,γ)−1D(γ), and

with

Υ(τ,γ) ≡
∫ τ

0

[D(ρ(w;γ))− ρ(w;γ)ρ(w;γ)′]γ′q(w)dR(w).

Theorem 2 Under the conditions of Lemma 1, if τ is such that γ′q(τ) > 0,

then {√
n(R̂(s)−R(s)) : 0 ≤ s ≤ τ

}

converges weakly to a zero-mean Gaussian process with variance function

Ξ(s;γ) ≡
∫ s

0

{γ′q(w)}−1dR(w) + %(s;γ)′[Υ(τ ;γ)]−1%(s;γ),

where %(s;γ) =
∫ s

0
ρ(w;γ)dR(w).
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Corollary 1 Under the conditions of Theorem 2,

{√
n( ˆ̄F (s)− F̄ (s)) : 0 ≤ s ≤ τ

}

converges weakly to a zero-mean Gaussian process {Z(s) : 0 ≤ s ≤ τ} whose

variance function is Var{Z(s)} = F̄ (s)2 Ξ(s;γ).

We attempt to provide an explicit expression for the limiting variance func-

tions. To try to do so, an expression for Pr{N1(w−) = j} is needed in order to

get an expression for

qj(w) = E{Qj(w)} = (k − j) Pr{τ ≥ w,N1(w−) = j}

= I{τ ≥ w}(k − j) Pr{N1(w−) = j}

when τ is fixed. We now note that

Pr{N1(w−) = j} = Pr{N1(w−) ≥ j} − Pr{N1(w−) ≥ j + 1}

= Pr{Sj < w} − Pr{Sj+1 < w}

= Pr{Sj+1 ≥ w} − Pr{Sj ≥ w}.

Theorem 5.1 of Hollander and Peña (1995) then provides an expression for

Pr{Sj ≥ w}. Introducing the notation

ζi,j(γ, k) =

j∏

l=0;l 6=i

[
γl(k − l)

γl(k − l)− γi(k − i)

]

for i ≤ j and i, j ∈ {0, 1, 2, . . . , k − 1}, with the convention
∏

∅ = 1, from

Hollander and Peña (1995) we have

Pr{Sj ≥ w} = I{j ≥ 1}
j−1∑

i=0

ζi,j−1(γ, k) exp{−γi(k − i)R(w)}. (12)

Consequently, for j = 0, 1, . . . , k − 1,

qj(w) = I{τ ≥ w}(k − j)

{
j∑

i=0

ζi,j(γ, k) exp{−γi(k − i)R(w)}−

I{j ≥ 1}
j−1∑

i=0

ζi,j−1(γ, k) exp{−γi(k − i)R(w)}
}

.
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Unfortunately, this does not yield a simple expression for Ξ(s;γ). For instance,

the first term of this limiting variance function is given by
∫ s

0

dR(w)
∑k−1

j=0 γjqj(w)

=

∫ s

0


I{τ ≥ w}

k−1∑

j=0

γj(k − j)

{
j∑

i=0

ζi,j(γ, k) exp{−γi(k − i)R(w)}−

I{j ≥ 1}
j−1∑

i=0

ζi,j−1(γ, k) exp{−γi(k − i)R(w)}
}]−1

dR(w)

=

∫ R(s∧τ)

0


k exp(−kv) +

k−1∑

j=1

γj(k − j)×

{
j∑

i=0

ζi,j(γ, k) exp{−γi(k − i)v} −
j−1∑

i=0

ζi,j−1 exp{−γi(k − i)v}
}]−1

dv.

Note that this expression is at most equal to

Ξ∗(s) =

∫ R(s∧τ)

0

dv

k exp(−kv)
=

1

k2

(
1− exp{−kR(s ∧ τ)}

exp{−kR(s ∧ τ)}

)
,

which is the asymptotic variance function of the Nelson-Aalen estimator of R(s)

which utilizes only the first component failure for each system and given by

R̃(s) =
1

k

∑

{i: Si1≤s}

[
1∑n

j=1 I{Sj1 ≥ Si1}

]
. (13)

This particular result demonstrates that if the γ is known, then the estimator

R̂(s) is more efficient than the estimator R̃(s), which of course is not a surprising

result. However, since γ is not known and is estimated to form the estimator

R̂(s), the second term in Ξ(s;γ), which is given by

(∫ s

0

ρ(w;γ)dR(w)

)′

{Υ(τ ;γ)}−1

(∫ s

0

ρ(w;γ)dR(w)

)
,

need to be taken into account in comparing the asymptotic variance of R̂(s)

with that of R̃(s). Recall that this term is the effect of the estimation of γ by

γ̂.

