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Abstract Digital image processing techniques are being

explored for accurate and timely diagnosis of malaria, a

serious parasitic infection of humans. A key decision factor

in the diagnosis is the degree of infection, also called par-

asitaemia. This paper presents an efficient method for esti-

mating parasitaemia using the digital images of thin blood

smears that has been stained with Gimsa or equivalent stain.

The method utilizes the 4-connected set properties of digital

images to identify the various regions existing within the

image. Properties of the different identified regions, such as

centroids, major and minor axis, etc., are used to arrive at the

number of RBCs (good and infected) present in the image.

The method addresses the issues of partially visible RBCs,

as well as that of overlapped RBCs. It also addresses image

imperfections, caused by dust on the slide, etc.

Keywords Malaria � Parasitaemia � RBC counting �
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1 Introduction

Malaria is caused by protozoan parasites of the genus

plasmodium and is transmitted by the bite of anopheles

mosquito. Four species of the plasmodium parasite infect

humans: P. falciparum, P. vivax, P. ovale and P. malariae.

The parasite’s lifecycle within humans can be divided into

three distinct stages: Trophozoite, Schizont, and Gameto-

cyte. During this lifecycle, human red blood cells (RBCs)

are used as host. The shape and size of the parasite differs

by the species and lifecycle stage of the parasite. However

in each lifecycle stage the parasite has at least one chro-

matin, which is the nucleus of the parasite. A measure of

severity of the infection, called parasitaemia, is the ratio of

the parasite infected RBCs to the total number of RBCs.

This is an important determinant in selecting appropriate

treatment and drug dose.

Currently clinical diagnosis utilizes microscopy to study

the prepared blood smears. However this is extremely time

consuming and is dependent on the skill and experience of

the examiner, and hence has limited reliability. Thus it is

important to develop an automated image analysis system

that can identify and count infected and un-infected RBCs in

the images of blood smears. Further, in the clinical process,

two different types of blood smears (thick and thin) are

produced. The thin smear is used to identify the type of

parasite and the thick smear to estimate parasitaemia. How-

ever, the complete information is available in the thin smear.

In this paper we present a technique for estimating

parasitaemia in the images of stained thin smears of blood.

The technique presented is computationally efficient and

fast and automatically adapts to the variations in images

such as magnification, object orientations, etc. It also

addresses challenges presented by presence of dust or

leftover stain on the slide. The method utilizes 4-connected

sets to identify different regions existing in the image.

Properties of these regions, such as area, coordinates of

centroids, major and minor axes and Euler’s numbers are

utilized to take decisions. Key challenges to the counting
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process are : 1) partially visible cells at the boundary of the

image and 2) overlapped cells. The image is first processed

to identify the presence of any external artifacts and

address them. The total number of cells present in the field

of view is then estimated. Then the number of infected

cells is calculated. Using this data the degree of parasita-

emia can be calculated.

The technique however assumes that the presence of the

parasite in the image has already been established by the

use of other automated techniques [5–9]. Further, the

image presented for analysis should be a true colour RGB

image captured with adequate magnification and resolu-

tion. It should be noted that this method cannot be applied

to images of thick smears.

2 Literature Review

Most of the available literature concentrates on segmenting

the chromatin dots within the RBC [5–11], to establish the

presence of the parasite. Of the available literature, [3, 4]

concentrate on measuring parasitaemia. Of these [4] uses

an image mosaicing system to study the partially visible

cells at the edge of the FoV. This may not be realizable in a

practical clinical situation, and hence has limited utility.

The method described in [3] uses a synthesized template of

an RBC, parameterized using variable eccentricity and

major axis. The shape of the RBC is assumed to be ellip-

tical. This template matching process gives less than

acceptable results for overlapped cells, partially visible

cells at the edge of the FoV, and when the cells are oriented

at an angle, resulting in poor matching with the template.

Besides the method used to arrive at the radius of the RBC

is very slow.

Hence there is need for method that is not affected by

shape, size, orientation, or location of the RBC in the FoV.

3 Methodology

The analysis process consists of six distinct steps (Fig. 1).

