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�is paper proposes a newmethod to estimate the macroscopic volume delay function (VDF) from the point speed-	owmeasures.
Contrary to typical VDF estimation methods it allows estimating speeds also for hypercritical tra
c conditions, when both speeds
and 	ow drop due to congestion (high density of tra
c 	ow). We employ the well-known hydrodynamic relation of fundamental
diagram to derive the so-called quasi-density from measured time-mean speeds and 	ows. �is allows formulating the VDF
estimation problem with a speed being monotonically decreasing function of quasi-density with a shape resembling the typical
VDF like BPR.�is way we can use the actually observed speeds and propose themacroscopic VDF realistically reproducing actual
speeds also for hypercritical conditions. �e proposed method is illustrated with half-year measurements from the induction loop
system in city of Warsaw, which measured tra
c 	ows and instantaneous speeds of over 5 million vehicles. Although the proposed
method does not overcome the fundamental limitations of staticmacroscopic tra
cmodels, which cannot represent dynamic tra
c
phenomena like queue, spillback, wave propagation, capacity drop, and so forth, we managed to improve the VDF goodness-of-�t
from �2 of 27% to 72% most importantly also for hypercritical conditions. �anks to this tra
c congestion in macroscopic tra
c
models can be reproduced more realistically in line with empirical observations.

1. Introduction

In this paper we will solve the estimation problem where
tra
c speed is a function of the tra
c 	ow, generically
expressed as V = �(�) and further called volume delay
function (VDF) or link-congestion function. �e solution of
the problem is a function which reproduces tra
c speeds
observed in �eld measurements. �e VDF is commonly
applied in static macroscopic tra
c assignment to describe
the resultant link travel times, as a function of 	ow (result of
assignment) and capacity and free-	ow travel time (constant
parameters of the link). �e purposes of this function are to
reproduce congestion e�ects in the macroscopic model and
to serve as an objective function in the assignment problem
where the travel times are minimized [1]. �e VDF is usually
formulated in an easily integrable and di�erentiable form,
since the assignment algorithm searches for the solution

by using the integrals of VDF [2]. Unlike the physical
representations of the tra
c 	ow, the VDF allows the 	ow to
exceed the capacity (which is by de�nition impossible within
the tra
c 	ow de�nitions). As a result, the 	ow volumes
used in macroscopic assignment (and in turn in VDF) are
not strictly related to the physically measured 	ows. �e
macroscopic 	ow (as we will denote it) is treated more like
a demand 	ow which becomes delayed if it exceeds capacity.
We will exploit this distinction in the proposed method.

�e VDF shall reproduce both travel times and tra
c
	ows realistically. Usually, the focus is to reproduce the
actually observed 	ow pattern in the network, and it is well
known that travel times in macroscopic model are a rough
approximation neglecting fundamental tra
c phenomena
(such as bottlenecks, spillbacks, capacity drop, and gridlocks)
which can be handled with dynamic tra
c 	ow models [3].
�e relationship between travel delay and 	ow volume used
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in macroscopic tra
c 	ow models is extremely simpli�ed
and behaviorally unrealistic, yet it is commonly applied in
big-scale tra
c demandmodels [4]. Nevertheless, to improve
the representativeness of resulting travel times, the VDF are
usually estimated to match the observed tra
c speeds/travel
times, which raises following estimation issue, which we
address in the paper.

In VDF the 	ow can become greater than capacity, while
in �eld data measurements the vehicle 	ow, by de�nition,
cannot exceed physical capacity. �is raises an issue while
estimating the shape of VDF. Namely, the macroscopic static
tra
c 	ow models represent the congestion with functional
formulation which cannot be empirically observed and, in
turn, cannot be estimated to reproduce the actual tra
c
speeds. Usually practitioners overcame this and estimate only
the hypocritical part only for which the problem does not
raise since the observed speed can be expressed with unique
monotonically decreasing function of 	ow. �e hypercritical
part (when the 	ow starts decreasing) is usually neglected and
arbitrary parameterizations are used [5].

