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0. ABSTRACT

Our subject is econometric estimation and inference concerning long—run economic
equilibria in models with stochastic trends. Our interest is focussed on single equation
specifications such as those employed in the error correction model (ECM) methodology of
David Hendry (1987, 1989 infer alic) and the semiparametric modified least squares
method of Phillips and Hansen (1989). We start by reviewing the prescriptions for empir-
ical time series research that are presently available. We argue that the diversity of
choices is confusing to practitioners and obscures the fact that statistical theory is clear
about optimal inference procedures. Part of the difficulty arises from the many alternative
time series representations of cointegrated systems. We present a detailed analysis of these
various representations, the links between them, and the estimator choices to which they
lead. Arn asymptotic theory is provided for a wide menu of econometric estimators and sys-
tem specifications, accommodating different levels of prior information about the presence
of unit roots and the nature of short—run dynamic adjustments. The single equation ECM
approach is studied in detail and our results lead to certain recommendations. Weak exog-
eneity and data coherence are generally insufficient for valid conditioning on the regressors
in this approach. Strong exogeneity and data coherency are sufficient to validate condi-
tioning. But the requirement of strong exogeneity rules out most cases of interest because
long—run economic equilibrium typically relates interdependent variables for which there is
substantial time series feedback. One antidote for this problem in practice is the inclusion
of leads as well as lags in the differences of the regressors. The simulations that we report,
as well as the asympiotic theory support the use of this procedure in practice. Our results
also support the use of dynamic specifications that involve lagged long—run equilibrium
relations rather than lagged differences in the dependent variable. Finally, our simulations
point to problems of overfitting in single equation ECM's. These appear to have important
implications for empirical research in terms of size distortions that are produced in signifi-
cance tests that utilize nominal critical values delivered by conventional asymptotic theory.
In sum, our results indicate that the single equation ECM methodology has good potential
for further development and improvement. But in comparison with the semi parametric
modified least squares method of Phillips and Hansen (1989) the latter method seems
superior for inferential purposes in most cases.




1. INTRODUCTION

One of the many intellectual gifts that the London School of Economics (LSE) has
bequeathed to the world of econometrics is error correction modeling. An early stimulus
for the work at I.SE in this field was the research of A. W. Phillips (1954, 1956, 1958, 1962)
on trade cycle and cyclical growth models. The error correction models (ECM’s) used by
Phillips were formulated in continuous time and raised problems of econometric estimation
that were dealt with slowly but steadily over the next two decades. Bergstrom (1989) pro-
vides an historical review of this line of research. A more direct stimulus came from the
work of Sargan (1964) on discrete time ECM’s and their application to aggregate wage and
price series in the UK. Sargan argued for the presence of levels in regressions that were
specified in differences and that were designed to model adjusiment processes. During the
1970’s these ideas became key elements in the methodology advocated by David Hendry.
They served to distinguish this methodology from the Box Jenkins techniques that were of
growing popularity in statistics and from the astructural modeling methods that were
beginning to emerge in North America. The fact that the levels of nonstationary economic
variables like wages and prices appear in regressions that are formulated in differences
requires that certain linear combinations of the levels must be stationary if the regressfon is
to have stationary residuals. Otherwise the regression would have nonstationary residuals
and would be spurious in the sense of Granger and Newbold (1874). For this reason ECM’s
were recognized at an early stage to carry some interesting statistical implications from
nonstationary series—see the discussion by Hend:y (1976) for example. Certainly the
empirical success of these models, especially the consumption equation of Davidson et al.
(1978), motivated analytic research and was in large part responsible for the birth of the

concept of cointegration in Granger (1981).



In the last few years cointegration has become an enormously active research ares
with a wide range of participants. It is exciting and unusual to see macroeconomists and
econometricians, applied economists and theorists as well as probabilists and statisticians
working together in the same field. It used to be said that the sun never sets on the British
empire. Now the sun never sets on the empire of cointegration. The concept has even
percolated its way through the popular press in Britain—see Gilbert (1989).

In spite of this enormous flurry of intellectual activity, there is still no agreement
about the prescriptions for applied econometric research. This is unfortunate because, as
we shall argue in the present paper, analytical research provides some very clear pointers
for empirical work. Moreover, in light of the empirical success of ECM modeling empirical
work itself provides some important guidelines. Finally, since ECM modeling is the
immediate precedent of cointegration it is enlightening to study the statistical properties of
the single equation empirical ECM’s that gave rise to the concept of cointegration in the
first place. In this sense the present article extends the analysis that was begun in Phillips
(1988a).

Let us start by looking at the presently available prescriptions. The principal of
these are:

(i) Unrestricted VAR and Bayesian VAR methods, such as those advocated by

Sims (1980) and Doan, Litterman and Sims (1984).

(i) Two step methods such as those advocated by Engle and Granger (1987) in
which long—run equilibrium relationships are first estimated and subsequently
used in the fitting of short—run dynamics.

(iii) Single equation ECM methods advocated by Hendry (1987) which seek a tenta-
tively adequate data characterization that encompasses rival models, displays
parameter constancy, has martingale difference errors with respect to a selected

information set and parsimoniously orthonormalizes the regressors.



(iv) Systems maximum likelihood methods proposed independently by Johansen
(1988) for VAR specifications and by Phillips (1988b) in a general time series
setting.

(v) Nonparametric spectral regression methods proposed by Phillips (1988¢) which
permit the direct estimation of long—run equilibrium relationships in the fre-
quency domain.

(vi) Single equation semiparametric least squares and instrumental variables
methods proposed by Phillips and Hansen (1989). These, like (v), permit direct
estimation of the long run relationship but involve a two step method whereby
the data is filtered in the first step using a nonparametric correction.

With all of these differing prescriptions it is difficult for the applied researcher to
decide what is appropriate in practice. The diversity of the choices obscures the fact that
statistical theory is quite clear about optimal inference procedures. As discussed in Phillips
(1988b) this depends on whether unit roots are incorporated in the specification, as they
are in systems ECM methods (iv), or whether they are implicitly estimated, as they are in
unrestricted VAR formulations (i). Of course, choices also depend on issues of modeling
methodology. This is particularly so in the case of (iii) where judgmental exercises in
model selection are an integral part of the procedure.

The main purpose of the present article is to discuss the issues that arise in the con-
text of the choices described above. We shall review what statistical theory has to say
about the properties of the various approaches and look into the question of whether it has
any guidance to offer empirical researchers. Since much of the empirical work in the field
in Britain and at LSE has involved single equation ECM methods (iii) this will form our
central focus of attention.

The plan of the paper is as follows. Section 2 describes various time series repre-
sentations of cointegrated systems. These include structural formulations, the triangular

system ECM representation, the autoregressive ECM representation, unrestricted VAR



representation, a latent variable representation and single equation ECM specifications.
Section 3 provides the asymptotic theory for a wide menu of estimator choices based on
single equation and systems approaches and utilizing different prior information about the
presence of unit roots and the nature of short run dynamic adjustment. Single equation
ECM’s are studied in detail and the use of lagged long—run equilibrium relations in
dynamic specification is found to have certain asymptotic advantages. Section 4 reports
the results of a simulation study that seeks to evaluate the sampling properties of single
equation approaches, again with an emphasis on the ECM methodology. Conclusions are
given in Section 5.

For convenience of the reader we list the notation and acronyms used in the paper

in Table 1.

Table 1 about here

2. COINTEGRATED SYSTEMS AND
TIME SERIES REPRESENTATIONS

2.1. General Issues

Much of the motivation for econometric research derives from the most obvious
characteristics of economic data. In the case of time series the typical characteristics are:
(i) joint dependence among the series; (ii) serial dependence in individual series; and
(ili) nonstationarity. The central core of simultaneous equations theory emerged in large
part because of (i) and attendant concerns of economists with problems of general equi-
librium. Time series and structural time series methods developed in response to (ii). And
modern unit root and integrated process theory has arisen in response to (iii).

In spite of these common characteristics, distinct modeling practices have developed
which emphasize certain features of the data, sometimes at the expense of others. Thus,

both ECM and VAR approaches treat serial dependence through the use of unrestricted




systems and the methodology of working from general towards restricted models. But in
VAR models no structural elements are included, whereas in ECM modeling long—run
structural characteristics are retained through the presence of partial equilibrium formula-
tions that furnish particular solutions to the system when the equation errors are set at
their expected value of zero. In contrast, simultaneous equations models (SEM’s) empha-
size structural elements and usually pay less attention to serial dependence. In fact the
very presence of serial dependence puts the identifiability of structural relationships at risk.
This deficiency was recognized long ago by Orcutt (1952), who likened simultaneous equa-
tions methodology to an attempt to learn about the internal workings of a radio by
twiddling the knobs on the outside of the set. In Orcutt’s words:

The problem thus is somewhat analogous to that of giving a radio to a

physicist and asking him to determine the operating characteristic of each

component part merely by observing the radio as it plays but without being

able in any way to take it apart or rearrange its circuits or perform

experiments on it (Orcutt (1952, p. 166)).