In the first step the image is studied for appropriateness for

this study. The image is expected to be a true colour RGB

image. Besides, the smear should have been stained with a

gimsa or equivalent stain. This stain renders specific colour

to specific portion of the parasite [2], irrespective of the

lifecycle stage of the parasite: chromatin stains to a deep

red colour, cytoplasm stains to a shade of blue but the exact

colour varies from species to species, RBCs become pale-

yellowish pink, vacuoles do not take any colour. To verify

that the smear has been stained with appropriate stain, a

copy of the image is converted to HSI colour space, and a

population of pixels in the six hue ranges indicated in

Fig. 1 Process flow

Table 1 Table of hue ranges Range Colour

00–300 & 3310–3600 Red

310–900 Yellow

910–1500 Green

1510–2100 Cyan

2110–2700 Blue

2710–3300 Magenta

Fig. 2 Extracts from malaria positive images of thin smears
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Table 1 is taken. An image is accepted for analysis only if

it exhibits population in red and blue ranges. The entire hue

range of 0–3600 is divided into six segments with each

segment having a width of 600, and centered on a colour

indicated in Table 1. The range of hues associated with

each colour takes care of variances in colour existing in

different images.

This first step is however required only of this system is

used as a standalone system. This step is not required if this

process is integrated with other system for detecting the

presence of malaria.

A candidate image identified by the previous step is then

converted to a gray scale image. This image is used to

count RBCs.

Figure 2 show extracts from images of thin smears of

blood that has been stained to display malaria. These are

gray version of the original true colour images. This set

would be used to demonstrate this technique. Dataset 1 is

used to explain the methodology too.

The gray image is then converted to a binary image by

thresholding it. To do this, we utilize the fact that the image

has a predominant background that has intensity distinct

from that of the foreground. The histogram is thus bi-modal

(Fig. 3a). Otsu’s method was thus used to arrive at the

threshold value. This was used to create the binary image

shown in Fig. 3b.

The binary image shows two types of imperfections : 1)

artifacts in the background region (caused by dust, foreign

bodies in slide, etc.), and 2) holes within the RBCs. Both

these issues need to be addressed before proceeding.

Similar procedure is used to address both the issues. We

address issue 1 before addressing issue 2. Essentially, the

4-connected set property of digital images would be used to

identify various regions existing in the image. The area of

the regions would be used to take decisions. The study is

done on a copy of the binary image. When some pixels are

identified for correction, the correction is done in the ori-

ginal binary image.

The artifacts in the background region are black objects

on a white background. To remove the artifacts, a digital

negative of the copy of the binary image is converted into a

4-connected region labeled image. The population of each

labeled region is an indication of area occupied by each

region. This population data is used to identify these small

artifacts. Any region with area less than 0.3 % of the image

size was erased and the corresponding pixels in the binary

Fig. 3 a Histogram of dataset1

and b thresholded binary image

Fig. 4 a Dataset 1 after removing artifacts from background, and

b final binary image

Fig. 5 a Partially visible cells identified, and b partially overlapped

cells identified
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image were marked as background pixels. This also

removed some very small partially visible cells at the

boundary of the image. Since they are not counted, this is

not an issue. Figure 4a.

Unlike the artifacts in the background, the holes within

the RBCs are white objects in black background, and

hence, the corrected binary image was converted into a

4-connected region labeled image again. As before, popu-

lation of each labeled region was calculated and the regions

with population less than particular threshold were marked

as foreground pixels in the binary image. The threshold

value is essentially the area of a circle of radius equal to

60 % of the radius of an RBC. (Fig. 4b). The method used

to measure the radius of the RBCs is described later.

The corrected binary image will now be used to count

the number of RBCs present in it. The RBCs are essentially

visible as different objects in the field of view (FoV). The

objects visible can be categorized into two groups: 1)

partially visible RBCs existing at the edges of the FoV, and

2) Objects within the FoV. The second group consists of

free standing RBCs and overlapped RBCs. These three

categories of features can be easily differentiated once the

image is converted into a 4-connected region labeled array.

Features of the disjoint regions, such as coordinates of

centroids and lengths of major and minor axis can be used

to arrive at decisions. The data for the regions in data set 1

are shown in Table 2.

