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ESTIMATING MS −BLGARCH MODELS USING RECURSIVE METHOD

AHMED GHEZAL∗ AND IMANE ZEMMOURI

ABSTRACT. In this paper a new class of models is proposed for modeling nonlinear and stationary time se-
ries. This new class of models is referred to as the Markov-switching bilinear GARCH (MS −BLGARCH)

models. In these models, the parameters are allowed to depend on an unobservable time-homogeneous and
stationary Markov chain with finite state space. The statistical inference for these models is rather difficult due
to the dependence on the whole regime path. We propose a recursive algorithm for parameter estimation in
MS −BLGARCH. The proposed method is useful for long time series as well as for data available in real time.
The main idea is to use the maximum likelihood estimation (MLE) method and from this develop a recursive
Expectation-Maximization (EM) algorithm.

1. INTRODUCTION

Since the seminal works by Hamilton [17], Markov-switching models (MSM) have received a grow-
ing interest and becomes an appealing tool for the modelling of business cycles (as originally proposed by
Hamilton [17]) and continue to gain popularity especially in financial data because of their ability to model
time series in which we can observe break, turning, or change points from where on the series seems to
follow a different regime than before. A discrete-time MSM is a bivariate random process ((εt, st) , t ∈ Z),
Z := {0,±1,±2, ...} such that (i): (st, t ∈ Z) is an unobservable (referred henceforth as "regime"), finite
state space, discrete-time and homogeneous Markov chain and (ii): the conditional distribution of εk given
{(εt−1, st) , t ≤ k} depends on {(εt−1, sk) , t ≤ k} only. The changes in regime can be abrupt, and they oc-
cur frequently or occasionally depending on the transition probability of the chain. So some locally (i.e.,
in each "regime") linear or nonlinear representations were investigated in order to capture the probabilis-
tic and statistical properties of such models. For instance, MS − ARMA: Francq and Zakoïan [10] and
Stelzer [26]; MS−nonlinear ARMA : Lee [21] and Yao; MS − GARCH : Francq and Zakoïan [9]; Hass et
al., [16]; Liu [22]; MS − DAR : Ghezal [14] among others. The MS − BLGARCH model generate series
with a much more flexible dependence structure than in standard BLGARCH specifications proposed by
Storti and Vitale (c.f., [27]) is a generalization of the classical MS−GARCH model studied by Cai (c.f., [3]),
Hamilton and Susmel (c.f., [18]) and Francq et al (c.f., [11]), thereby explain the presence of leverage effects
in the volatility dynamics. The so called leverage effect relates on the different effects that past returns of
the same magnitude, but of opposite sign, may have on the current market volatility. In the last decades
enormous empirical evidence has confirmed the existence of asymmetric effects in the conditional variance
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of financial asset. For shares these effects are usually linked to the so called leverage effect. The experimen-
tal results have motivated a remarkably long series of papers, suggest amendments of the MS −GARCH
model in order to allow for asymmetric volatility dynamics. Recently, evidence has been provided suggest-
ing the presence of similar effects in the dynamics of conditional correlations. Similarly to the conditional
variance, the asymmetry is due to the presence of a significant relationship linking the level of the con-
ditional correlation between two assets to the signs of past returns on both assets. MS − BLGARCH

models are currently applied in many fields, in both macroeconomics and finance, can also be considered
as an extension of the hidden Markov model (HMM), which is popular in various fields such as engineer-
ing, genetic biology and statics. We say that a second order R-valued process (εt, t ∈ Z) defined on some
probability space (Ω,=, P ) has a general Markov-switching bilinear GARCH representation (denoted by
MS −BLGARCH (p, q, s)) if it is a solution of the following stochastic difference equation

(1.1)

 εt = htet

h2t = α0(st) +
q∑
i=1

αi(st)ε
2
t−i +

p∑
i=1

βi(st)h
2
t−i +

s∑
i=1

γi(st)εt−iht−i, t ∈ Z
,

where εt is an observed time series, (et, t ∈ Z) is an independent and identically distributed (i.i.d.) se-
quence of random variables defined on the same probability space (Ω,=, P ) with E

{
log+ |et|

}
< +∞

where log+ x = max {0, log x}, x > 0 and p, q, s are non negative integers with s = min (p, q). The functions
αi(st), βi(st) and γi(st)* depend upon a Markov chain (st, t ∈ Z) subject to the following assumption:

Assumption 1. The Markov chain (st, t ∈ Z) is stationary, irreducible, finite state space S = {1, ..., d}, n−step
transition probabilities matrix Pn =

(
p
(n)
ij , (i, j) ∈ S× S

)
where p(n)ij = P (st = j|st−n = i) with one-step transi-

tion probability matrix P := (pij , (i, j) ∈ S× S) where pij := p
(1)
ij = P (st = j|st−1 = i) for i, j ∈ S, and initial

stationary distribution Π = (π(1), ..., π(d))′ where π(i) = P (st = i), i = 1, ..., d such that Π′ = Π′P. In addition,
we assume that et and {(εs−1, st) , s ≤ t} are independent.