Cointegrated systems offer some new perspectives on these different models and
approaches because they admit SEM, VAR and ECM representations. In doing so, they
help to bring together apparently divergent methodologies within the same theoretical
framework. But, most usefully, in cointegrated systems theory the old ideas of simultan-
eity and prior information gain a new significance. In particular, they have an operational
statistical impact which helps to explain what is gained and what is lost in the individual
SEM, VAR and ECM representations. This has been explored recently in Phillips (1988b).
There it is shown that the use of prior information about nonstationarity (in the form of
the presence of unit roots) and about joint dependence (in the form of long-run structural
relations) has a major impact on estimation and inference, improving statistical efficiency,

removing bias and bringing the asymptotics within the realm of conventional theory so

that usual testing procedures apply.



2.2. A Typical Cointegrated System

Let y, be an n—vector I(1) process and u, be an n—vector stationary time series.

We partition these vectors as follows
(1) yt= y W = , 1 =m+l]

and assume that the generating mechanisms for y, 18 the cointegrated system
(2) Ve =F¥ar + Uy
(3) Bygy = Uy -

This system is in structural equation format and (2) may be regarded as a stochastic ver-

sion of the partial equilibrium relationship Y4 = ﬁ'yzt , with u,, rTepresenting

t
stationary deviations from equilibrium. Equation (3) is a reduced form which specifies y, .
as a general integrated process, the outcome of superposed shocks Uy, (s<t) that
influence the process period after period. The equation system (2) and (3) is typical of
more general models where the cointegrating relationship is multidimensional and where
deterministic trends may coexist with the stochastic trend in (3). We shall work with the
single equation relationship (2) because our attemtion will later concentrate on single
equation ECM methods.

In the general case u, is wd(0, fuu(A)) and absorbs all stationary short run
dynamic adjustments towards the partial equilibrium. An important subcase is the proto-
typical system where u, = mds(0,Z) or even iid(0,Z) . In both cases we shall assume that
¥ >0. This is a useful simplification. Indeed, as shown in Phillips (1988b), the
prototypical case may be treated as a pseudo—model for the general case of stationary

errors.  This is possible because we can comstruct a martingale difference sequence

u, = mds(0,%), with E=21rfuu(0), that approximates the actual time series




ut=wd(0, fuu()\)) in a well defined sense—see Hall and Heyde (1980, Chapter V).

Subsequently it will be useful to work with ¥ in partitioned format as

g L p4
g |11 “x

)

921 “22

with the partition conformable with (1).

The prototypical system is an important aid to intuition. Note that if we replace

(3) by
(3) Yo = A¥gyg T+ Ug

and require the coefficient matrix A to have stable roots, then the new system (2} and
(3) is a conventional SEM. More than that, it is a triangular system because (3)’ is a
reduced form. This means that when I is block diagonal (i.e. 09y =0 ) the Gaussian
MLE of f in (2) and (3) is delivered by OLS on (2). When ¥ is not block diagonal and is
unrestricted, then GLS and feasible GLS procedures on (2) and (3)’ are asymptotically
equivalent to the Gaussian MLE (see Lahiri and Schmidt (1978)).

These implications of a triangular structure continue o apply in the nonstationary
cointegrated system (2) and (3). Thus, when u, = iid N{0,X) and ¥ is block diagonal the
OLS estimate of # in (2) is the MLE. When I is not block diagonal, the MLE is obtain-

ed by using OLS on the augmented regression equation

(4) Vg = B Yoy + 1 AYg + Uy g4

- 1. _ vyl
Here uy gy = Uy = 0yp¥gplyy and 7= Z90p, -
Observe that (4) is a regression in levels that is augmented by the differences

Ayq, - In this respect (4) is related to typical ECM formulations, which are specified in



differences but include levels amongst the regressors. Indeed, subtracting y from (4
1t-1

we obtain the equation

(@) Ayyy = Ky14g = F'Yopg) + (148)" Aygy + Uy g
where §= —1. Equation (4)/ is now explicitly in ECM format.

2.3. The Triangular System ECM Representation

Taking differences of (2) we obtain a direct I{1) representation for the system viz.
(5) Ay, = Fugy + Buyy
(6) AYgy = Ugy
in which the errors are stationary. This can be written as
Ay =g+ (LA
BYgy = Ugy
or in systems format as

(7) Ay, =-ea’y, ; +v,

1 1 B
eL_[o]’ al:“’ﬁ')’vt:[o I ]ut‘

Equation (7) is a triangular system ECM representation. The model explains the dif-

where

ferences Ayt in terms of the lagged levels Y1 and stationary errors v, that are a

1
simple transform of the original errors u, on (2) and (3).
Triangular system representations like (7) are discussed in detail in Phillips (1988b).

They have several natural advantages which are worth emphasizing here:




1. The model (7) is linear in the unknown parameter B of the long—run equilib-
rium relationship;

2. The coefficient vector e is specified and is not estimated. This means that
identification is achieved from the specification of e rather than the specifica-
tion of martingale difference errors on an equation with explicit dynamics.
Further, since v, is stationary, the usual interpretation of a coefficient like the
first component of e in (7) as an adjustment coefficient loses its normal mean-
ing because it is no longer natural to.think of the equation as explaining the
extent of the adjustment towards equilibrium each period. In place of this
interpretation it is more natural, as in (2), to think of the equation as explain-
ing the stationary deviations about the equilibrium level that persist period
upon period.

3. All of the short run dynamics are absorbed into the residual process v, in (7).
Note that if u, in (2) and (3) is a finite order ARMA process then so is v, .

4. Model (7) retains the triangular structure of (2) and (3). This simplifies issues
of inference. And, as discussed above, many ideas from structural SEM theory
continue to apply, such as the reduction of the Gaussian MLE to OLS on a suit-

ably augmented single equation.

2.4. The Autoregressive ECM Representation

This works from an explicit version of the I{1) representation (5) and (6) which we

- write in systems form as
(8) Ay, =w,; W, = C(L)e,, C(L) = 2’33=0ch1 , Co=1.

Here w, is a linear process and ¢, is mds(0,Z) with £ > 0. Under the summability

t
condition

(9) 2 e <o
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and the assumption that y, is cointegrated with cointegrating dimension one we may

extract an autoregressive form of the ECM

(10)

J(L)Ay, =1y, _; +¢ -

A recent demonstration of this representation and the converse is given by Solo (1989).

Systems estimation of (10) is recommended and discussed by Johansen (1988).

In (10) J(L) is usually an infinite autoregressive lag polynomial although in

practice finite order approximations are employed. We observe:

1.
2.

The cointegrating coefficient a and subvector § appear nonlinearly in (10).
The coefficient vector < is unknown and must be estimated. Identification in
(10) is achieved by the reduction of the regression error to the mds ¢, . This
requires that an autoregressive operator J(L) of infinite order be accommo-
dated. In practice consistent estimation methods necessitate the use of
consistent order selection routines, such as those that are incorporated in the
Hannan and Kavalieris (1984) recursions. For vector systems these involve non-
trivial complications—see Hannan and Deistler (1988, pp. 246, 292if.) for
details and discussion. Note that these problems are bypassed in Johansen’s
(1988) approach by an assumption that the autoregression is of known finite
order.

The representation (10) is effectively a nonlinear in pa.rameters- reduced form.
Since 7 is unknown the model loses the simplicity of the triangular structure of
(7) and its linear in parameters feature. This is the price that is paid for the
explicit autoregressive representation.

Unlike (7), all short run dynamics are now embodied in J(L) . Full system
estimation requires that these coefficients be estimated simultaneously with 1

and «. As remarked above, since the order of J(L} is unknown in practice,

this will necessitate order selection methods and the use of nonlinear methods.
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2.5. The Latent Variable Representation

Working from (8) we replace w, by a martingale difference sequence approxima-
tion. In the present case this may be achieved by the so—called Beveridge Nelson
decomposition (see Beveridge and Nelson (1981) and Solo (1989)): '

(11) C(L) = C(1) + (L-1)C(L)
am=%qﬂ,Q=§H%.

Under (9), the series C(L) is square summable, i.e. Eglléj”z < m, and then we can write
w; = C(L)¢,
(12) = C(1)e, + W,_; — W,

where W, = C(L)Et is covariance stationary. Now, writing W, = C(1)¢, = mds(0,02)

where = C(1)£C(1)’ and we have the decomposition
W, = W, +w,_,; — W,

where 'Wt is an mds approximation to W, - This yields the mg approximation to ¥y

from
- " t
Y=Y, + W —W,, Yt=EIWj.

The mg Y, may be considered as a latent variable for y,, differing from it by the
stationary process \Tvo - i'vt . This formalization was mentioned recently by Deistler and
Anderson (1989).

Taking the argument further, we next observe that ¥y is cointegrated with cointe-
grating vector a or a'y, = I(0) if a'W, =0 as, iff ¥, =0 as, iff arfQ=0, iff

a’C(1) = 0. This leads us directly to the latent variable representation
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(13} a’Y, =0

where Y, = mg(Q) .

From the practical standpoint it would appear that the representation (13) has few
uses. However, under Gaussian assumpiions and zero initial conditions we find that
Y, = N(0,t01) . Thus (13) makes it apparent that asymptotically efficient estimation of the
cointegrating vector o« will rely on consistent estimation of {2 —the long—run covariance
matrix of w, . From this standpoint (13) is useful because it points to the fact that the
entire matrix ) must be estimated for efficient estimation of a.