�e contribution of the paper is introducing a practical
method to estimate the VDF from time-mean speed and
	ow overcoming issue of estimating the speeds for 	ows
exceeding capacity. It is achieved by using the hydrodynamic
relation of the fundamental diagram and more speci�cally
by extending measured tra
c 	ows and instantaneous speed
with the proposed quasi-density. �is allowed reformulat-
ing the volume delay estimation problem into the density-
delay estimation problem and thus obtaining an improved
goodness-of-�t with available measurements. Finally, by
expressing the macroscopic 	ow with a quasi-density, the
estimatedVDF can be used inmacroscopic tra
c assignment
where densities are not available. �is way the VDF becomes
not only estimated with the empirical data, but also coherent
with principal tra
c 	ow relations.

�e paper is organized as follows. �e following part
reviews the literature, followed by Section 2 when themethod
is formally introduced. It starts with introducing the esti-
mation problem for VDF, followed with dataset description
and revealing problems while estimating VDF from �eld
data. Subsequently we introduce idea of extending measured
speed and 	ows to point densities and reformulate the VDF
estimation using them. In Section 3 we present the results of
the proposed method and in Section 4 we discuss them and
conclude the paper.

1.1. Literature Review. All of practically applied VDF for-
mulations follow the basic principles of tra
c 	ow theory;
that is, the speed decreases with the increasing 	ow, or,
equivalently, with the increasing saturation rate. Saturation
rate is computed as the ratio between the 	ow and the
capacity, with capacity being unknown and (as we show
further) estimated internally within the proposed estimation
problem. Reference [5] singles out mathematical and behav-
ioral conditions which should be met by the VDF; that is, it
should be described with a continuous, strictly increasing,
and nonnegative function, which clearly contradicts the
actual tra
c 	ow [6]. �e relation between the speed and
saturation rate in VDF is highly nonlinear: initially, speed

remains almost intact and rises slowly until some congestion
is generated and then a�er reaching the assumed saturation
level, speed starts to fall down signi�cantly.�e characteristic
point of the VDF is when the 	ow equals capacity. In several
VDF the formula is conditional and assumes di�erent param-
eterization before and a�er the capacity threshold is reached.
�e VDF remains continuous, but the di�erential usually
becomes much higher above this threshold, which allows
separating two di�erent regimes both in parameterization
and in interpretation.

�e common formulations of the volume delay functions
are based on the standard BPR function (Bureau of Public
Roads [7]), which has been adopted in the US guidelines
and widely applied ever since in transportation planning
practice [8]. A number of alternative VDF formulations
have been proposed, so as to match better with observed
operating conditions and road facility characteristics, which
include most notably: Davidson [9], Conical [10], Akcelik
[11], and Vatzek [5], as well as empirically modi�ed BPR
variations [12]. One of recurrent reasons for revisiting the
standard VDF formulas in research works was identifying
drawbacks in function performance for volumes approaching
and exceeding the capacity rate. Studies observed that default
BPR functions and their later modi�cations are likely either
to overestimate travel times for the congested conditions
[11] or lead to overestimated tra
c volumes when capacity
is exceeded and conversely underestimated tra
c 	ows for
relative free-	ow conditions [13]. Reference [10] further
noted that by adjusting the BPR parameters the travel times
become more constant (“suppressed”) in uncongested tra
c
conditions, but at the same time much more sensitive for
volumes approaching and exceeding the capacity. Empirical
practice shows that steepness of the speed-volume curve in
congested conditions is strongly related to road-design and is
di�erent for freeways than urban arterials [11]. Reference [10]
reckons that the maximal steepness rate of a VDF should be
limited to limit the risk of travel time overestimation.

