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Estimating Multilevel Logistic Regression
Models When the Number of Clusters is Low:

A Comparison of Different Statistical
Software Procedures

Peter C. Austin

Abstract

Multilevel logistic regression models are increasingly being used to analyze clustered data in
medical, public health, epidemiological, and educational research. Procedures for estimating the
parameters of such models are available in many statistical software packages. There is currently
little evidence on the minimum number of clusters necessary to reliably fit multilevel regression
models. We conducted a Monte Carlo study to compare the performance of different statistical
software procedures for estimating multilevel logistic regression models when the number of
clusters was low. We examined procedures available in BUGS, HLM, R, SAS, and Stata. We
found that there were qualitative differences in the performance of different software procedures
for estimating multilevel logistic models when the number of clusters was low. Among the
likelihood-based procedures, estimation methods based on adaptive Gauss-Hermite
approximations to the likelihood (glmer in R and xtlogit in Stata) or adaptive Gaussian quadrature
(Proc NLMIXED in SAS) tended to have superior performance for estimating variance
components when the number of clusters was small, compared to software procedures based on
penalized quasi-likelihood. However, only Bayesian estimation with BUGS allowed for accurate
estimation of variance components when there were fewer than 10 clusters. For all statistical
software procedures, estimation of variance components tended to be poor when there were only
five subjects per cluster, regardless of the number of clusters.
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1. Introduction 
 
Clustered data are frequently encountered in health services, public health, 
epidemiology, and education research.  For instance, data may consist of patients 
clustered within primary care practices or hospitals, of residents clustered within 
neighbourhoods, or of students clustered within schools.  Subjects nested within 
the same cluster often exhibit a greater degree of similarity or homogeneity of 
outcomes compared to randomly selected subjects from different clusters 
(Snijders and Boskers, 1999; Raudenbush and Bryk, 2002; Kreft and De Leeuw, 
1998; Goldstein, 1995; Austin et al., 2001).  Due to the possible lack of 
independence of subjects within the same cluster, traditional statistical methods 
may not be appropriate for the analysis of clustered data.  There is an increasing 
use of multilevel models for the analysis of clustered data.  These models are also 
referred to as mixed effects models, random effects models, or hierarchical 
models in the literature (Snijders and Boskers, 1999; Raudenbush and Bryk, 2002; 
Kreft and De Leeuw, 1998; Goldstein, 1995; Austin et al., 2001).  Many popular 
statistical packages, such as HLM, MLwiN, R, SAS, Stata, and WinBUGS/BUGS 
have the capacity to fit multilevel models.  Some of these are general purpose 
statistical software packages (R, SAS, Stata, WinBUGS/BUGS), while others 
were written specifically for fitting mixed effects models (HLM and MLwiN).  
BUGS/WinBUGS is a statistical programming language for fitting Bayesian 
models. 

In many contexts, the number of clusters may be relatively small.  There is a 
paucity of research examining the effect of a low number of clusters on the 
estimation of multilevel models.  Snijders and Bosker (1999) suggest that 
multilevel models not be used when there are fewer than 10 clusters.  Raudenbush 
(2008) examined estimation of multilevel models when there are a large number 
of small clusters. 

The goal of our paper is to compare the performance of different statistical 
software procedures for estimating multilevel models when the number of clusters 
is low.  Since dichotomous outcomes occur frequently in health services, medical, 
epidemiological, and public health research (Austin et al., 2010), we focus our 
attention on multilevel logistic regression models.  The paper is structured as 
follows:  In Section 2, we describe a series of Monte Carlo simulations that were 
conducted to examine the performance of different statistical software procedures 
for estimating multilevel logistic regression models.  In Section 3, we describe the 
different statistical software procedures that were considered.  In Section 4, we 
report the results of these Monte Carlo simulations.  Finally, in Section 5, we 
discuss our findings in the context of prior studies in this area. 
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2. Design of Monte Carlo simulations 
 

In each simulation there were J clusters with N subjects per cluster.  For each 
subject, an outcome, ~ Bernoulli(pijY ij), was generated, where the subject-specific 
probabilities of the outcome was determined using Equation (1):   
 

ijijjij xxp 221100)(logit ββββ +++=     (1) 
 
The fixed effects were 1.10 −=β , 11 =β , and 02 =β , while the random effect 
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Using 1.10 −=β  implies that the outcome Yij occurs in approximately 25% of 
subjects in an average cluster. 

We allowed the number of clusters to range from a low of 5 to a high of 20, 
in increments of 1.  Similarly, the number of subjects per cluster was allowed to 
range from a low of 5 to a high of 50, in increments of 5.  We thus examined 160 
scenarios (16 numbers of clusters x 10 sizes of clusters).  In each scenario, 1,000 
random datasets were generated. 

There were several reasons for selecting the model described in Formula (1).  
First, it involved a non-zero regression parameter ( 1β ), allowing us to examine 
estimation of non-null regression coefficients.  Second, it included a null 
regression parameter ( 2β ), thereby allowing us to examine empirical type I error 
rates when testing the null hypothesis that the regression coefficient was not 
different from zero.  Third, having only two covariates, the model was relatively 
simple, thereby reducing computational demands when Bayesian methods were 
used to fit the model. 
 