We now prove at this point that indeed, for two-component parallel systems,

i.e., k = 2, the estimator R̂(·) improves on the estimator R̃(·) by showing that
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the asymptotic variance of the former is at most that of the latter. We have

been unsuccessful thus far, but certainly have not given up, in our attempt to

formally establish this domination result for the case where k > 2.

For notation, let us define

∆(s; τ) = Ξ∗(s)−Ξ(s).

Since Ξ∗(s) =
∫ s

0
{q0(w)}−1dR(w), then it follows that

∆(s; τ) =

∫ s

0

(
γ′q

q0(q0 + γ′q)

)
dR−

(∫ s

0

ρdR

)′

{Υ(τ)}−1

(∫ s

0

ρdR

)
. (14)

Theorem 3 For k = 2, ∆(s; τ) ≥ 0 for s ≤ τ , implying that the estimator R̂(·)
is asymptotically never less efficient than the estimator R̃(·).

Proof: First we note that when k = 2, and since ρ1 = γ1q1/(q0 + γ1q1), then

Υ(τ) =

∫ τ

0

ρ1(1− ρ1)(q0 + γ1q1)dR

=

∫ τ

0

(
γ1q1

q0 + γ1q1

)(
q0

q0 + γ1q1

)
(q0 + γ1q1)dR

=

∫ τ

0

(
γ1q1

q0 + γ1q1

)
q0dR

≥
∫ s

0

(
γ1q1

q0 + γ1q1

)
q0dR.

Therefore, when k = 2,

∆(s; τ) =

∫ s

0

(
γ1q1

q0 + γ1q1

)
dR

q0
−

(∫ s

0

(
γ1q1

q0+γ1q1

)
dR
)2

Υ(τ)

≥
∫ s

0

(
γ1q1

q0 + γ1q1

)
dR

q0
−

(∫ s

0

(
γ1q1

q0+γ1q1

)
dR
)2

∫ s

0

(
γ1q1

q0+γ1q1

)
q0dR

.

But by Cauchy-Schwartz Inequality, we have the inequality for positive functions

f, g and measure ν,

(∫
fdν

)2

=

(∫ √
fg
√

f/gdν

)2

≤
(∫

fgdν

)(∫
f

g
dν

)
.
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Applying this result, we have
(∫ s

0

(
γ1q1

q0 + γ1q1

)
dR

)2

≤
(∫ s

0

(
γ1q1

q0 + γ1q1

)
q0dR

)(∫ s

0

(
γ1q1

q0 + γ1q1

)
dR

q0

)

so that (∫ s

0

(
γ1q1

q0+γ1q1

)
dR
)2

∫ s

0

(
γ1q1

q0+γ1q1

)
q0dR

≤
∫ s

0

(
γ1q1

q0 + γ1q1

)
dR

q0
,

from which it follows that ∆(s; τ) ≥ 0, thereby completing the proof of the

theorem. ‖
For practical purposes, we need consistent estimators of the variance func-

tions of these limiting processes. An obvious estimator of Υ(τ,γ) is provided

by

Υ̂(τ ; γ̂) =
1

n

n∑

i=1

∫ τ

0

[D(ρ̂(w; γ̂))− ρ̂(w; γ̂)ρ̂(w; γ̂)′] γ̂′Qi(w)dR̂(w).

To estimate the limiting covariance matrix for γ̂, we can use

Σ̂(τ, γ̂) = D(γ̂)Υ̂(τ, γ̂)−1D(γ̂), (15)

and an estimator of the limiting variance function of
√

n(R̂−R) is provided by

Ξ̂(s; γ̂) =
1

n

n∑

i=1

∫ s

0

{
γ̂′Qi(w)

}−1
dR̂(w) + %̂(s; γ̂)′[Υ̂(τ ; γ̂)]−1%̂(s; γ̂) (16)

where %̂(s; γ̂) =
∫ s

0
ρ̂(w; γ̂)dR̂(w). Finally, an estimator of the limiting variance

function of
√

n( ˆ̄F − F̄ ) is given by

V̂ar{Z(s)} = ˆ̄F (s)2 Ξ̂(s; γ̂). (17)

The results in Theorem 2 and Corollary 1 are analogous to the asymptotic

results in Andersen and Gill (1982) which consider the estimation of the base-

line hazard and distribution functions in the multiplicative intensity model. The

Andersen and Gill model subsumes the Cox (1972) proportional hazards model.