�e VDF can be empirically observed only below the
capacity rate, which divides the estimation problem into two
parts: realistic curve estimation for the hypocritical part and
arbitrary formulation for the hypercritical part [5].�is leads
to dual approach to VDF estimation: realistic, which can be
supported with empirical data in the hypocritical part; and
theoretical, as it cannot be observed, in the hypercritical part.
�e hypercritical part of the VDF is formulated solely to be
used in the assignment model, while the hypocritical part
is estimated to �t the empirical observations. Other authors
[2] claim that the VDF is completely unrealistic and shall
be treated only as part of the tra
c assignment algorithm.
Importantly, [3] claims that the static assignment cannot
reproduce both tra
c 	ows and travel times realistically and
further argues that the purpose of theVDF is not to reproduce
the actual travel speeds, but to guarantee the convergence of
theWardropian algorithm [14] towards the user-equilibrium.
Consequently, the VDF can be both easily di�erentiated (to
obtain the search direction) and integrated.�e goal function
of equilibrium assignment is usually formulated with the
VDF formula [15] which yields the total link travel time from
the �rst to the last vehicle.�ismay however result in con	ict
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between the empirical representation of the tra
c 	ow and
the performance and convergence of the tra
c assignment
algorithm.

Reproducing the travel time delay solely from a direct
speed-volume estimation can prove to be a complex and
challenging issue in practice. Empirical works, such as [16,
17], aimed to calibrate the VDF for congested tra
c regimes
but observedmajor obstacles in collecting tra
c 	ow data for
tra
c states where volumes exceeded capacity—in the end,
simulation models were used to generate the necessary data
instead. A di�erent and perhaps more interesting approach
is to extend the scope of analysis to include the speed-
density relationship, thus exploiting a much wider extent
of macroscopic fundamental diagram. Empirical estimations
based on a speed-density relationship are likely to be more
accurate when identifying distinct tra
c conditions (free-
	ow, congested, and mixed tra
c conditions) and the jam
density limits [18, 19]. In general overview, the idea of utilizing
the speed-density relationship to estimate the speed-	ow
curve remains (to the best of our knowledge) relatively not
much investigated in tra
c modelling research. Reference
[20] discusses such transition, illustrated with an example
of estimating a speed-	ow curve from a calibrated speed-
density one, which as a result underestimates the capacity
rate; the limitation reason is the discontinuity between
uncongested and congested 	ows (so-called capacity drop).
Yet [21] compares two approaches in VDF curve estimation
and argues that expressing the average speeds with volumes
yields a low correlation which can be substantially improved
when the speed-density relation is used instead.

2. Method

In this paper we argue that the VDF relation can be observed
over the broader domain, by utilizing 	ow densities instead
of 	ow volumes to describe resultant speeds (travel times)
on network. We will demonstrate that the VDF formula can
be both algorithmically e
cient and provide an improved
goodness-of-�t with the �eld data, not just for 	ows in the
hypocritical part, but also for the hypercritical part of the
fundamental diagram. To illustrate the method proposed in
the paper we will use the classic BPR formula [7], which has
been ever since studied in numerous research works in its
either original or modi�ed form [12] and is discussed up to
now [4].

To formulate the problem, the following notation will be
used:

�: 	ow [veh];

V: speed [km/h];

�: quasi-density [veh/km];

�: travel time [s];

V0: free-	ow speed [km/h];

�max: capacity [veh/h];�max: density-at-capacity [veh/km];

�, �: estimated parameters of VDF [—];

V̂: theoretical speed computed with VDF [km/h];
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Figure 1: Travel time multiplier and speed in the BPR function.

�̂: theoretical travel time computed with VDF [s].

To illustrate the method proposed in the paper, we will
utilize the simplest BPR function, formulated with

�̂ = �0 (1 + � ⋅ ( ��max

)�) . (1)

It expresses travel time as a function of free-	ow travel
time, 	ow-to-capacity ratio, and the two parameters � and �.

Figure 1 depicts travel timemultiplier and speedmodelled
with BPR function (parameters � = 1 and � = 2),
which increases steadily from one until the capacity limit and
becomes even steeper a�erwards. BPR (1) can be formulated
relatively to express the travel time delay:

�̂�0 = (1 + � ⋅ (
��max

)�) . (2)

By assuming constant length the relative speed drop can
be derived from BPR function (1) as inverse of travel times:

V̂ = V0

(1 + � ⋅ (�/�max)�) . (3)