The last observation is suggestive. It indicates that, in general, systems estimation
is required for the efficient estimation of a. This was the conclusion reached earlier in
Phillips (1988b). However, as the discussion of the prototypical model in §2.2 and the aug-
mented regression equation (4) indicates, there are cases where single equation least
squares is asymptotically efficient. Further examples are given in the methodological
discussion in Phillips (1988a). Onme of our objectives here is to extend that treatment to
the general case of stationary errors. In particular, we shall develop a modification to the
single equation ECM methodology which ensures that least squares is asymptotically

equivalent to full systems Gaussian estimation of «.

2.6. Single Equation ECM Methodology

The vector autoregressive ECM representation given in (10) is quite different from
the single equation empirical specifications that follows in the Davidson et al (1978) tradi-
tion for the consumption function. The single equation approach to ECM modeling is
explained in dgta.il in two papers by Hendry and Richard (1982, 1983} and in recent years
has become known as the Hendry methodology for empirica.l research. It is also supported
by a suite of computer software written by Hendry (1989) and designed to assist in its

implementation. The approach is to seek out a fenta.tive.ly adequate single equation
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specification that meets the following criteria, which we refer to as the Hendry—Richard

prescriptions.

1.

Data coherency: the model fits the data up to an error that is an mds with
respect to a given information set.

Valid conditioning the model validly conditions on variables that are weakly
exogenous with respect to the parameters of interest.

Encompassing. the selected equation encompasses rival models.

Theory compatible: the formulation is compatible with economic theory, partic-
ularly the long—run steady state properties of the central variables.
Parsimonious, orthogonal decision varigbles: the model is parsimonious in its
number of regressors and these are selected to be nearly orthogonal variables
that are interpretable in some economic sense.

Parameter constancy: the parameters of the model are constant over the

sample period and in ez post prediction tests.

The practical steps in finding a single equation model that satisfies these prescriptions

inevitably involve many judgmental elements. But the basic steps are as follows:

1.

Fit a general unrestricted dynamic specification of the autoregressive, distribut-
ed lag type.

Test the residuals from this equation for serial correlation, heterogeneity and
ARCH effects. The general unrestricted specification should pass the usual
residual diagnostic checks.

Integrate long—run equilibrium relations into the specification by prudent
parameterizations and perform temporal transformations on the regressors so
that they are approximately orthogonal and parsimonious in number.
Reestimate the transformed and parsimonious equation. This will usually be

specified in differences with levels as regressors to accommodate the long-run
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equilibrium relationship. Perform diagnostic checks on the residuals and test
for parameter constancy within sample and by ez post prediction tesis.
For a model such as (2) and (3) above, the starting point in the single equation approach to

modeling y;, is a general unrestricted regression of the form:
(14) Yy =8y X 4%,

Here x, is a p—vector of autoregressive and distributed lag components. Typically it will

t
contain lagged values of Aylt and present and lagged values of Ay2t . Temporal trans-
formations and pretesting may reduce the number of elements in this vector and replace
some differences by higher order differences to achieve a parsimonious partial orthogon-
alization of the regressors. In the Hendry approach what appears to be important is that

the chosen regressors adequately represent the information set embodied in the past history

of Ay,, and the present and past history of Ay2t . We could write (14) explicitly as

—_a p ¥ Fr =
(15) Y14 = 8y + By Ty g + B oli Ay g + ¥y
allowing for the fact that in practice some of these regressors may be eliminated and others
may be higher differences. In ECM format this takes the form
— F s ¥ p ’ )
(16) Ayyy = To0rsy =87 1) + By TruBype g + Hemofu ooy + ¥y -

In order that the past history be fully captured in the information set we would expect to
have to allow p-~wo as the sample size T-w. The intended equation on which the

empirical regression (15) is based would then have the form

(17) Y11= 2"Vay + By Ty goie + BemoiByop g + 7 -

The error on (17), 7, » is a martingale difference sequence with respect to the filtration

Fo_ 1= 0{Byy 1 D¥q4gs -+ BYgp AV ys -0}, P& E(n|F_,)=0. In fac,
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from (2) we have a= g and

(18) n, = vy — Bluyy (%) -

The intended equation (17) would seem to satisfy the Hendry—Richard prescrip-
tions. However, as we shall explore in §3.4 below, regression specifications such as (15)
encounter difficulties in general because the truncation error is non negligible due to shock
persistence. Moreover, as pointed out earlier in Phillips (1988a) there is a failure of valid
conditioning (#2 in the prescriptions) in (15) and (17), in general, due to the presence of
feedback from u;, to ug . We shall systematically explore the effects of this failure

below and suggest an antidote for the general case.

2.7. The Unrestricted VAR Representation

We can write (2) and (3) in the form
Y14 = ﬂ’y2t—1 + (1, ﬁ')ut

Yo = A¥gy g tug, A=1

or

ytszt—l"""t’ G=

Then, if v, has the autoregressive form K(L)v, = ¢, with ¢, = iid(0, Z,) and with the

t
lag operator K(L) possibly of infinite order we deduce the representation

(19) B(L)y, = ¢, » B(L) = K(L)(1-GL).

The autoregressive polynomial B(L) has m =n-—1 unit roots, which are implicitly esti-
mated in an unrestricted regression. As discussed in Phillips (1988b) this has nontrivial

effects on the asymptotic theory of inference concerning S .



16

2.8. Implications
With so many ways of representing and working with cointegrated systems it is

hardly surprising that there is mo consensus about how best to proceed in empirical

research. We can classify the many possibilities as follows:

{OLS, limited information

single
equga.tion structural estimation
- . hod .
festnc_tqd by methocs two step cointegrated
smposition of systems systems estimators
unit roots methods < ‘
Jull systems mazimum
Time | likelihood
(i) domain 1 (autor e
egressive distributed
methods lag est%mation
[single )
equation
q lOLS, 2SLS, LIML
|unrestricted )
[FIML, 3SLS or asymptotically
equivalent structural methods
| 8ystems 1
| VAR’s, vector ARMA’s
{single equation
Frequency restricted systems estimation
(ii) domain
methods unrestricted

{single equation

systems estimation

Frequency domain methods were suggested in Phillips (1988c). Since these methods were
originally designed for regression models with strictly exogenous regressors, they raise
questions éoncernjng the treatment of endogeneity of the regressors (e.g. in (2)) and issues
about the choice of spectral bands to be used in the regression. More will be said about the

alternative provided by these methods in §3.2 below.
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Asymptotic theory, at least, provides some guidance concerning optimal choices in
(i) and (ii). These are indicated by underlining in the various branches of the tree above
and they involve the use of systems methods on the model in restricted form so that all
unit roots are explicitly included. On the face of it, this optimal decision path would seem
to exclude single equation methods. However, it is known that semiparametric corrections,
as in Phillips and Hansen (1989) can produce optimal single equation techniques. As we
shall see below in §3.4, the same is true of the Hendry approach with some appmpriate

modifications to the implementation procedure described above.

3. ASYMPTOTIC THEORY

3.1. The Prototypical Case

This is the simple cointegrated system (2) and (3) with u, 2iid(0,Z) . We shall
select typical entries in the tree of time domain estimation possibilities shown in §2.8(i). It
will be helpful in presenting the outcomes to set S(r) = BM(Z) and to partition S con-

formably with u, in (1) as S’ =(S;, S5) . The asymptotic results given below for this

t
prototypical case are easily derived from those given in Phillips (1888b) and Phillips and

Hansen (1989).
1. OLS: Let £* be the single equation OLS estimator of § in (1). Then

-1
1 1
(20) T(B* - f) + [foszsé] (1is5ds, + oy,) -
Using Lemma 3.1 of Phillips (1989) we write
’ 1 X
S; = 05159955 + 5.2

J - :
where S, o(r) = BM(0};,5) and 04y 5= 04,5550, is the conditional variance of uy,

given u,, . Then the limit variate given in (20) may be written
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AN 16 ¢ )7 /Ls, a5k 16 ¢ )7
(21) [165555)  Ugsytsy.) + {foszsé] (135298 %5p05, + [168:83) o

The first term of (21) is a Gaussian mixture of the form

-1
(22) IG>0N(0, 74.4G)AP(G), G = []észsé] .

The second term is a matrix unit root distribution, arising from the m unit roots in y,, .
The third term is a bias term arising from the contemporaneous correlation of u;, and
Uy, and thereby the endogeneity of the regressor y,, .

Observe that in general (i.e. when o, ¢ 0) the second and third terms of (21)
induce asymptotic bias, asymmetry and nuisance parameters (i.e. }322 » T93 } into the
limit distribution. These effects make the OLS estimator f* a poor candidate for infer-
ence, even though it is O(1/T) consistent.

When 0, =0, the second and third terms of (21) are null and the limit theory
comes from the first term alone and is therefore the Gaussian mixture {22). This compon-
ent is, in fact, the same as the limit theory for the Gaussian MLE of §. Indeed f* is the
Gaussian MLE in this case because the system is completely triangular (i.e. has a diagonal
error covariance matrix as well as a triangular structural matrix). Note also that when

0oy = 0 theregressor y,, in (2) is strictly exogenous.