The estimation of parameters of finite parameter time series models is an important part of time series anal-
ysis. MLE criterion offers as an indicator in estimation when the unknown parameters are deterministic.
However in a lot of cases the received data does not provide complete information necessary for such max-
imizing. In particular, parameter estimation is generally performed through the iterative EM -algorithm
introduced by Dempster and his coauthors [6], is a popular tool forMLE. The common strand to problems
where this approach is applicable is a notion of incomplete data, which includes the conventional sense
of missing data but is much broader than that. The EM algorithm demonstrates its strength in situations
where some hypothetical experiments yields complete data that are related to the parameters more conve-
niently than the measurements are. However, for fairly large series or when data are sequentially available
in real time, the latter algorithm entails a large bookkeeping due to its iterative nature and then may be very
computationally expensive. Many applications of the EM algorithm to receiver design are also presented
in Nelson [23] and Georghiades [12]. The model parameters are estimated using a novel technique based
on the recursive (also sometimes called adaptive or online) MLE. The adjective recursive refers to the idea
of computing estimates of model parameters, without storing the data and by continuously updating the
estimates as more observations become available. In such a situation, recursive procedures that update pa-
rameter estimates so that the computational complexity does not depend on the sample size are appealing.
The proposed method which is useful for long time series as well as for data available in real time. Tradi-
tional applications of recursive algorithms involve situations in which the data cannot be stored, due to its
volume and rate of sampling as in real time signal processing or stream mining. Recursive algorithms are

*For γi (.) < 0, a positive quantity will be added to h2t if εt−i < 0 while the same quantity will be subtracted if εt−i > 0.
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often more efficient i.e., converging faster towards the target parameter value. The main motivation for this
restriction is to stick to computationally simple iterations which is an essential requirement of successful
recursive methods. A common approach to the recursive estimation problem is to base the estimation on
suboptimal modifications of Kalman filtering techniques. The basic idea in the research is to use the MLE

method and from this develop a recursiveEM algorithm. RecursiveEM algorithm is more attractive when
it’s maximization step can be done analytically in a recursive manner. Recursive EM algorithm have been
proposed by many authors in different context of missing data problems and latent variable models ones:
Titterington [28], Sato [25], Aknouche [2], Cappé [4] and Holst [20]. In particular, we mention the words of
Holst and Lindgren [19] and Collings et al [5] for hidden Markov models.
The MS −BLGARCH (p, q, s) model includes as special cases several classes of interesting models having
been investigated in the literature, indeed:

(i): Standard BLGARCH (p, q, s) models: These models are obtained by assuming constant the func-
tions αi(.), βi(.) and γi(.) in (1.1) or equivalently by assuming that the chain (st) has a single regime
(e.g., G.Storti, C. Vitale., [27]).

(ii): Some classes of MS − GARCH (p, q): These models are obtained by assuming γi(st) = 0,∀i =

1, ..., s (e.g., Abramson and Cohen [1], Francq and Zakoïan [9] and Liu [22]).
(iii): Markov-switchingARMAmodels (MS −ARMA (max (p, q) , p)): These models are obtained by

assuming γi(st) = 0,∀i = 1, ..., s (e.g., Francq and Zakoïan [10]).

(iv): Some classes of periodicGARCH model: These models are obtained by setting st =
d∑
k=1

kI4(k) (t)

and γi(st) = 0,∀i = 1, ..., swhere4 (k) denoting the set of indices corresponding to regime k at time
t (see, for example, the following periodic models [13], [15]).

An overview of the paper is as follows. bilinear GARCH models with Markov switching coefficients are
introduced in first section. Second, recursive MLE is discussed and from this develop a recursive EM
algorithm.