In the paper, we discuss the estimation problem of the
BPR function where we look for optimal values of parameters� and �. �e objective is to reproduce the observed data
with BPR function; that is, the modelled speeds should
match the measured ones, which can be formalized with
the following least-squares formula computed as the sum of
squared di�erence between modelled and observed speeds
for all the observations � in the dataset �:

argmin
�,�
(∑
�∈�

����V̂� − V�����2) . (4)

We do not analyze the solution of problem (4) itself,
since it is straightforward and can be solved with any linear
solver (we formulated the problem for the least-squares
method). Instead, we will focus on how to support the
estimated BPR function with the measured data, which is
nontrivial, as discussed. When using the relative formulation
of VDF, the capacity and free-	ow-speed rates need to be
known a priori, whereas if using its absolute formulation,
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both capacity and free-	ow speed can become the estimated
(unknown) parameters themselves.�isway, problem (4) can
be extended to (5) in which the physical parameters (free-
	ow speed and capacity) are estimated along with the BPR
parameters, which is way more practical.

argmin
�,�,�0 ,�max

(∑
�∈�

����V̂� − V�����2) . (5)

2.1. Speed-Flow Field Measurements. We illustrate the pro-
posedmethod with �eld measurement data from theWarsaw
count locations where the vehicle 	ows and speeds are mea-
sured. Vehicle 	ow is continuouslymeasured in over hundred
locations in crucial points across the Warsaw road network,
some of which are equipped with the double induction loops,
capturing also instantaneous vehicle speeds [22]. Although
this provides huge amount of data which can be used to
solve the proposed VDF estimation problem, it has some
signi�cant limits when applying to fundamental tra
c 	ow
relations, as discussed in Section 2.3.

We used measurements collected from one loop placed
at the main road site at the boundary of Warsaw. It measures
tra
c 	ows towards the city centre on the three-lane arterial
road with a posted speed limit of 70 km/h which becomes
highly congested during peak hours. For all the approach-
ing vehicles, instantaneous speeds were measured and the
datasets were aggregated over 15-minute time intervals. We
analyzed data collected for six months was used, which
covered 15 thousand records and almost 6 million vehicles
(for further references see [23]). It should be noted that
the entire 6-month dataset can be used for the estimation
purposes and does not have to be restricted to the working
days and/or peak hours only, since the estimated relation
is a physical phenomenon and depends mostly on capacity
and resultant speed drops each time congestion arises. What
is more, road sections which are similar to each other (i.e.,
those with the same road class, speed limit, intersection
design, lane width and number of lanes, pavement quality,
etc.) can be handled jointly so as to enlarge the input data
samples. It is worth noting that to estimate the VDF the
data can be used only if the congestion is observed and
measured. For the count locations which do not become
congested at any time of a day, the VDF cannot be estimated,
as it is not possible to analyze the resultant speed drops
observable during congestion, regardless of the big number
of observations. �e analysis of our �eld data measurements
did not reveal any signi�cant errors, which implies that these
can be therefore assumed to be consistent; nonetheless we
excluded some outlier values. �e outliers observed during
the hypocritical (uncongested) tra
c states were assumed
to be the measurement errors. On the other hand, since
the randomness of tra
c conditions in the hypercritical
(congested) conditions is high, we studied the outliers of the
congested state carefully, to exclude the actual measurement
errors and preserve the representative measurements of the
congested tra
c.

Figure 2 presents the aerial view of the measurement site.
Instantaneous tra
c speeds and 	ow volumes are measured

Detectors

Figure 2: Measurement site, Al. Krakowska, Warsaw, Poland, (c)
Google Satellite.

by means of the stationary induction loops, separately for
each lane. �e input data is aggregated to 15-minute time
intervals and 10 km/h speed intervals. Values below 10 km/h
are neglected, as well as the last interval which contains all
the vehicles passing the site with speeds exceeding 100 km/h.
Single database record in the database is the number of
detected vehicles in a given 15-minute interval in the individ-
ual 10 km/h speed range. From such data we obtain following
fundamental characteristics:

(i) Average weighted instantaneous speed, given with

V� = ∑	 (��,	 ⋅ V	)∑	 ��,	 , (6)

where ��,	 is the number of vehicles passing the
detector during 15-minute interval � with a speed
within range � and V	 is the middle speed value of the
range.