2. 2SLS, LIML and FIML: Using y,, , as a vector of instruments from the
reduced form (3) we obtain the 2SLS estimator J in (2). The asymptotics for /5 are
given by:

] -1
T(B-H) » [1(113255] (f1s,45,)

1g o] el 1s o] 22 1
(23) = [185053) 15888, 0) + [155553) 138950550,

Compared with (22) this limit variate eliminates one source of asymptotic bias—the third

term of (22). But it still involves a matrix unit root distribution. This is because the unit
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roots in (3) are implicitly estimated in the first stage of the 25LS regression. Also the
nuisance parameters (I,,, 05,) still figure in the limit except when o,; =0. Thus,
although single equation structural methods like 25LS seem to provide some improvement
over single equation least squares, they are still poor candidates for inference.

Observe also that since (2) and (3) are triangular and (3) is in reduced form, FIML
on the system of equations is the same as LIML on (2). But LIML and 2SLS are asymp-
totically equivalent (as in the stationary regressor case). Thus, (23) gives the asymptotics
for the FIML estimator of 8 as well as 2SL.S.

3. Full system MLE (restricted by unit roots): In this case the Gaussian like-

lihood is the product of the conditional and marginal densities of g, and Ug,

T
17 pdf(uy,fu,, )pdi(u,, ) .

The conditional log likelihood is

2
T , -

(24) —T/2)n(0y;.9) = (1/2 013, 9)% [Ylt —Byg - "21352“%] :

The marginal log likelihood is

T
—(T/2)a] 55| - (1/2)5 3 Thu,,

and does not involve B. Thus the full system MLE of # is obtained by maximizing (24). |
Equivalently, this is just OLS on the augmented linear model (4), given earlier. Let ﬁT be
the estimate of § obtained in this way. Then, in an obvious partitioned regression nota-

tion,
(25) ﬁt = (YiQ Ayz)_I(Yéq Ayl)

and the following asymptotics apply:

-1
(26) (61 - 5= [15,85)  (195498,.9)
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This is equivalent to the first term of (21) and thus the limit distribution is the Gaussian
mixture given in (22). Full system MLE with prior information about the unit roots in (3)
is therefore consistent and asymptotically median unbiased. As shown in Theorem 3.2 of
Phillips (1989) the limit distribution (22) involves only scale parameters. It can be

expressed in the equivalent form

(21) J o0 81 T PCE

where g = ¢’ [IéS2Sé]—1e y Wy = BM(Im) and e is any unit vector.

A major effect of (27) is that the scale nuisance parameters are readily eliminated
by the use of conventional test statistics. In particular, asymptotic chi-—squared criteriz
are obtained from the usual construction of Wald, Lagrange multiplier and likelihood ratic
tests. Thus, full system maximum likelihood in the presence of prior information abou:

unit roots offers major advantages for statistical inference.

3.2. Models with Weakly Dependent Errors

As argued in Phillips (1988b), these offer no new complications as far as the asymp-
totic theory is concerned. The prototypical model considered above is then simply arn
approximation to the true mode] in which the weakly dependent error is replaced by its
mds approximation. The only change in the theory given in the last section for full system
maximum likelihood (restricted by the use of prior information on the number of unit
roots) is that the covariance matrix ¥ is now the long—run covariance matrix Muu(e}
where { ()) is the spectral density matrix of the true error sequence u, .

The above remarks apply equally well to the case of finite order autoregressive ECM
representations such as (10), with the order of the matrix polynomial J(L) finite. Thus,
the asymptotic theory in Johansen (1988) is included as a subcase. However, these remarks
do not apply to unrestricied VAR’s in levels, where unit roots are not imposed but are

implicitly estimated by the unrestricted regression. In such cases the limit distribution
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theory for the estimated vector f is of the same form as (23) and carries the matrix unit

root component [] (l)sté] —1( / g‘)SzdSé) . By contrast ECM formulations have the natural
advantage that they work to model stationary deviations about the long—run equilibria
and eliminate unit roots by construction.

The time series case may be handled most simply by employing spectral regression
methods. These are the subject of Phillips (1988c) to which the reader is referred. We
shall mention only the main ideas and results here. Model (2) and (3) is transformed to

the frequency domain by taking discrete Fourier transforms (dft’s) leading to

(28) wi(A) = ef'wo(A) + w ()

where, for example, wy(}) = (2w’I‘)—1/ 22}‘y*teit)\

is the dft if yi, = (ylt’ Ays,) . Effi-
cient and band spectral estimators of § are obtained by applying weighted least squares to
(28), using estimates of the spectra of u, as the weights. Because (28) is linear in f the

estimators have the simple form:

. . -1 N
g = [Ehfe’f;i(wj)efzz(wj)'] (=Y Epa(w) (0)e
B = g0 O sy (0)e/e (0 e

Here Wy = /M (j=-M+1, ..., M) iab(-) denotes any consistent estimate of the
cross spectrum of Yat and Yt and M is a bandwidth parameter satisfying M -« and
M = o(TH?y .

The asymptotics for ﬂ# and ﬂ# are identical with that of the full system MLE
given in (26). They have the advantage of allowing for general stationary errors and they
avoid methodological issues of specifying finite parameter error schemes and model selec-
tion issues with respect to short run dynamics. Both estimates ﬂ# and ﬂﬁ arise from
linear estimating equations and amount to the use of feasible GLS in the frequency domain

on (28) over full and restricted frequency bands respectively.




22

One disadvantage of ﬁ# and ﬁ%é is that they both rely on an initial estimate of
the residual spectrum i‘uu(-) . It is possible to avoid this two step procedure by using an
augmented regression in the frequency domain that is analogous to (4) in the time domain.

Indeed, extending (4) to the frequency domain we have
1
w (3) = Brwy(A) + aélzgzwAyz(A) + Wy o(A)

. 1 .
with w; o(3) = wul()\) - 0231252wu2('\) and E=2xf (0). Nowif A+0 as T~ we

have

Wy (A
1
w(}) = 2 N(0, (1/2m)X)
(3

so that w, ,(}) is asymptotically independent of w_ (A)=w,_ (A). The system of
1.2 ll2 Ayz

equations (28) is now

(29) Wwi(2) = B wy(2) + ani Tpgw Ay, + w150
(30) Wy, ) =Wy ().

When A~ 0 as T-o we have

Thus, the system {29) and (30) has block independent errors asymptotically and at the
same time retains the triangular structure of (2) and (3). It is therefore apparent that OLS
applied to (29) using frequencies in the vicinity of the origin is asymptotically equivalent to
the systems estimators ﬂ# and 5# .
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Hence the arguments that lead to the use of OLS in the time domain on the aug-
mented regression (4) apply equally well to the frequency domain augmented regression

(29).

3.3. Fully Modified OLS

This is an optimal single equation method based on the use of OLS on (2) with
semiparametric corrections for serial correlation and endogeneity. The method is devel-
oped in Phillips and Hansen (1989), to which the reader is referred for a detailed
discussion. = The heuristic idea in the procedure is to modify the OLS estimator
g = (YéYz)_lYéyl so that the limit distribution given in (21) involves only the leading
term. The third term may be eliminated by employing a serial correlation correction to

Temove oy . Recall that in the time series case

991 = Ty oBlugguyy) -
If &21 is a consistent estimator of o1 then we have a modified OLS estimator
-1 .
Frr = (Y5Yo) ~(Yay, — Toyy)

whose asymptotics are

-1
(31) (5 - ) » [198,8)  (1g,d8y).

thereby eliminating the third term of (21). The further modification for the endogeneity of
Yoy B (2) is required to remove the correlation between the Brownian motions S, and

Sy in (31). This is achieved by constructing

+ _ - |
Y1t = Y14~ 051299879 »
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.+=A

" 1_\
—Lg0091

where A is a consistent estimate of A =Z[_,E(upqu) and & is conmsistent for I.
These estimates can be constructed from the residuals of a preliminary OLS regression on
(2).

The fully modified OLS estimator employs both the serial correlation and endog-

eneity corrections and is given by
v Y liveot _mit
(32) B = (Y5Y,) (Y] 1) .

With these corrections the new estimator ﬁ+ has the same asymptotic behavior as the full
systems MLE. Observe that it is a two step estimator, however, and relies on the prelim-
inary construction of y';t and &7 .

Fully modified test statistics that are based on ﬁ+ may be constructed in the usual

way. Thus, for t—ratios we define
+_ gt ‘ o+
ti =(F; —A) s;

+42 _ . JE, | . s, el .
where (87)° =0y, o[(Y4Y,) ")y, Here &, o=0;; ~ 04 Y550y, and is based on
components of £ which is again an estimate of the long run covariance matrix
L= 21rfuu(0) . With this construction s"l!' is a fully modified standard error and we have
+
t; 2 N(0,1)
8o that conventional asymptotic t—tests apply. General tests of analytic restrictions such

as
H;: k(f) =0, with H(f) = 8h/88’ of full rank q

may also be conducted in the usual manner. Thus, the Wald test has the form
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g
Wo = h(gt) [H"‘VTH+ ] 0AD)
. - -1 .
with Vo= @y, o(Y5Yo) " and BY = H(FF). Since

2
W x q
under Hy, conventional chi—squared critical values apply.
Simulations reported in Hansen and Phillips (1989) and Phillips and Hansen (1989)
indicate that these tests perform adequately in samples of size T = 50, at least for small

scale models with only two or three variables in the long—run relationship.