The first step in the counting process is to determine the

diameter of the RBCs. This would vary from image to

image, depending on the magnification used to capture the

image. Within an image too some variation is expected due

to infection or orientation of the RBC at the time of image

capture. The ratio of the major axis to minor axis of all the

identified regions are studied. Regions having this ratio *1

represent free-standing RBCs. The minor axis of a region

with minimum ratio (&1 and [1) is taken as the diameter

of the RBC, in pixels. The measure is rounded to the

nearest integer.

The next step is to count the partially visible cells at the

edge of the FoV. These cells have their centroids at a distance

less than the diameter of a RBC, from the edge of the image.

Distance of the centroid from the four edges of the image is

considered for this decision. The number of partially visible

cells is then counted. Partially visible cells can also be

overlapped. For such cells the ratio of major to minor axis is

[1. To calculate the number of overlapped RBCs the ratio of

the major axis to the diameter of an RBC is used for deci-

sions. This data is used to correct the count of partially visible

cells. This resolution is however done only if the minor axis

is more than 80 % of the diameter of a RBC.

The next step is to count the number of free standing

RBCs. As discussed before such cell have the ratio of their

major to minor axis *1, and are located within the FoV.

Table 2 Properties of regions

Region Centroid 1 Centroid 2 Axes 1 Axes 2 Ratio

1 13.20 237.11 39.17 29.89 1.31

2 21.92 32.79 41.14 39.08 1.05

3 27.37 275.62 41.75 36.14 1.16

4 41.48 155.06 36.01 34.50 1.04

5 43.13 197.07 40.30 37.82 1.07

6 73.05 7.30 35.98 17.04 2.11

7 74.45 254.81 41.09 34.64 1.19

8 75.38 56.35 39.50 33.38 1.18

9 83.60 155.13 39.62 37.07 1.07

10 107.93 201.20 41.58 39.27 1.06

11 113.43 48.50 37.99 34.36 1.11

12 169.38 14.73 59.43 33.95 1.75

13 156.01 125.78 73.10 40.03 1.83

14 154.60 46.98 41.28 34.61 1.19

15 165.21 229.66 41.64 32.55 1.28

16 182.91 270.80 36.94 28.58 1.29

17 201.90 226.82 37.09 36.38 1.02

18 202.72 95.34 41.77 36.06 1.16

19 209.63 180.32 52.55 39.76 1.32

20 209.17 51.77 39.52 28.02 1.41

21 221.32 262.90 40.53 36.92 1.10

22 243.49 219.18 38.87 35.89 1.08

23 247.81 17.89 35.81 33.14 1.08

24 261.00 68.01 67.60 42.07 1.61

25 259.23 290.37 50.04 24.82 2.02

26 277.38 168.35 39.70 35.76 1.11

27 282.82 202.43 34.52 28.69 1.20

28 283.61 240.97 40.28 34.82 1.16

29 293.01 277.04 36.57 19.04 1.92

30 294.33 125.54 40.08 15.51 2.58

Fig. 6 Image showing the chromatin dots present in dataset 1
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The partially overlapped RBCs are identified by regions

having their ratio of major to minor axis greater than a

threshold value. For such regions the ratio of the major and

minor axis to the diameter of an RBC is used to arrive at

the number of overlapped RBCs in the region.

The sum of the count of the free standing cells, partially

visible cells and overlapped cells gives the count of RBCs

present in the image.

To count the infected RBCs, we need an image with the

chromatin dots segmented. This can be obtained following

any of the methods described in [5–11]. Figure 6 shows an

image generated following one such method. A digital

negative of this image is added to the image in Fig 4(b),

and 4-connected set data and region properties regenerated.

Eulers numbers of the regions indicates the regions that

have another region embedded within it, i.e., the infected

RBCs.

4 Experimental Results

The prototype was developed using MATLAB. The

developed algorithm was tested using images sourced from

Center for Disease Control and Prevention’s malaria image

library [1].

For generating the binary mask Otsu’s method was used

to generate the threshold. For image in Fig. 2(a) Otsu’s

formula returned a threshold value of 227. The histogram is

shown in Fig. 3(a), and the segmented image in Fig. 3(b).