(ii) Capacity, initially assumed to be the 95th percentile
of the measured vehicle 	ows and further estimated
within VDF estimation.

(iii) Free-	ow speed initially assumed to be the 85th per-
centile of the measured speed and further estimated
within VDF estimation.

(iv) Hourly vehicle 	ow: for 15-minute 	ow aggregation,
we estimate the hourly 	ow rate by multiplying the
15-minute 	ow rate by four; this enables us to trace
short-term 	ow variations, which could otherwise
disappear if, for example, the moving sum is used.

(v) Dummy instantaneous travel time multiplier, com-
puted from the speed drop rate with �/�0 = V0/V�.
Figure 3 and Table 1 present the variability of the
measured tra
c	ow rates and travel times over a total
six-month measurement period.

Data shown in Figure 3 and Table 1 will be used in the
estimation through the observed 	ow � in a given 15-minute
interval and mean speed computed with (6). �e observed
speed derived from observations with (6) is compared in the
estimation problem (4) with the theoretical speed computed
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Figure 3: Tra
c speed and 	ow histograms.

Table 1: Flow and speed percentiles.

Percentile Speed Flow

80 60 2316

85 61 2376

90 62 2476

95 63 2640

99 66 2900

99,99 70 3128

with the BPR (3) for a given 	ow observed in respective
15-minute interval. Mind that better speed approximation
could be obtained with the harmonic mean [6] rather than
arithmetic mean which can overestimate the actual space-
mean speed.

2.2. Problem with Estimating VDF from the Field Measure-
ments. �e directly observed measures allow us to plot the
correlation between observed instantaneous speeds against
the tra
c 	ows V̂ = �(�), which is the relationship supposed
to be represented with the VDF like BPR (3). Yet, the graph
(Figure 4) clearly shows that not only are the plot shapes
di�erent, but there is no unique functional relation between
speed and 	ow. Measured vehicle 	ow starts decreasing a�er
the capacity rate is reached and, as a result, for a given 	ow
the two di�erent speed ranges are commonly observed: hypo-
and hypercritical. For instance, the speed rate for the 	ow
of 1800 veh/h can be equal to around 55 km/h for hypo-
critical conditions and to around 35 km/h for hypercritical
conditions. �is contradicts the fundamental assumptions
of the VDF, namely, that the travel time multiplier is a
continuous, monotonic, strictly increasing function of the
	ow [5]. Using such data to estimate the function (1) would
lead to somewhat incoherent conclusions. Figure 5 depicts
the travel time multiplier (computed from the speed drop
equation �̂/�0 = V0/V̂) as a function of 	ow. Estimation of
the parameters of function (2) with correlation observed in
Figure 5 is impossible and results in a very poor goodness-of-
�t and/or erroneous approximation. �e red line in Figure 5
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Figure 4: Average instantaneous speed [km/h] against hourly 	ow
[veh/h].
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and the BPR function estimated for this data (red) with output
parameters equal to � ≈ 1 and � = 1.27.

shows the results of the BPR estimation directly from the

speed and 	ow; to evaluate the goodness-of-�t we use �2
expressed with the following, where � is a single 15-minute
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observation in the dataset � and V is the mean speed in the
whole dataset.

�2 = 1 − ∑�∈� (V� − V)2∑�∈� (V̂� − V)2 . (7)

Estimating function �tted the data of Figure 5 with �2 of
only 27% and yielded the BPR parameters � ≈ 1 and � =1.27. What is more, such estimation underestimates speeds
for hypocritical part, since the low speeds of hypercritical
bias it. Further implementation of such BPR function in
a macroscopic model will most likely result in 	at travel
times, even for 	ows strongly exceeding capacity, and thus
lead to signi�cant errors in the assignment results. �is
demonstrates that there is no empirical evidence of the 	ow-
speed relation postulated in VDF (Figure 1). Based on the
above, the proper shape of VDF cannot be directly observed
in the empirical data, and consequently it cannot be estimated
in a straightforward manner. In the following section we
present an alternative solution approach to this issue.