The difference between the load share problem and the regular set up is that

the data structure and the stochastic model under load sharing is more com-

plicated; they arise from observing several components in a system combined

with the evolution of the failure rates of the components being governed by the

component histories.
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5 Discussion and Example

To show how prevalent such dependent systems are in many facets of life, con-

sider the following sports example. Table 1 contains data from the National

Basketball Association franchise Boston Celtics obtained during the second half

of the 2001-2002 season. During this season, the Celtics nucleus of three star

players (Antoine Walker, Paul Pierce, Kenny Anderson) compose a kind of sys-

tem, and a component failure is defined as the event when a player fouled out

or was removed from the game due to accumulating a high number of fouls. A

player is ejected from the game after committing six fouls, but they are usually

taken out (if only for a few minutes) once they reach two fouls, especially if this

occurs in the first half of the basketball game. Perhaps the player with two fouls

is likely to play conservatively after returning to the game; that is, he makes a

concerted effort to not foul while on the court. These three players were chosen

because they comprised the chief ”system” of players for the Boston Celtics in

2001-2002, and their foul rates per game were similar over the course of the

season. If we measure the amount of game time until each player receives two

personal fouls, we found the distributions are not significantly different.

Listed in Table 1 are the game times for each player’s 2nd personal foul for

the games in the second half of the NBA season in which all three players started

the game and committed at least two fouls by the end. Once a player commits

two fouls (and is likely benched for a period of time), it might be conjectured that

the foul rate of the other star players will change. The foul rate might go down

if the team chooses to play more conservatively, trying to decrease the chance

another star player gets into foul trouble. On the other hand, if the player with

two fouls plays conservatively, the other two star players may shoulder more

responsibility on defense, and hence be prone to foul more frequently. In either

case, the time-until-second-foul for the three players constitutes a load-share

system, with the load share parameters characterizing this change in foul rate

due to one or more players being in “foul trouble”.

The estimate of the cumulative hazard function for the time-to-second-foul
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is illustrated in Figure 1, while Figure 2 presents the corresponding estimate

of the survivor function of the time-to-second-foul. In this example, the load-

share parameters are of primary interest, and the underlying hazard function

represents an infinite set of nuisance parameters. Estimates for the load share

parameters are (γ̂1 = 1.091, γ̂2 = 0.998). Confidence regions for the estimates

are shown in Figure 3 using confidence levels of 0.50, 0.90 and 0.95, which all

include the point (1, 1). Thus, for this example, the data set does not provide

sufficient evidence that a player’s foul rate does not change after one or more of

the key Celtic’s players get into foul trouble.

Examples in other fields of application can be analyzed and illustrated in the

same manner. One fundamental conjecture would be that the system is under

constant load, or H0 : γi = k/(k − i), i = 1, ..., k − 1. In other applications,

1 ≤ γ1 ≤ γ2 ≤ · ≤ γk−1 might be a reasonable assumption. This is the

monotone load share rule mentioned in Section 1.

6 Appendix

Proof of Result 1: The score function in (9) can be decomposed into two

parts:

U(s; γ) = U1(s; γ) + U2(s; γ)

=

n∑

i=1

∫ s

0

[δi(w)− ρ̂(w;γ)] dMi(w) +

n∑

i=1

∫ s

0

[δi(w)− ρ̂(w;γ)] (γ′Qi(w))dR(w). (18)

It turns out that the second term in (18) is

U2(s;γ) =

∫ s

0

(
n∑

i=1

δi(w)(γ′Qi(w))− ρ̂(w;γ)
n∑

i=1

(γ′Qi(w))

)
dR(w) = 0.

This is true because Qi,j(w) > 0 implies Qi,j′(w) = 0, j 6= j′, so that

n∑

i=1

δi(γ
′Qi(w)) = (γ0Qi,0(w), ..., γk−1Qi,k−1(w))′ = D(γ)Q(w).