The segmented image shows some small external artifacts

in the background region.

On converting a digital negative of the image to a

4-connected region labeled image we get 68 regions of

which 37 have a population less than the threshold value of

270 for this image (0.3 % of image area of 300 9 300).

These regions are removed from the binary mask, see

Fig. 4(b).

The process described was able to remove artifacts from

the background region when any external object on the

slide result in free standing objects in the background

region in the binary image. However, artifacts that result in

objects that are attached to other RBCs are not removed.

The cell counting process is dependent on the existence

of at least one free standing RBC in the FoV. This is

expected to exist in images of thin smears. However, in the

extreme case when no such RBC exists, the process would

fail.

After correcting for imperfections, dataset 1 had 30

4-connected regions. The properties of these regions are

shown in Table 2.

Diameter of a free standing cell (identified by ratio *1)

is the diameter of the RBC. Here, diameter of free standing

cell = 36. The region taken for measuring the diameter

was region 17, which had the minimum ratio (1.02). While

measuring the diameter, care should be taken that the target

region is completely located within the FoV. Thus after

measuring the diameter, the distance of the centroid of the

target region from the edges is measured, to ensure that it is

at a distance greater than the diameter from the edges.

Partially visible objects, whose centroids are within a

distance of unit radius of an RBC from the boundary of the

image, are represented by regions 1,6,12,25,29,30. Table 3

is an extract from Table 2, and shows the properties of

these regions. Of these, region 12 represents two overlap-

ping cells. For the other cases, even though the ratio was

Table 3 Calculation table for partially visible cells

Region Centroid 1 Centroid 2 Ratio Remarks

1 13.20 237.11 1.31

6 73.05 7.30 2.11

12 169.38 14.73 1.75 Resolved to 2

overlapping cells

25 259.23 290.37 2.02

29 293.01 277.04 36.57

30 294.33 125.54 15.51

Table 4 Free standing cells

Region Axes

1

Axes

2

Ratio

2 41.14 39.08 1.05

3 41.75 36.14 1.16

4 36.01 34.50 1.04

5 40.30 37.82 1.07

7 41.09 34.64 1.19

8 39.50 33.38 1.18

9 39.62 37.07 1.07

10 41.58 39.27 1.06

11 37.99 34.36 1.11

14 41.28 34.61 1.19

15 41.64 32.55 1.28

16 36.94 28.58 1.29

17 37.09 36.38 1.02

18 41.77 36.06 1.16

20 39.52 28.02 1.41 High ratio, but minor axis \
threshold, and hence not resolved

21 40.53 36.92 1.10

22 38.87 35.89 1.08

23 35.81 33.14 1.08

26 39.70 35.76 1.11

27 34.52 28.69 1.20

28 40.28 34.82 1.16
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high, the minor axis is less than 80 % of the diameter of an

RBC, and hence was not resolved.

Partially visible cells = 7

Twenty regions had the ratio less than the threshold

value of 1.3 and were treated as free standing cells. Region

20 had high ratio, but the minor axis was 77 % of the

diameter (\80 % threshold) and hence was treated as free

standing cell.

Free standing cells = 21

Partially overlapped cells are identified by their ratio

being greater than a threshold value. The application cur-

rently uses a threshold value of 1.3. For such cases the

major axis and minor axis is divided by the diameter and

rounded to the nearest integer to arrive at the number of

overlapped cell. This resolution is not done for cases where

the minor axis is less than 80 % of the diameter of the

RBC. Regions 13,19 and 24 qualified as overlapped regions

and were resolved. Table 5 shows properties of such

regions.

Number of overlapped RBCs ¼ 6

Total cells ¼ 7þ 21þ 6 ¼ 34:

The process worked fairly accurately for partially

overlapped cells involving two RBCs. However when more

than three RBCs were involved the degree of success

dependent on the degree of overlap. However, trained

technicians are expected to produce slides with minimum

overlapped RBCs.

5 Conclusion

Using the algorithm described, we were able to success-

fully demonstrate that it is possible to build an automated

system to measure parasitaemia in the images of thin blood

smears.
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