2.3. Extending the Measured Speed and Flow with Quasi-
Density. To overcome the problem stated above, let us utilize
the fundamental hydrodynamic relation between speed and
	ow and introduce the third measure of the fundamental
diagram: density, denoted by � [24].�efundamental relation
between those three variables is described with (8), which
states that the vehicle 	ow during a given time period equals
the 	ow density multiplied by the 	ow speed [25]:

� = �V. (8)

Mind that the above holds true only under certain
conditions (stationary homogeneous tra
c [26]) and, impor-
tantly, not for instantaneous speed but for space-mean speed.
Density (understood as number of vehicles on the road
section divided by its length) can be directly obtained only
if the whole length of road section is observed, which is in
practice hard to achieve. In the majority of practical cases,
only stationary measurements are available, and the density
can only need to be approximated from instantaneous speed
and 	ow values. �ere are numerous ways of deriving it;
for broader discussion of this problem we refer to [6, 26].
Unfortunately, more exact formulas require either space-
mean speed or occupancy rate. Since neither of them was
available in �eld data results, we can only approximate density
from the classic hydrodynamic equation (8).

�us, being aware of the limitations and possible biases,
for the purposes of the proposed method, we will derive
density from measured time-mean speed and time-mean
	ow with (9) and further denote it as quasi-density �:

� = �
V

. (9)

�is can be deemed appropriate and su
cient for the
method proposed in the paper, since it is used only as
unobserved intermediate variable and the actual density (i.e.,
number of vehicles per kilometer)—as it will be seen in
further sections—is not required. Quasi-density computed
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with (9) will be used in an abstract way, not in a strict physical
sense. �e purpose of such derivation is to obtain a more
explicit and adequate variable to reformulate the VDF (2).

�e fundamental diagram depicting tra
c 	ow against
quasi-density � = �(�) for the observed �eld data is shown
in Figure 6. It resembles the common fundamental diagram
shapes reported in the literature [27–29], which proves that
the fundamental tra
c 	ow relations are preserved alsowhen
using quasi-density.

Figure 7 shows the speed as a function of quasi-density
V = �(�), and Figure 8 shows the travel time multiplier
as a function of quasi-density �cur/� = �(�). Interestingly,
both resemble now the typical BPR function (3) where speed
decreases steadily until capacity threshold is reached and
starts to fall sharply when capacity is exceeded (compare
the analytical BPR plots in Figure 1 with empirical relations
shown in Figures 7 and 8). �is was not possible to attain for
the empirical 	ow-speed relationship, which not only had a
di�erent shape but did not have unique functional form at
all. While the 	ow-speed relation (Figure 4) does not have a
unique functional form, the density-speed relation (Figure 7)
does have one; that is, for a given density rate we can estimate
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a corresponding unique 	ow-speed value (Figure 7). We will
utilize this �nding to reformulate the BPR functions to make
them more realistic.

2.4.Method to EstimateMacroscopic VDFwithQuasi-Density.
Once we stated that the BPR function shape is observed
against density, not a 	ow, we will propose the way to obtain
densities in the macroscopic assignment where they are not
available. To this end, let us �rst further exploit distinction
between the measured (physical) 	ow � and the 	ow of
macroscopic model (further denoted by �VDF) used in the
VDF. As already signalized in introduction, both of them
are di�erent and have di�erent physical interpretations [5].
Measured 	ow � is strictly constrained by the tra
c 	ow
dynamics and any observation contradicting them might
only result from measurement errors. Consequently, the
measured 	ow cannot exceed capacity and drops down when
the demand volume exceeds the maximal density (Figure 6).
On the other hand, the macroscopic 	ow is constrained only
by the assumptions of the macroscopic tra
c 	ow model,
which is by itself a signi�cant simpli�cation.�emacroscopic
	ow may exceed the capacity, and it gets severely delayed but
in general is allowed. �e macroscopic 	ow is in principle
proportional to the demand (i.e., the higher the demand is,
the greater themacroscopic 	ow is), while in reality the actual
	ow pattern is essentially di�erent (i.e., it grows with the
demand only until capacity limit is reached and falls down
a�erwards).