But ρ̂(w;γ)(γ′Qi(w)) = D(γ)Q(w), so that U2(s;γ) = 0.
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Proof of Lemma 1: By stochastic integration theory, the score process {U(s;γ) :

0 ≤ s ≤ τ} is clearly a square-integrable martingale with quadratic variation

process

〈U(·;γ),U(·;γ)〉(s)

=
n∑

i=1

∫ s

0

(δi(w)− ρ̂(w;γ))(δi(w)− ρ̂(w;γ))′(γ′Qi(w))dR(w)

=

n∑

i=1

∫ s

0

(D(δi(w))− 2δiρ̂(w;γ)′ + ρ̂(w;γ)ρ̂(w;γ)′)(γ′Qi(w))dR(w)

=

n∑

i=1

∫ s

0

[D(γ ∗Qi)− 2D(γ)Qi(w)ρ̂(w;γ)′+

ρ̂(w;γ)ρ̂(w;γ)′(γ′Qi(w))] dR(w)

=

∫ s

0

(D(γ)D(Q(w))− 2D(γ)Q(w)ρ̂(w;γ)′+

ρ̂(w;γ)ρ̂(w;γ)′(γ′Q(w)) dR(w)

=

∫ s

0

(D(ρ̂(w;γ))− ρ̂(w;γ)ρ̂(w;γ)′) (γ′Q(w))dR(w).

It follows from the Glivenko-Cantelli type strong law of large numbers that if

{(Ni(w), 0 ≤ w ≤ τ), i = 1, ..., n} are independent and identically distributed,

then for j = 0, ..., k − 1,

sup
0≤w≤τ

∣∣∣∣∣
1

n

n∑

i=1

Qi,j(w)− qj(w)

∣∣∣∣∣
Pr−→ 0,

Therefore, provided that inf0≤w≤τ

∑k−1
j=0 (k − j)γjP (N1(w−) = j) > 0, then

sup
0≤w≤τ

|ρ̂(w;γ)− ρ(w;γ)| Pr−→ 0,

where the jth element of ρ(w;γ) is γjqj(w)/
∑k−1

j′=0 γj′qj′(w) for j = 0, ..., k−1.

By Robolledo’s martingale central limit theorem (see Andersen, et al. (1993),

Theorem II.5.1), it follows that n−1/2U(·;γ) converges weakly to a zero-mean

Gaussian process with covariance matrix function Υ(s;γ). ‖

Proof of Theorem 1: The establishment of the consistency of γ̂ follows the

usual route of consistency proofs for partial likelihood MLEs. We therefore refer

the reader for such standard proofs to Andersen, et. al. (1993). With consistency
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of γ̂ established, observe first that for all η > 0, D(η) has full rank, and from

(9), we have

U(s;γ)−U(s; γ̂) =

n∑

i=1

∫ s

0

(ρ̂(w; γ̂)− ρ̂(w;γ))dNi(w).

Since U(τ ; γ̂) = 0, we can therefore write

U(τ ;γ) =

n∑

i=1

∫ τ

0

(ρ̂(w; γ̂)− ρ̂(w;γ))dNi(w).

A first-order Taylor series expansion of ρ̂(·; γ̂) about γ yields

ρ̂(w; γ̂) = ρ̂(w;γ) + [∇γ ρ̂(w;γ)|γ=ξ] (γ̂ − γ)

where ξ lies in the line segment connecting γ̂ and γ, and the (j, j′)th element

of ∇γ ρ̂(w;γ) is

∇γ ρ̂(w;γ)(j,j′) =

{
ρ̂j(w;γ)(1− ρ̂j(w;γ))/γj for j = j′

−ρ̂j(w;γ)ρ̂j′(w;γ)/γj′ for j 6= j′
.

Here ρ̂j is the jth element of ρ̂. This matrix simplifies to

∇γ ρ̂(w;γ) = D(ρ̂(w;γ))D(γ−1)− ρ̂(w;γ)ρ̂(w;γ)′D(γ−1).

Since U(τ ; γ̂) = 0, then

(γ̂ − γ) =

(∫ τ

0

∇γ ρ̂(w; ξ)dN(w)

)−1

U(τ ;γ).