2. THE ESTIMATION IN MODELS MS −BLGARCH

Let mx,h = max {p; q; s} , we assume
{
ε2−mx,h+1, ..., ε

2
0, ε

2
1, ..., ε

2
n

}
observation process generated from

model (1.1) stationary, causal. Therefore suppose that (et, t ∈ Z) is normally distributed with mean
zero and variance σ2. Note θ :=

(
α′, β′, γ′, p′, σ

)′ with α′ :=
(
α′0, α

′
1, ..., α

′
mx,h

)
, β′ :=

(
β′
1
, ..., β′

mx,h

)
,

γ′ :=
(
γ′
1
, ..., γ′

mx,h

)
, p′ :=

(
p′
1
, ..., p′

d

)
and α′i := (αi (j) , 1 ≤ j ≤ d) , β′

i
:= (βi (j) , 1 ≤ j ≤ d) , γ′

i
:=

(γi (j) , 1 ≤ j ≤ d) , p′
i

:= (pij , 1 ≤ j ≤ d) , θ which belong to parameter space Θ, a subset of the Eu-
clidean space. The true parameter value will be denoted θ0 and assumed to belong to Θ. Given
ε0 :=

{
ε2−mx,h+1, ..., ε

2
0 , h

2
−mx,h+1, ..., h

2
0

}
, conditional likelihood with respect to the measurement d (λ⊗N)

(where λ denotes the Lebesgue measure and N is the counting of S) is defined for all θ ∈ Θ by

Ln (θ) = p
(
Zn =

(
ε21, ..., ε

2
n

)∣∣ ε0, s0; θ
)

=
∑
x∈S

ps0xp (Zn| ε0, s1 = x; θ) .

2.1. Recursive MLE. A recursive estimation θn of the parameter θ based on the first n observations of(
ε2t , t ∈ Z

)
, as an iterative approach, is given, using the Newton-Raphson method, by

(2.1) θn = θn−1 +
1

n
Kn−1∇θn−1

(εn) ,

where ∇θ (ε) is a score vector function, defined by ∇θ (ε) =
(
∂ ln p(ε;θ)

∂θj
, j = 1, ..., s

)
with s =

d (3mx,h + d+ 1) + 1 and Kn is the inverse of the information matrix, i.e., K−1n−1 = I
(
θn−1

)
= ∇2

θn−1
,
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determined by

I
(
θn−1

)
= E

(
∇θn−1

(εn)∇′θn−1
(εn)

)
.

RecursiveMLE with this I
(
θn−1

)
are treated by Fabian [7] and they are proven to be asymptotically normal

under suitable regularity conditions
√
n (θn − θ)

d−→ N
(
0, I−1 (θ)

)
.

Computation of I
(
θn−1

)
often requires numerical integration and it is thus cumbersome. Moreover, the

prohibitive calculations. So we shall instead use the inverse of the observed information matrix, i.e.,

K−1n−1 =
1

n− 1

n−1∑
k=1

∇θk−1
(εk)∇′θk−1

(εk) .

The matrix Kn−1 can be computed recursively by means of the matrix inversion lemma (see for example
Rao [24] Section 1b). Writing∇n = ∇θn−1

(εn) we have

Kn−1 =
n− 1

n− 2

(
K−1n−2 +

1

n− 2
∇n−1∇′n−1

)−1
=
n− 1

n− 2

(
Kn−2 −

Kn−2∇n−1∇′n−1Kn−2

(n− 2) +∇′n−1Kn−2∇n−1

)
.

2.2. Recursive MLE in MS−BLGARCH . We shall now examine the structure of the recursive algorithm
(2.1) when

(
ε2t , t ∈ Z

)
is a MS −BLGARCH. Define the filtering probabilities

πj (n) = p (sn = j|Zn) and πij (n) = p (sn−1 = i, sn = j|Zn) , n ≥ 1 with πj (n) =

d∑
i=1

πij (n) ,

and the indicator function 1ij (n) = 1{sn−1=i, sn=j}, sn = (s1, ..., sn) and write the conditional density of

(Xn, sn) given
(
Xn−1, sn−1

)
, i.e.,

(2.2) p
(
εn, sn| εn−1, sn−1, s0; θ

)
= p (sn| sn−1;θ) p

(
εn| εn−1, sn; θ

)
.

Let Ln := p (Zn, sn| ε0, s0; θ) denote the simultaneous density of the complete sequence (Zn, sn) , then
logLn = logLn−1 + ln where

ln =

d∑
i,j=1

1ij (n)
(
log pij + log p

(
εn| εn−1, sn = j; θ

))
.

A nature generalization of the recursive MLE procedure (2.1) to a recursive EM algorithm is to use the
conditional expectation of the derivative of ln given the observed Zn as score function, i.e., ∇θ (εn| εn) =

E
{
∂ln
∂θ

∣∣∣ εn}.