We postulate to considermacroscopic 	ow in terms of the
demand 	ow and state that the best approximation possible
ofmacroscopic 	ow can be achieved in relation to the density,
not the 	ow. Similarly to the macroscopic 	ow, density grows
with the increasing demand volume but reaches itsmaximum
value way above the capacity rate, at the “tra
c-jam” density
conditions. If so, let us assume that themacroscopic 	ow shall
be understood in terms of density rather than the measured
	ow and reformulate the traditional VDF 	ow-speed relation
into the density-speed relation.

Since density is not available in the macroscopic static
models it cannot be used directly in the VDF formulas. To
overcome this problem, let us propose the followingmapping

from observed quasi-densities to 	ows of the macroscopic
assignment. Such linear mapping is de�ned with (10), where
the VDF 	ow equals capacity multiplied by the density to
density-at-capacity ratio.

�VDF ≐ �max ⋅ �� (�max) . (10)

Density-at-capacity �(�max) is the density at which actual
	ow � reaches maximum and can be read from the fun-
damental diagram (Figure 6). �e inverse of this mapping
is given with (11) where density is expressed as the func-
tion of constant values read from the empirically observed
fundamental diagram (capacity and density-at-capacity) and
macroscopic 	ow (�VDF). �us, by means of (11), the quasi-
density value can be evaluated from the macroscopic 	ow.

� ≐ �VDF ⋅ � (�max)�max

. (11)

We stated that the BPR function can be observed empiri-
cally, yet not as a function of 	ow, but as a function of quasi-
density V = �(�). �us, let us rede�ne the BPR formula (1)
and substitute the 	ow with (10) to obtain (12).

�̂ = �0(1 + � ⋅ ( �� (�max))
�) . (12)

Quasi-density is used here as a substitute of the 	ow,while
the density-at-capacity �(�max) substitutes the capacity. �e
observed shape of density-speed relation (Figure 7) is similar
to theBPR shape (Figure 1), sowe presume that the estimation
process will result in a high goodness-of-�t ratio.�is way we
obtained the following two formulations of the BPR function.
�e �rst one is used for further estimation and is formulated
as follows:

V̂ = V0

(1 + � ⋅ (�/� (�max))�)
= V0

(1 + � ⋅ ((�/V) /� (�max))�) .
(13)

In this formulation, modelled speed is directly expressed
with the observed tra
c 	ow and speed values along with
estimated parameters V0 and �max. We obtain a straightfor-
ward estimation and the shape of model function is directly
observable when plotted against the �eld data. Moreover, (13)
yields straightforward estimation problem, since we match
the measured speeds also with the modelled speeds and not
only with measured 	ows.

Once the BPR parameters have been estimated, we
need to reformulate the BPR function for the purposes of
macroscopic assignment algorithm. To this end, we use the
inverse mapping from densities to macroscopic 	ow (11) and
substitute the quasi-density in formula (13); all the unknown
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parameters cancel out to the �nal formula (14), which is
principally the initial BPR formula given by (3):

V̂ = V0

(1 + � ⋅ (�/� (�max))�)
= V0

(1 + � ⋅ (�VDF ⋅ (� (�max) /�max) /� (�max))�)
= V0

(1 + � ⋅ (�VDF/�max)�) .
(14)

�e output BPR function formulated with (14) can be
applied in macroscopic assignment. �e two parameters �
and � are constant and are estimated with (13) along with
free-	ow speed V0 and capacity �max. �e only variable is the
macroscopic 	ow �VDF, which is available in the macroscopic
tra
c assignmentmodel.�is way, we are able to estimate the
BPR-wise function and apply it in the macroscopic model as
illustrated in subsequent section.