Because ξ = γ + op(1), and by continuity considerations,

√
n(γ̂ − γ)

= n−1/2D(ξ)

(
1

n

∫ τ

0

(D(ρ̂(w; ξ))− ρ̂(w; ξ)ρ̂(w; ξ)′) dN(w)

)−1

U(τ ;γ)

= n−1/2D(γ)

(
1

n

∫ τ

0

(D(ρ̂(w;γ))− ρ̂(w;γ)ρ̂(w;γ)′) dN(w)

)−1

U(τ ;γ)

+op(1).
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The matrix whose inverse is taken converges to Υ(τ,γ) because

1

n

∫ τ

0

(D(ρ̂(w;γ))− ρ̂(w;γ)ρ̂(w;γ)′) dN(w)

=
1

n

∫ τ

0

(D(ρ̂(w;γ))− ρ̂(w;γ)ρ̂(w;γ)′) [dM(w;γ) + γ′Q(w)dR(w;γ)]

= Op(
√

n) +
1

n

∫ τ

0

(D(ρ̂(w;γ))− ρ̂(w;γ)ρ̂(w;γ)′) γ′Q(w)dR(w;γ)

Pr−→
∫ τ

0

(D(ρ(w;γ))− ρ(w;γ)ρ(w;γ)′) γ′q(w)dR(w;γ)

= Υ(τ,γ).

This result, along with (1) and (19) establish Theorem 1. ‖

Proof of Theorem 2: Recall that

R̂(s) =

∫ s

0

J(w)(γ̂′(Q(w))−1dN(w). (19)

We seek a representation of R̂ by expanding (γ̂′Q(w))−1 around γ using a

first-order Taylor series. First note that

∇γ(γ′Q(w))−1 = −Q(w)(γ′Q(w))−2 = −D(γ−1)[γ′Q(w)]−1ρ̂(w;γ).

It therefore follows that, for some ξ between γ and γ̂,

(γ̂′Q(w))−1 = (γ′Q(w))−1 −
(
D(ξ−1)ρ̂(w; ξ)(ξ′Q(w))−1

)′
(γ̂ − γ). (20)

¿From the proof of Theorem 1, we have the decomposition

√
n(R̂(s)−R(s)) =

√
n

∫ s

0

(J(w)− 1)dR(w) +

√
n

(
R̂(s)−

∫ s

0

J(w)dR(w)

)
, (21)

where, from (19) and because of (20),

R̂(s) =

∫ s

0

(γ′Q(w))−1J(w)dN(w)−
(∫ s

0

(ξ′Q(w))−1ρ̂(w; ξ)′D(ξ−1)J(w)dN(w)

)
(γ̂ − γ).
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The first term of
√

n(R̂(s)−R(s)) in (21) goes to zero in probability. Using the

above representation for R̂, the second term in (21) becomes

√
n

(∫ s

0

J(w)dN(w)

γ′Q(w)
−
∫ s

0

J(w)dR(w)

)

= −
√

n

(∫ s

0

ρ̂(w; ξ)′D(ξ−1)
J(w)dN(w)

ξ′Q(w)

)
(γ̂ − γ).

To further simplify our notation, let us define

• Ψ1(s;η) =
∫ s

0
ρ̂(w;η)′J(w)(η′Q(w))−1dN(w),

• Ψ2(s;η) = 1
n

∫ s

0
(D(ρ(w;η))− ρ(w;η)ρ(w;η)′)dN(w),

• Ψ3(s,γ) =
√

n
∫ s

0
J(w)(γ′Q(w))−1dM(w).

Then, in terms of these processes,

√
n(R̂(s)−R(s)) =

Ψ3(s;γ)−
√

n
(
Ψ1(s; ξ)D(ξ−1)D(γ)Ψ2(τ ;γ)−1U(τ ;γ)

)
+ op(1).

We now describe the limit of
√

n(R̂(s)−R(s)) in terms of the limits of Ψi, i =

1, 2, 3. We have

1

n
Ψ1(s;γ)

Pr−→
∫ s

0

ρ(w;γ)′
γ′q(w)dR(w)

γ′q(w)
=

∫ s

0

ρ(w;γ)′dR(w) = %(s;γ)′.

¿From the proof of Theorem 1, we also have that Ψ2(τ ;γ)
Pr−→ Υ(τ,γ), and

by Rebolledo’s martingale central limit theorem, if γ′q(w) > 0, then Ψ3(s;γ)

converges to a zero-mean Gaussian process on [0, τ ] with variance function s 7→
∫ s

0
{γ′q(w)}−1dR(w). From (18), we have that U(τ ;γ)

d→ N(0,Υ(τ,γ)).