3.4. Single Equation ECM’s

Suppose we are interested in building a single equation ECM to model the long—run

cointegrating relationship (2) and the stationary deviations u,;, and the stationary devia-

t
tions u,, about it. As we have seen in §2.6, the Hendry methodology leads to an equation
of the form (15) or (16), allowing for the fact that some of the regressors may be eliminated
due to insignificant coefficients and others may be replaced by higher order differences for
reasons of explanatory power, parsimony or economic interpretability. As argued in that
section, these equations are empirical versions of (17), whose error 7, 1is an mds with

respect to the filtration o= cr{Aylt_l, Aylt—2’ cae, Ath, Ayzt_l, .3

Suppose the generating mechanism for u, in (2) and (3) is the linear process

(33) U, = 7_nAe

LA = 1/2
j___.o j t._j 1 AO - I ) ESJ "AJ“ <o

where (¢,) =1id N(0,E) . Assume also that (33) can be inverted and written in auto-

regressive form as
(34) B(L)y, = ¢, B(L) = }3‘3;0BjLJ, B,=1.

This will be useful in what follows. We shall now try to build a single equation model from

this explicit representation for the error.
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Observe that if m is orthogonal to £f&y2t and the past history
(Ayt__l, Ay _9» ...) then n, s orthogonal to €94 and the past history
(Et—l’ € g+ .}, where we partition € conformably with u,. Under Gaussian

assumptions we deduce that

2—1

22‘21. = iid N(0, 011_2) )

T = €14~ 921
Thus, 7, is just €}, centered about its conditional mean given ¢,, . The conditional log
likelihood of (¢;,)] given (eg,)] is:

2
T g
~T/2) 0119 — (1/2 071 9)%) [fu - "21’352%] :

Maximizing this is equivalent to minimizing the sum of squares

2
E1{(by3(L), byg(L))u, — a5y T55 by (L), Byp(L)u,)

where B(L) in (34) is partitioned conformably with u, . This is the same as running least

squares on the equation

(35) Y1t = ﬁ'y2t + dI(L)(ylt "ﬂ'}'m) + d2(L)’AY2t +
where
- , 5l - J
dl(L) = bll(L) - 021252}321(L) —-1= Ec;____ldle , say

—— I 1 — j
dy(L) = byo(L) — 05,559 Boo(L) = X5 _dp 17, say.

In spite of their apparent similarity equations (35) and (17) can have very different
implications in practice. Suppose, for example, that the polynomials dl(L) and d2(L) in
(35) are of finite degree with d (L) =d;;L and dy(L) = dgy+dy L. Then (35) is
simply '
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(36) Yiq = B ¥gy +dy (Vg =B ¥gy_g) + dgglygy +dg Ayyy 4+

Estimation of § in (36) involves a simple nonlinear least squares regression.
The corresponding equation (17) can be deduced from (36) by taking initial condi-

tions at t =0 setting y; =0 and writing

_ot—1 o1
(37) Y141 = Zem1 D10k 0 Y211 = Pk=18Y20k -

Then (17) is

s t—1 $—1,,
(38) V1g = B'¥o + B 1V 1ex + B0l BV x +

where f, =d, (¥k) , f20 =dgg f21 =dy - duﬁ, £2k =0, k> 1. Asisapparent
from these formulae, the coefficients in (38) and by implication the coefficients in (17), in
general, do not decay as the lag increases. This is because the representation relies on the
partial sums (37) where the weight of individual innovations is unity. Thus, in order to
model short—run dynamics using the variables Aylt-—k and Ay2t—k it is necessary, in
general, to include all lags because of shock persistence. Of course, this is quite impractical
in applications and cannot be justified in theory where truncation arguments are needed to
develop the asymptotics. These arguments strongly support the use of the nonlinear
formulation (35) over linear models like (17).

It is illuminating to develop the asymptotics in the special case (36) and examine
the practical impact of truncation in the usual ECM formulation that is based on (38). For

specificity assume that terms in (38) are truncated at a single lag. The fitted regression is

(39) Y1 = B¥gy + £118¥ 41 + 90B¥gq + 191 8¥g4 1 + 7y -

This is equivalent to replacing the composite variable yy, — Yo 1 in (36) by the

regressor Ay, ;- Next suppose that the true generating mechanism for the error u, in
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(2) and (3) is (34) with a diagonal autoregressive operator and a scalar error covariance

matrix, i.e.

b (L) 0
40 B(L)=| L E=d% .
(40) (L) 0 Byy) n

Let the degrees of the block diagonal elements of B(L) all be unity. Then we have

dy(L) = by (L) =1 =d;L, Byy(L) =1-D,,L, say

and
(41) dy(L) = byo(L) — 0, Fp3Boy(L) = 0.

Equation (36) is correctly specified but has surplus variables 1‘_\y2t and Ay, . since
dgg = dgy = 0 in view of (41). The error in (36) is simply 1, = ¢, = iid N(0, 0?) and is
independent of Uy for all t and 5. Some standard asymptotic calculations now lead to

the following results.

(i) OLS on equation (2)
e o171
TG —f) % [ jGS2Sé] UgSydSp) =] _ N, uy;@)aP(G)
-1
where G = [1(1)528:'2] and

—2
S w b,,(1) 0
1 _eM@), 0= | M _ 2| o
S, 0 0y 0 B,o(1) " Bs,(1)

(ii) NLS on equation (36)

) -1
T(B-5)» [f}]szsé] (/35,d8,) = I, N, 03, G)R(G)
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(iii) OLS on equation (39}
. e o)) 31 1 -1
TE-h) = [f oszsé] 17082981 — [/gS4d85Lg + L1]Q"a}
where

LO = [ﬁx I, I] + Ll = [Aiﬁ’ A[’}’ Ai]

— Fl —1
Ay = By _oBluggusy) = Vooll — Do)

_ -1
Ay =3 _ E(uggusy) = DogVyy + Vool = Dyo)
B'VooB + 21 —dyy)vy; B'DygVay Vo
Q=1 VyoDjsh Voo DoyVgy
Vool VooDsg Voo
, 2
¢ =11 -dy)vyp 0,01, vy = E(ugy),

These results show that for this special autoregressive cointegrated system, §* and
B are asymptotically equivalent and the limit distribution given in (i) and (ii) is the same
as that of the full system MLE and spectral regression estimators described in §3.1 and

§3.2. Observe that OLS in (2) ignores the dynamic error structure of u Yet it is still

1t
asymptotically equivalent to the MLE which jointly estimates the error dynamics. This
outcome is indicative of a general result: viz. that efficient estimation of @ can be
achieved without fully estimating the error dynamics of equation {2). Note that NLS on
equation (36) does fit the error dynamics on (2) by the inclusion of the autoregressive term.
Yet this does not improve the asymptotic efficiency of the estimator. On the other hand,
there is a clear advantage to the use of NLS on (36) in practice, even in this simple case.

~ This is that the error 7, is an mds and inference can proceed in the usual way with

asymptotic normal t—ratios and asymptotic chi—squared criteria constructed in the usual
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fashion. This is not true of OLS on (2). The usual test statistics need to be modified in
the latter case to allow for the serial dependence in u,, - This is achieved by the use of
long-run variance estimates in the construction of the statistics rather than the usual error
sum of squares. The situation is identical to that described in the study of Phillips and
Park (1988) on the asymptotic equivalence of OLS and GLS in cointegrating regressions
with exogenous regressors.

The outcome for case (iii} shows the disadvantages of working with equation (39).
In fact, Aylt—l is not an adequate proxy for the lagged cointegrating relationship
Yit—1 —ﬁ'yzt_l that appears in (36). As a result, the limit distribution of § in (39)
involves second order bias effects, is asymmetric and involves non scale nuisance param-
eters. These factors suggest that, at least on the basis of asymptotic theory, this type of
ECM specification will be a poor choice for inference compared with models like (36). The
extent of these problems in finite samples will be explored in §4.

The structure imposed by (40) on the error dynamics is very special because it
ensures that u,, and u,y, areincoherent time series, i.e. they are uncorrelated at all lags
and the spectral density matrix of u, is block diagonal, just like the matrices in (40).
This ensures that the regressor You in (2) is strongly exogenous and we have the following

equivalence of the wide sense conditional expectations

(42) Bluy ) (ug)') = Bluyyl(vg)? , (u)®, 1) -

Of course u;, and u,, will generally be coherent time series and (42} will not
apply. Some simple examples are studied in Phillips (1988a). When this happens there is
a failure of valid conditioning in models like (2) end (35). The consequenées are easy to
explore in the general case. We shall work with the general ECM specification (35) and
assume that the lag polynomials d,(L) and d,(L) are either of finite degree p or that
they are of inﬁnite‘degree and in the regression p is permitted to move to infinity as

T-o but at the controlled rate p=o(T1/ 3), so that conventional asymptotic
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arguments, as in Berk (1974) and Said and Dickey (1984), may be employed to accom-

modate the infinite dimensional case. The relevant first order conditions for NLS are:

E,T][_‘{Ylt - I?yQt - al(L)(ylt - ﬁyi’t) - az(L)AY2t}(Y2t - &I(L)Y2t) =0

which we may rewrite in the form

(43) T {16, (1) — 803y, — Brygy) + (BB) (1~ &y L)y

+ [dg(1) = &) Ay, + (1 -3 (L)lyy = 0.
Since  d,(L)—d;(L), &2(L)-—d2(L)=op(1) and since the sample moments
{T‘%’fym_kyét} are asymptotically collinear for all fixed k (the case of infinite

operators di(L) can be dealt with by truncation arguments) we find that (43) gives rise to

the asymptotics

1

(44) () » (1 - 4,138,851 - 4,1)1g8,35}
where

S
(45) 7| = BM(®).