3. Results of Estimating VDF
with Quasi-Density

Let us apply the above reformulations and propose the
�nal form of the estimation problems (4) and (5), which
can be solved with the empirical measurement data. As
advocated above, let us express the travel time multiplier as
a function of quasi-density (12). �e quasi-density � used in
this formulation is computed from the measured time-mean
speed and 	ow with (9) and the density-at-capacity �(�max)
is equivalent to the peak value read from the fundamental
diagram (Figure 6). In this particular case, the free-	ow speed
identi�ed as the 85th percentile was equal to 61 km/h, the
capacity identi�ed as the 95th percentile of 15-minute 	ow
was equal to 2640 veh/h, and �(�max) was estimated to be ca.
60 veh/km, which is ca. 16m/veh. By applying these values
we can solve the estimation problem (4), utilizing (12) as the
travel time function. Results of the estimation are shown in
Figure 9. BPR parameters are estimated to be equal to � =0.52 and � = 3.47, and the estimation process yielded �2
of 65% for the total sample of 14,666 measurements (around
50 measurement records were excluded due to identi�ed
measurement errors). �e resulting shape is promising and
matches the theoretical expectations (discussed earlier). �e
BPR function with such parameterization implies high delays
when capacity is exceeded: the resultant travel timemultiplier
is around 3.0 for the demand volume equal to 150%of capacity
rate. Presumably, more complex VDF formulations [5] could
result in better goodness-of-�t, while for illustrative purposes
we used basic BPR formulation.

Finally, let us further relax problem (4) and estimate both
speed and capacity (density-at-capacity in this formulation)
with the BPR function as formulated in (5).�e estimation of
such formulated problem is also possible; and output results
are similar. Since the free-	ow speed becomes a parameter
now, it is convenient to express the BPR function with
the codomain being speed rather than delay; the plotted
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(red), solution of the extended estimation problem (5).

function shape is now di�erent due to using (3) instead of
(1). By solving such estimation problem, the free-	ow speed
is estimated at 60.3 km/h, �max is estimated at 61.5 veh/km,
and the BPR parameters are estimated at � = 0.49, � = 3.41,
respectively. Importantly, the estimatedmodel �tted �eld data

values with �2 of 72%, a signi�cant improvement compared
to the baseline VDF results.�e plot of observed speed versus
quasi-density � is depicted with a red line in Figure 10.

4. Summary and Conclusions

�e classical VDF assumes that the 	ow can exceed capacity,
which is somehowacceptable for themacroscopic assignment
problem, yet it is hardly consistent with actual �eld mea-
surements (since, by de�nition, the capacity is the maximum
	owwhich can be possibly observed). Consequently, theVDF
cannot be estimated directly from the measured 	ows (at
least for the hypercritical part: see Figure 4). We propose the
method to overcome this issue by employing the fundamental
hydrodynamic relations between tra
c 	ow variables � =�V, which underlies most of the contemporary higher-level
tra
c 	ow models. Our proposal introduced in this paper
is to estimate the VDF by using density instead of 	ow.
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�anks to such interpretation, a BPR-like plot shape of the
delay-density function (Figure 9) was obtained from the
observed data. With such formulation one can consistently
use both the hypo- and hypercritical part of the fundamental
diagram to estimate the speed-	ow function. By utilizing the
proposed method, travel times computed in the macroscopic
assignment are likely to be more realistic. �e method is
illustrated with an example where BPR parameters have
been consistently estimated with the density derived from
measured 	ows and instantaneous speeds. �e goodness-

of-�t was improved from �2 of 27% to 72%, which implies
that output results were much more coherent with the �eld
data. �e proposed method cannot substitute the realistic
tra
c 	ow models, which are more accurate and superior
in reproducing the tra
c phenomena; nevertheless it is
adequate for macroscopic models which are broadly used in
the �eld of transportation modelling. �e proposed method
does not change the functional form of the VDF, which is
still convex andmonotonically increasing function of macro-
scopic 	ow and can still be used in assignment algorithms
providing e
cient objective function converging toWardrop
equilibrium.

�is research can be further extended to cover another
data sources like 	oating car data or space-mean densities.
Also the exposed speed-density relations can advocate new
mathematical formulations of VDF which will yield better
�t. �e näıve least-squares formulation of the estimation
problem might be revised to weight more the hypercritical
observations (which are crucial to reproduce congestion).
Finally the proposed method shall be applied on the real-size
strategic model to show its applicability.
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