Because D(ξ−1)D(γ)
Pr−→ D(1) and

√
n
∫ s

0
(J(w) − 1)dR(w) is asymptoti-

cally negligible, it follows that

√
n(R̂(s)−R(s)) = Ψ3(s,γ)− %(s;γ)′Υ(τ,γ)−1

[
1√
n

U(τ ;γ)

]
+ op(1),

which converges to a Gaussian process by virtue of the Gaussian process limits of

Ψ3(·,γ) and n−1/2U1(·;γ). The limiting variance function of
√

n(R̂(s)−R(s))
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now immediately follows from the above representation by observing that the

covariance process between Ψ3(·,γ) and U1(·,γ) is

〈Ψ3(·;γ),U1(·;γ)〉(s)

=
1

n

n∑

i=1

∫ s

0

J(w)γ′Qi(w)
1
nγ′Q(w)

[δi(w)− ρ(w;γ)]dR(w)

=

∫ s

0

J(w)
(

1
n

∑n
i=1 δi(w)γ′Qi(w)

)
1
nγ′Q(w)

dR(w)−
∫ s

0

J(w)ρ(w;γ)′dR(w).

Since

n−1
n∑

i=1

δi(w)γ′Qi(w) = n−1
n∑

i=1

k−1∑

j=0

γjQi,j(w) = n−1D(γ)Q(w),

then

〈Ψ3(·;γ),U1(·;γ)〉(s)

=

∫ s

0

J(w)
(

1
nD(γ)Q(w)

)
1
nγ′Q(w)

dR(w)−
∫ s

0

J(w)ρ(w;γ)′dR(w)

=

∫ s

0

J(w)ρ(w;γ)′dR(w)−
∫ s

0

J(w)ρ(w;γ)′dR(w) = 0.

This fact completes the proof of Theorem 2. ‖
Proof of Corollary 1: This follows by applying the functional delta-method

and invoking the asymptotic result in Theorem 2, since

ˆ̄F (·) = φ(R̂)(·) ≡ π
0≤w≤·

[
1− dR̂(w)

]
.

Thus,
√

n
[

ˆ̄F (·)− F̄ (·)
]

=
√

n
[
φ(R̂)(·)− φ(R)(·)

]
.

By the functional delta-method (cf., Andersen, et. al. (1993)), it follows that

the limiting process is dφ(R) ·W where, with W being the Gaussian limiting

process in Theorem 2,

dφ(R) ·W (s) =

∫

w∈[0,s]

{
π
[0,w)

(1− dR)

}
W (dw)

{
π
(w,s]

(1− dR)

}
= F̄ (s)W (s).

‖
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Table 1: Time until second personal foul in 28 games of Boston Celtics 2001-2002
season.

Date Pierce Walker Anderson Date Pierce Walker Anderson
1/5 21.02 30.22 43.43 2/27 42.06 23.21 45.36
1/7 24.25 45.54 17.19 3/4 28.51 33.59 16.20
1/9 6.55 19.47 23.28 3/8 34.56 32.53 40.44
1/11 15.35 16.37 25.40 3/10 40.33 15.35 28.33
1/19 39.08 30.32 43.53 3/11 27.56 46.21 28.05
1/23 16.2 4.16 39.52 3/13 9.54 36.21 28.12
1/25 34.59 46.44 16.33 3/16 27.09 11.11 23.33
1/26 19.10 38.40 20.17 3/18 40.36 33.21 17.04
1/29 28.22 37.43 25.41 3/24 41.44 36.28 19.13
1/31 32.00 45.52 39.11 4/5 32.23 8.17 41.27
2/3 11.25 19.09 11.59 4/7 7.53 37.31 13.43
2/12 17.39 25.43 22.51 4/8 28.34 35.58 41.48
2/13 28.47 31.15 2.41 4/10 26.32 28.02 29.33
2/19 23.42 31.28 40.03 4/15 30.47 40.40 42.13
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Figure 1: Estimated Cumulative Hazard Function of Minutes Played Until Com-
mitting the Second Foul.
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Figure 2: Estimated Survivor Function of Minutes Played Until Committing
the Second Foul.
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Figure 3: Confidence Regions (50%, 90%, 95%) for (γ1, γ2)
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