Sy

We define ¢, = (n,, u; " and then
t tr 2t
, 1
I R SUY
(=

e, = G(L)e, , say.
{ i’

The limit covariance matrix in (45) is therefore

The limit distribution represented by (44) can alternatively be decomposed as
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-1
-1[,1 , 1 1 sl
(49) (1= dy () [158,85)  {705298,.2 + 15295595501 -

As is apparent from this formula bias, asymmetry and non scale nuisance parameters are &
feature of the limit distribution in the general case. These features are due to the non
diagonal nature of ¢ arising from the feedback from 7 to Uy, -

The antidote to the failure of (35) to produce an asymptotically efficient estimator
of B in the general case is the elimination of this feedback. This can be achieved by
including leads of Ay2t in the regression so that in the limit A is orthogonal to the

entire history (Ayzt)“_”m . The revised specification has the form

—1."
(35) Yu = ﬁ'Y2t + dl(L)(ylt - ﬂ'Ym) + d2(L)'A)'2t + d3(L ) Ath +y

where

—X

do(L ) = L

=1%3x
and d;(L) and dy(L) are as before in (35). The coefficients of da(L_l) are delivered
from the linear least squares projection

- ®

E(n, (4993 +1) = Te= 1933904 4k -

The new error on (35)” is
v, =1 —d (L_l)’u
t t 3 2t
. ' . .__ . m
and is an mds with respect to the filtration K, _, = o{uy, ;,u5, o) -+-5 (0g)7) -
Following the same line of argument as that above based on first order conditions

we deduce the following asymptotics for the NLS estimator of £ in (35)':

. -1
(47) T(3-F) » (1 - d,(1)) " [ 1(1)3255] (/3s,dB,) .
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Now observe that

S
Y| = BM(D)
S,

with covariance matrix

(1- dl(l))w11_2 0

(48) ¥ =
0 19

To verify the form of the matrix given in (48) we note the following:
(i) ¢ 1is block diagonal because if ¢, = (Vt, uét)' then by virtue of the

construction of ¥, we have a block diagonal autocovariance function

i
fyc(h) = E((, ¢} +h) . Thus the spectral density matrix

P | ihA
f(c(A) = (27) Z‘E=_m'yc(h)e
is also block diagonal. This includes the value of fCC(A) at the origin and,

hence, ¥ .
t—1

-0

(i) Theerror v, is that part of u,, thatis orthogonal to (u;,) and (u2s):u .
The long run variance of (1 — dl(l))'"lut is the same as the long run variance
of (1 —dl(L))_lut or v, where v, =d,(L)y, + 7, . But this is equivalent to

the long run variance of u;, given (u2s) which is w;; ,. Hence

mw
—® )
~1
Irvar(l - d,(1)) "y, = wq.9
go that

Irvar(y,) = (1 -_dl(l))2w11_2 .

Next we observe that



34

(1—d,(1))77s, =5, ,

and thus (47) may also be written as

i -1
T(B-p) + []$S2Sé] (118,35, ).

Hence the NLS estimator of S from (35)’ is asymptotically equivalent to the full system
MLE and spectral regression estimator.
To sum up, the results of this section are as follows:

(1) Asymptotically efficient estimation of long run equilibrium relationships
can be achieved by a variety of methods. In particular, the following
methods are fully efficient and asymptotically median unbiased:

- full systems MLE (restricted by the imposition of unit roots)
- fully modified OLS (with semiparametric serial correlation and
endogeneity corrections)
- systems estimation in the frequency domain (restricted by the imposition
of unit roots).
single equatior band spectral estimation {with the dft of Ay2t as an
additional regressor)
+ nonlinear ECM’s (with lagged equilibrium relations and leads of A_v?t
as Iegressors)
Each of these methods achieves full efficiency in the limit by working to
estimate (and eliminate) the effects of long run feedback between the errors
on the long run equilibrium relationship (i.e. Uy, ) and the errors that
drive the regressors (i.e. Ugy ). The methods are asymptotically equivalent
for the estimation of long~run economic equilibria and lead to conventional
chi—squared criteria for inferential purposes with respect to these coeffi-

cients.
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(2) OLS, conventionél SEM methods, and unrestricted VAR’s lead in general
to estimators that are asymptotically biased and whose distributions
involve unit root asymptotics and nontrivial nuisance parameters.

(3) In ECM modelling, weak exogeneity of the regressors is not sufficient for
valid conditioning. With feedback from u; to u,, leads of Ay, must
be included in the ECM specifications to obtain errors that form an mds
sequence with respect to the past history of u, and the full history of u, .
This is important for estimator efficiency, unbiasedness and for inference.

(4) In ECM modelling there is an asymptotic advantage to the use of lagged
equilibrium relationships in the regression and thereby the use of non linear
least squares (NLS). This is because lags of Ay, are not in general an
adequate proxy for the past history of U, because of the persistence in
the effects of the innovations that arises from the presence of unit roots in
the system. Thus, asymptotic theory favors the use of NLS on non linear in
parameters ECM’s rather than simply OLS on linear ECM models formu-
lated with lags (and possibly leads) of differences in all variables in the
system. In effect, the requisite information set for valid conditioning is
better modelled by employing lagged equilibria than it is by the use of
lagged differences in the dependent variable.

4. SIMULATIONS

The simulations reported here are intended to address the small sample performance
of the following procedures: OLS, fully modified ("FM") OLS, linear ECM or Hendry
("H") estimators based on (17), and our new estimator ("PL") based on the nonlinear
regression equations (35) and (35)’. The data generating process we usé is related to that

of Banerjee et al. (1986) and is identical to the one in Phillips and Hansen (1989). The
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model is
(49) Yyg = o+ Byg + Uy
(50) Y2t=Y2t_l+u2t,t=1,.-.,T
U1t 3y
=u =¢+0 ;, ¢ ;=iid N(0,%) .
oy
We set

0.3 04 1 c
¥ 21

921 0.6 T91 1

and allow f,, and o,; to vary. Earlier work in Phillips and Hansen (1989) established
these as the critical parameters. We consider values of {0.8,0.4, 0.0,-0.8} for 821 and
{-0.85,~0.5,0.5} for gy, . Our simulation model is thus a special case of the general
cointegrated system (2) & (3) studied earlier. Here y,, is a scalar regressor and the time
series dyamics are generated by an MA(1). The number of replications for all simulations
is 10,000.

To make the OLS t—statistic comparable to those of the other estimators, we use an
estimate of the long run variance 5’11 rather than the standard variance estimator, thus
following the recommended procedure in Phillips and Park (1988) for models with exogen-
ous regressors. The nuisance parameter estimates that enter the fully modified procedure
are obtained by using a triangular Bartlett window of lag length 5, the OLS residuals ﬁlt
and ug, = Ay,, to calculate ﬁ21 and 2\21 . In order to distinguish the separate effects

of including additional lags and adding leads to the Hendry style regression equations, we

employ models with the following combinations of lags and leads of the covariates Ayl {
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and Ayg, : (2,0), (4,0), (2,1) and (4,2). The same combinations of lags and leads are used
for our nonlinear estimator (PL). Thus, 10 estimators were calculated at each replication.
(The simulations reported in Phillips and Hansen (1989) studied the first three (OLS,
FM(5), and H(2,0)) of these estimators.)

For example, the nonlinear regression equation for the PL(2,1) model is:

(51) Yig = @+ Bygy + dyy(yyyg — @ = Bygy )
+dp9(yyy o — &—Bygy_g) + dyglyy,

+dg)A¥gy 1 + ogBygy o+ dg1Aygy 1 + ¥ -

Since (51) is bilinear in the parameters {a,§} and {d;1> 410 dog dgys d

21 992 431}
nonlinear least squares estimation requires an iterative method to minimize the residual
sum of squares. Rather than use a general nonlinear optimization method, we found that
substantial gains were possible from using an algorithm that takes advantage of the bilin-
earity of the model. One such algorithm, proposed by Stone (1954) in a related context, is
iterated OLS. However a drawback of this method is that its rate of convergence is usually
very slow. A superior method described in Deaton (1973) is the "ridge walking algorithm,"
a variant of the Newton—Raphson method that fully exploits the bilinear structure of the
model by solving one subset of the first order conditions conditional on the other subset of
parameters. It relies on explicit calculation of the gradients and the Hessian, both of which
are easily obtained for our model. The ridge walking algorithm converges more quickly and
is computationally simpler than the generic Newton—Raphson method in the bilinear case.
But the ridge walking algorithm, like the Newton—Raphson, has the drawback that the
Hessian is not necessarily positive definite for a given set of parameters (especially when
they are not yet close to the optimum), leading to an inacceptable step. Deaton (1973)
therefore used a modified ridge walking algorithm (pp. 240-242), essentially using the
quadratic hill climbing method (Marquardt (1963)). We found that this modification was
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unsuccessful in many of our simulations so we chose a different solution. At each iteratior,
we compute the Hessian: if it is positive definite we compute the updated parameter vec-
tor by the ridge walking method; if not, we calculate the new parameters by iterated OLS,
using the parameters obtained in the preceding step as starting values. (Initial starting
values were also obtained by iterated OLS.) One advantage of this combined method iz
that the objective function need not be computed at each step, since the method is guarar-
teed to produce a valid step. Furthermore, it is very simple to implement . The good choice
of starting values combined with the efficiency of the ridge walking method leads to rapiz
convergence to an optimum for most replications, in usually not more than four steps.
This is in contrast to all the other methods mentioned above, which encountered cor-
vergence difficulties for a small percentage (5—10%) of the replications.