Theorem 2.1. In a MS −BLGARCH model the score function for an observation Zn is

(2.3) ∇θ (εn| εn) =

d∑
i,j=1

πij (n)
∂p
(
εn, sn = j| εn−1, sn−1 = i, sn−2, s0; θ

)
∂θ

,

and

πij (n) = πi (n− 1) pij p
(
εn|Zn−1, sn−1 = j; θ

) p (Zn−1∣∣ θ)
p (Zn| θ)

.

Summarizing, in the recursive procedure

θn = θn−1 +
1

n
Kn−1E

{
∂ln
∂θ

∣∣∣∣ εn} ,
we shall use the score function (2.3) where the filtering probabilities are calculated using the parameter estimate θn−1.
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Example 2.1. In this example we shall investigate the performance of the recursive EM algorithm for MS −
BLGARCH , we shall take

εt = htet

h2t = 1, 5ε2t−1 + 0, 72h2t−1 + 0, 2εt−1ht−1, if st = 1

h2t = 1, 7ε2t−1 + 0, 52h2t−1 + 1, 3h2t−2 + 0, 15εt−1ht−1, if st = 2

,

and (et, t ∈ Z) sequence of iid N (0; 1), denote the transition matrix P =

(
1− p12 p12

1− p22 p22

)
. In these example

p12 = 0, 08 and p22 = 0, 92 (p12 = p21) . The model parameters are denoted by θ =
(
θ′1, θ

′
2, p12, p22

)′ where
θi = (α (i) , β1 (i) , β2 (i) , γ (i))

′
, i = 1, 2, we have

log p
(
εn| εn−1, sn = j; θ

)
= −1

2
log 2π − 1

2

(
log h2t (j) +

ε2t (j)

h2t (j)

)
,

where εt (j) = ht (j) et, h
2
t (j) = α (j) ε2t−1 + β1 (j)h2t−1 + β2 (j)h2t−2 + γ (j) εt−1ht−1, and

∂ log p
(
εn| εn−1, sn = j; θ

)
∂θj

=


− ε2t−1

ht(j)

− h2
t−1

ht(j)

− h2
t−2

ht(j)

− εt−1ht−1

ht(j)

 .

From theorem previous the score function is given by

∇θ (εn| εn) =


π1 (n)

∂ log p( εn|εn−1,sn=1;θ)
∂θ1

π2 (n)
∂ log p( εn|εn−1,sn=2;θ)

∂θ2

π12 (n) p−112 − π11 (n) (1− p12)
−1

π22 (n) p−122 − π21 (n) (1− p22)
−1

 ,

which is less convenient due to the unpleasant denominator being unbounded near the boundaries pij = 0 or 1.

2.3. The choice of initial values. To begin a recursive procedure, one needs initial values for each of the
estimates θ0 and for the adaptive matrix K0. By Holst et al [20], depending upon the a priori knowledge
about the true values of the parameters, the algorithm should be initiated in different ways. In this article
we consider only estimation situations where there exists fairly good knowledge about the true values of
the parameters and in particular the adaptive matrix is treated in a conservative way during the first steps.
The choice of Kn−1 seems to be great importance, since the optimal, true information matrix can be almost
singular. In order to calculate an approximate value of the information matrix in the model defined by the
initial value θ0 we simulated N = 10000 steps in the MS − BLGARCH and estimated the information
matrix by

I−1N (θ0) =
1

N

N∑
k=1

∇θ0 (εk| εk)∇′θ0 (εk| εk) .

For the ergodic Markov regime this will lead to an approximately correct information matrix for the initial
model. In order to avoid wild fluctuations of the estimates at the early stages we modified the procedure in
the following ways.

(i) The initial matrix K0 was controlled by a ridge parameter α. if γmin

γmax
< α ( γmin and γmax is the

smallest and largest eigenvalue for the information matrix ) we added a fixed proportion α of the maximal
eigenvalue to the diagonal elements of I (θ0) , i.e., we used as an initial K0 matrix

K0 = (I (θ0) + αγmax1)
−1
,
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where 1 is the unit matrix.
(ii) The updating of the adaptive matrix Kn−1 by means of formula (2.2) was modified by addition of a

constant n0 to the number of observations, i.e.,

Kn−1 =
n+ n0 − 1

n+ n0 − 2

(
Kn−2 −

Kn−2∇n−1∇′n−1Kn−2

(n+ n0 − 2) +∇′n−1Kn−2∇n−1

)
.

(iii) During the early stages of the recursion, n ≤ nr, the adaptive matrix Kn−1 was held constant and
equal to K0. In the meantime Kn−1 was updated and for n > nr used as the adaptive matrices.
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