The densities of the estimators and their t—ratios were calculated using nonpar-
ametric density estimates computed with a standard normal kernel and bandwidths of 0.0
for the bias terms and 0.4 for the {—ratios. These choices were made after some experi-
mentation with other values.

Monte Carlo means and standard deviations of the bias term (ﬁ—ﬁ) and the
t-ratio statistic {f) for the 10 estimators and the 12 combinations of {0y, 09y} are
given in Tables 2 and 3, respectively. Figures 1—16 graph the densities of ﬁ —f and T([I
for selected parameter configurations. Our main results are:

(1) Sampling Distribution of the bias term (8 — f)
(i) When (y; >0, 0, <0) OLS is usually the most biased estimator.
The FM procedure reduces the bias substantially. Adding additional
lags—e.g. going from H(2,0) to H(4,0)—-—of including leads—e.g., going
from H(2,0) to H(2,1})—of the covariates reduces the bias of the linear
ECM estimators. These results sirongly endorse the asymptotic theory

of Section 3.



(i)

(iii)

(iv)

(vi)
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When 821 #0, adding leads is more effective than increasing the
number of lags in terms of bias reduction. Conversely, adding leads is
less useful when 021 =0.

When 6, =0 (ie. when there is no feedback from u; to u, ) all
ECM’s provide essentially unbiased estimates of £, and are better
centered than the FM distribution. This supports the theoretical result
that 021 = 0 is an essential ingredient of valid asymptotic conditioning
in conventional ECM methodology.

The FM method is more biased than OLS when (021 <0, 0y, > 0).
The failure of the semiparametric corrections procedure in this case is
analogous to the size distortions of the unit root tests of Phillips (1587)
and Phillips and Perron (1988) in the presence of negative serial correla-
tion of the errors. The simulations in Schwert (1987) reveal these effects
for unit root tests under MA(1) errors with negative serial correlation.
The nonlinear EMS’s do not, in general, reduce the bias of the estimates

when compared to the corresponding linear specifications.

Figures 1-8 about here

Figures 1 to 8 depict the densities of some of the estimators for selected
values of 6, and oy . Figures 1 to 4 are based on (= 0.8,
0gy = —0.85) , and show how biased and skewed the OLS estimator is
compared to the other estimators. The density of the FM is the least
biased and skewed; adding additional lags and leads in the ECM’s
reduces the bias and skewness of this method. Figures 5 and 6 show how
the densities of various ECM estimators are essentially indistinguishable

when 6y, = 0. Figure 7 illustrates the skewness problems that the FM
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estimator has for ) <90 and oy, > 0. Figure 8 demonstrates the
relative performance of the Hendry and PL estimators for these param-
eter values, which seem to be broadly equivalent in terms of location

characteristics.

(2) The sampling distribution of the t—ratio statistics 1(f)

(i)

(i)

(iii)

(iv)

When (fy; >0, 09 < 0), OLS again yields the greatest bias for the
t—ratios. The FM estimator performs very well in these cases.

The advantage of the nonlinear over the linear specification of the
ECM’s is strongly evident. The nonlinear estimators improve the per-
formance of the t—ratios: both the bias and the standard deviations are
lower in the PL models than in the corresponding H models. This illus-
trates the consequences of overfitting that occurs in the H models when
including many lags and leads of covariates: the fit obtained is often
"too good" and the estimated residual variance therefore too low, leading
to t—ratios with excessive dispersion.

The case of 821 = 0 shows that although FM is less biased than OLS, it
is outperformed by ECM’s. On the other hand, FM’s standard deviation
is less than that of the ECM’s, leaving it with a superior mean square
error.

When dyy > 0 neither the linear nor the nonlinear ECM’s have a clear
advantage over the other. As was the case for the FM bias term, when
821 < 0, the FM t-ratio suffers from bias, increased variance, and
skewness. Adding lags and leads of the covariates strongly reduces the

bias of the ECM estimators.
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Figures 9—16 about here

(v) Figures 9 to 16 graph the densities of the t—ratios for selected estimators
and combinations of fy; and oy, . When (), >0, 0y, <0) the
density of the FM estimator comes remarkably close fo its limiting
distribution, given the moderate size of the sample. The improvement
due to the nonlinear specification is evident in the comparison of H(2,0)

vs. PL(2,0) and H(2,1) vs. PL (2,1) in Figure 10.

We close by remarking that our simulations suggest that one area in which the per-
formance of the ECM’s might be improved substantially is in further reducing the
dispersion of the t—ratios. We expect that methods which reduce the number of param-
eters to be estimated and orthogonalize the remaining regressors in the model would reduce
the overfitting problem without sacrificing much in terms of bias reduction. The process of
successive elimination of irmsignificant regressors and variable orthogonalization is, in
practice, as much ar art as a science. For our simulations, we tried a few methods that are
intended to mimic the variable reduction stage of the Hendry—Richard modelling strategy.
For example, we tried retaining only the first few leading principal components of the
covariates in the linear ECM’s and employing them as the new regresors. However, this
mechanical approach did not produce good results. The reduction of the standard devia-
tions was minimal, whereas the bias problem became immediately apparent. The shift to
the nonlinear specification of the ECM’s, on the other hand, brought the desired effect of
simultaneous reductions of bias and variance in the t—ratios, at least for negative values of
oy - But the t—ratio statistics of the nonlinear ECM’s are still more dispersed than those

of the FM 'method, suggesting that they can be improved even further.
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5. CONCLUSIONS

We have studied various methods of estimating long run economic equilibria or
cointegrated relations. At present, the multitude of available methods for estimation and
inference in cointegrated systems is potentially confusing and disconcerting to applied
researchers. We have argued that asymptotic theory actually provides some clear guide-
lines on the most suitable choice of methods. However, there are still a2 wide range of
asymptotically equivalent choices ranging from full systems to single equation methods (see
our summary at the end of section 3). Our focus in this paper has been on the performance
of single equation methods. We use the method of fully modified OLS, with its semi-
parametric corrections, as a benchmark in evaluating the parametric estimation
methodology of Hendry. On the basis of asymptotic theory we propose a nonlinear ECM
specification augmented by leads as well as lags in the differences of the regressors. For
such specifications, the use of (parametric) nonlinear least squares on the ECM is
asymptotically equivalent to (semiparametric) fully modified OLS and to full systems
maximum likelihood on the entire system of equations (restricted by the imposition of unit
10015).

Our simulations with a small scale cointegrated system show that FM and ECM
estimators are both substartially better than QLS. The performance of the ECM estimator
is itself substantially improved by: (i) adding more lags, (ii) including leads of differences
in the regressor variables when these are not stongly exogenous, and (iii) most importantly,
by formulating the ECM nonlinearly in the parameters through the explicit use of lagged
equilibria as regressors. These (nonlinear in parameters) variables serve better to model
the information set that is needed for valid conditioning than lagged differences in the
dependent variable. With these modifications, parametric ECM modeié seem to provide a

sound basis for estimation.
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However, our simulations show that there is size-d_istortion in inferences that are
based on ECM estimates. This distortion is due to a tendency in ECM regressions to over-
fit and hence bias downwards the error sum of squares in the regression. Of the many
ECM specifications considered here we found that the nonlinear in parameters ECM leads
to the best performance in this respect; yet the size distortion in this case is still
appreciable in simple asymptotic t—tests. We conclude that there is room for further
improvement in the methodology to deal with the potential problem of regression over-
fitting. In practice, this problem may be partially eliminated by careful residual diagnostic
checks that include some post sample predictive tests, as indeed is recommended in the
Hendry approach.

It would be interesting to extend our simulations to systems methods of estimation.
In particular, it would be of interest to determine whether parametric methods, such as the
Johansen VAR approach, suffer from similar difficulties of overfitting and size distortion as
the single equation ECM methods considered in this paper. In this respect it is important
to recognize that the asymptotic theory makes it clear that it is nof necessary to fully
estimate {and a fortior, efficiently estimate) the generating mechanism of u, in order to
efficiently estimate long run equilibria. All that is needed for the laiter is a consistent
estimate of the contribution from the short run dynamics to the long run variance, viz the
value of the long run covariance matrix of u, . One advantage of the semiparametric
approach is that this feature of the theory of efficient estimation is explicitly recognized
and used in the construction of the estimator.

Since short run dynamics are important in other aspects of modelling, especially pre-
diction, it seems likely that the best operational methods in practice will always involve
some parametric elements. One way of proceeding in systems estimation that takes advan-
tage of the strong points of both approaches would be the following: (i) to estimate
efficiently the long run equilibrium relationships by systems methods (or asymptotically

equivalent semiparametric single equation methods) and (ii} utilize the estimates from
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stage (i) in the construction of parsimoniously parameterized ECM?s for each of the depen-
dent variables. This approach would lead to efficient estimates of long run equilibria anc
the short run dynamics would be individually modelled on an equation by equation basis
following the present Hendry methodology. Ar additional advantage in this proposal is
that it would not be necessary to include leads in the ECM regressions since the long rur
equilibria are already efficiently estimated and incorporated in the regression. Further-
more, the equation by equation approach would enable the iﬁvestigator to employ many of
the judgemental aspects in parsimoniously selecting and orthogonalizing the regressor se:
that are presently an integral part of this methodology. Such a possibility is not available
in complete systems methods like the Johansen VAR approach. The authors hope to pu:-

sue this idea in future research.
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TABLE 1: List of Symbols, Abbreviations and Acronyms

(i) Estimation Methods, Models

OLS ordinary least squares

GLS generalized least squares

2SLS two stage least squares

3SLS three stage least squares

NLS nonlinear least squares

MLE maximum likelihood estimation
LIML limited information maximum likelihood
FIML full information maximum likelihood
ECM error correction model

SEM simultaneous equations model
AR(p) autoregressive model of order p
MA&) moving average model of order q
VAR vector autoregression

FM fully modified OLS

PL Phillips—Loretan nonlinear ECM

(1) Symbols from Mathematical Statisiics

E mathematical expectation

) covariance matrix

fuu(A) spectral density matrix at frequency A

0 long run covariance matrix = 21:{uu(0)

iid independent and identically distributed

wd weakly dependent

3 converges weakly to

mg martingale

mds martingale difference sequence

BM Brownian motion

¥ natural filtration, the o field generated by the past history of Xt , i.e.
a(Xt, X 1 o)

(iti) Mairices, Functions of Matrices, Operators

I identity matrix

Bij element (i,j) of matrix B

|A| determinant of matrix A

1A} norm of matrix A, = {tr(A’A)}/?
L lag operator, kat = Yk

A first difference operator, Ayt = (1-~L)yt =¥~ ¥
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TABLE 2: Means and Standard Deviations of the bias term
(8- B), for various values of 05y 2nd Oy

Goq = —0.85 921 = 0.8 921 = 0.4 021 = 0.0 321 = —0.8
—-.1466 (.124 —0957 (.092 —.0564 (.060 —-.0204 (.030
—.0002 (.122 -.0278 {.077 —0252 (.050 —0038 (.022
—.0573 (.099 —.0188 {.060 —.0021 (.036 0073 (.017
—.0430 (.103 —.0146 (.065 —.0016 (.041 0069 (.021
—.0358 (.100 —-.0095 (.063 —.0015 (.038 —-.0059 (.017
—.0189 (.113 —.0067 {.075 —-.0017 (.048 0065 (.023
PL(2,0 —-.0789 (.118 —0249 (.064 —.0036 (.035 0057 (.015
PL(4,0 —.0498 (.121 —.0144 (.072 —.0022 (.042 0049 (.018
PL(2,1 —.0284 (.108 —.0101 (.066 -.0030 (.038 —0049 (.016
PL{4,2 —.0006 (.128 —.0025 (.083 —.0028 (.049 0035 (.020
021 = 0.8 021 =04 821 = 0.0 921 =—0.8
—-.0782 (.089 -0611 (.077 —.0433 (.061 —.0144 (.033
—.0435 (.101 —0262 (.082 0170 (.062 0067 {.033
—.0552 (.092 —.0283 (.075 —.0060 (.057 .0180 (.034
H —-.0466 (.098 —-.0227 (.083 —.0024 (.065 .0190 (.040
H —.0165 (.088 —.0069 (.078 —0056 (.061 —.0086 (.032
H —.0100 (.104 —.0086 (.094 —0033 (.077 0073 (.041
PL --.0806 (.117 --.0337 (.082 —.0066 (.058 0111 (.030
PL —-.0657 (.133 —.0253 (.093 —0026 (.067 0121 (.036
PL —-.0079 (.096 —.0013 (.084 —.0061 (.062 —0096 (.031
PL —.0005 {.123 -.0044 (.103 —.0033 (.078 0033 (.037
921 = 0.8 921 =04 021 = 0.0 921 = —.8
-.0219 E.OSG —0173 (.042 —0071 (.048 .02906 (.058
—0213 (.044 —.0105 (.048 .0063 (.056 0697 (.094
—.0193 (.041 —0164 (.048 —.0090 (.057 .0270 (.068
—.0155 (.046 —.0116 (.055 —.0042 (.064 0323 (.079
.0070 (.040 0025 (.049 —.0083 (.061 -.0125 (.068
—.0069 (.048 —.0061 (.062 —0043 (.075 —.0048 (.082
L -.0223 (.048 —.0185 (.053 -.0098 (.059 0320 (.070
L —0163 (.048 —0122 (.057 —0042 (.067 0375 (.086
% 0145 (.048 .0066 (.054 —.0085 (.063 —.0115 (.067

—.0087 (.054 —.0066 (.066 —.0042 (.080 —0032 (.083



TABLE 3: Means and Standard Deviations of the t—ratios {f)
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for various values of oy and 021
Oy = —0.85 921 = 0.8 021 =0.4 021 = 0.0 021 =—0.8
OLS =1.679 (1.22 —-1.279 (1.08 —0.838 (0.95 —0.504 (0.83
FM(5) -0.216 (1.35 —0.426 (1.02 —0.454 (0.82 —0.137 (0.61
H(2,0 =1.266 (2.07 —0.532 (1.71 —0.079 (1.37 0.383 (0.89
H(4,0 —-1.015 (2.30 —0.433 (1.86 —0.056 (1.44 0.336 (0.99
H(2,1 -—0.790 (2.18 —0.251 (1.76 —0.051 (1.40 0.342 (0.89
H(4,2 —0.421 (2.51 —0.191 (1.95 —0.053 (1.51 0.351 (1.18
PL{2,0 =0.621 (1.33 —0.510 (1.36 -0.137 (1.37 0.422 (1.24
PL(4,0 —{.646 (1.568 —0.317 (1.69 —0.076 (1.65 0.359 (1.54
PL(2,1 —0.394 {1.45 —0.222 (1.41 —0.108 (1.41 —0.377 (1.32
PL(4,2 -0.029 (1.88 0.07% (1.79 —.086 (1.75 - 0.244 (1.72
Ogy = 0.5 921 = 0.8 021 = (.4 021 = 0.0 821 = .8
QLS -1.258 (1.31 -1.020 (1.23 —0.788 (1.12 —0.353 (0.92
FM(5) —.724 (1.49 —0.492 (1.33 0.360 (1.14 0.102 (0.82
H(2,0 -1.140 (1.77 —0.604 (1.61 -0.138 (1.39 0.577 (1.00
B(4,0 —0.942 (1.85 —0.472 (1.69 —0.057 (1.47 0.558 (1.09
H{2,1 -0.384 (2.01 —0.14% [(1.69 —0.118 (1.42 -{.302 (1.14
H{4,2 —0.2290 (2.19 -0.180 {1.83 -0.067 (1.53 0.246 (1.31
PL(2,0 —0.907 (1.25 -0.496 (1.34 =0.131 (1.40 0.464 (1.30
PL(4,0 —0.731 (1.54 —0.374 (1.62 -0.055 (1.67 0.476 (1.54
PL(2,1 —(.125 (1.44 —0.031 (1.42 —0.110 (1.43 —.387 (1.37
PL(4,2 -0.022 (1.79 ~0.084 (1.75 =0.066 (1.77 0.127 (1.72
gy = +0.5 021 = 0.8 821 = 0.4 921 = 0.0 921 =-—0.8
QLS -0.676 (1.14 =0.477 {1.20 -0.172 (1.22 0.596 (1.20
FM(5) -0.583 (1.22 —0.238 (1.28 0.174 (1.34 1.334 (1.51
H(2,0 —0.622 (1.26 —0.458 [(1.34 -0.208 {1.37 0.545 (1.33
H(4,0 —0.470 (1.35 —0.308 {1.41 —0.088 {1.46 0.627 (1.43
H(2,1 —0.252 (1.50 =0.064 (1.42 -0.184 {1.39 -0.269 (1.46
H{4,2 —-0.260 (1.72 -0.168 [1.55 —0.081 (1.52 —0.093 (1.61
PL{2,0 —0.503 (1.17 —0.394 (1.21 =0.204 (1.27 0.548 (1.29
PL(4,0 ~0.463 (1.67 —0.283 (1.62 =-(.084 (1.60 0.697 (1.51
PL{2,1 0.341 (1.30 —0.135 (1.31 —0.168 ({1.30 —0.262 (1.46
PL{4,2 -0.226 - (1.79 ~0.154 (1.75 —0.080 1.70 -0.097 (1.77
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