3. Statistical packages and procedures for estimating mixed effects logistic 

regression models 
 
The variable cluster_id or cluster.id is used to identify subjects who are in the 
same cluster (the choice of which identifier to use is software dependent – 
depending on which of “.” or “_” can be used a part of a variable name). 
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3.1 SAS version 9.2 
 
We examined two different procedures in SAS version 9.2 for estimating two-
level multilevel logistic regression models. 
 
3.1.1 Proc NLMIXED 
 
SAS Proc NLMIXED is a procedure for fitting nonlinear mixed models.  It fits 
nonlinear mixed models by maximizing an approximation to the likelihood 
integrated over the random effects.  Different integral approximations are 
available in NLMIXED.  In this study, we used adaptive Gaussian quadrature 
(Pinheiro and Bates, 1995).  Unlike other procedures described below, SAS Proc 
NLMIXED does not use a fixed number of quadrature points.  Rather, Proc 
NLMIXED selects the number of quadrature points adaptively.  Alternatively, one 
can specify the number of quadrature points.  The following SAS code was used 
to fit the models: 
 
 proc nlmixed data=mc; 
  parms a0=-1.1 a1=1 a2=0 s2=1; 
  lambda = a0 + a1*x1 + a2*x2 + alpha; 
  p = exp(lambda)/(1 + exp(lambda)); 
  model y ~ binomial(1,p); 

 random alpha ~ normal(0,s2) subject=cluster_id; 
 run; 

 
3.1.2 Proc GLIMMIX 
 
Proc GLIMMIX is a SAS procedure that fits generalized linear mixed models 
(Proc GLIMMIX, which first appeared in SAS 9.2 is not to be confused with the 
%GLIMMIX macro supplied by SAS that fits generalized linear mixed models 
using iterative calls to Proc MIXED (Wolfinger and O’Connell, 1993; Breslow 
and Clayton, 1993)).  A variety of estimation methods based on pseudo-likelihood 
techniques are available in Proc GLIMMIX.  The default estimation methods is 
based on residual pseudo-likelihood methods in which the locus of expansion of 
the Taylor series expansion of the generalized linear mixed model is the vector of 
random effects solutions.  The following SAS code was used to fit the multilevel 
logistic regression model: 
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 proc glimmix method=rspl; 
  class cluster_id; 
  model y (descending) = x1 x2 /dist=binomial s; 
       random intercept /subject=cluster_id; 
 run; 
 
3.2 HLM 5.00 
 
HLM 5.00 is a stand-alone software package for fitting two and three-level 
multilevel regression models (Bryk et al., 1996).  HLM uses first order penalized 
quasi-likelihood (PQL-1) for fitting multilevel logistic regression models.  
HLM/2L is used for fitting 2-level hierarchical models, while HLM/3L is used for 
fitting 3-level hierarchical models.  For a particular analysis, HLM/2L must be 
used twice.  First, it is used to generate a sufficient statistics matrix from the data. 
Second, it is used for specifying and estimating a multilevel model.  The HLM/2L 
code for specifying and estimating a two-level logistic regression model is given 
below: 

 
#This command file was run with re.ssm 
#This is the sufficient statistics matrix 
STOPMICRO:0.0000010000 
STOPMACRO:0.0001000000 
MACROIT:100,n 
MICROIT:100 
NONLIN:BERNOULLI 
LAPLACE:n,50 
LAPLACE8:n,50 
LEVEL1:OUTCOME=INTRCPT1+X1+X2+RANDOM 
LEVEL2:INTRCPT1=INTRCPT2+RANDOM/ 
LEVEL2:X1=INTRCPT2/ 
LEVEL2:X2=INTRCPT2/ 
RESFIL:N 
HETEROL1VAR:n 
ACCEL:5 
LVR:N 
LEV1OLS:10 
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HYPOTH:n 
FIXSIGMA2:1.000000 
FIXTAU:3 
CONSTRAIN:N 
OUTPUT:hlm.out 
TITLE:Random effects model (HLM) 

 
3.3 Stata 9.2 – xtlogit 
 
In Stata 9.2, the xtlogit function can be used for fitting random effects logistic 
regression models.  The default approximation to the likelihood is adaptive 
Gauss-Hermite approximation (Liu and Pierce, 1994).  Optionally, one can 
specify a nonadaptive Gauss-Hermite approximation.  By default, twelve points 
are used for the Gauss-Hermite quadrature.  The following Stata code was used: 
 
xtlogit y x1 x2, i(cluster_id) intmethod(aghermite) 

intpoints(12) 
 
3.4 R 2.8.0 
 
R is a freely available object-oriented statistical programming language (R Core 
Development Team, 2005).  There are a large number of user-provided packages.  
We considered two different packages which contain functions for fitting 
multilevel logistic regression models.  The MASS package contains the glmmPQL 
function, while the lme4 package contains the glmer function. 
 
3.4.1 glmmPQL function 
 
The glmmPQL function fits generalized linear mixed models using penalized 
quasi-likelihood (PQL) (Wolfinger and O’Connell, 1993; Breslow and Clayton, 
1993; Schall, 1991).  It works by iteratively calling the lme function from the 
nlme package.  The following R code was used: 
 

glmmPQL(y ~ x1 + x2,random = 
~1|cluster.id,family=binomial) 
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3.4.2 glmer function 
 
The glmer function fits generalized linear mixed models using the adaptive 
Gauss-Hermite approximation to the likelihood (Liu and Pierce, 1994).  The 
default number of points per axis for evaluating this approximation is one.  In this 
case, the approximation corresponds to the Laplacian approximation.  The 
following R code was used: 
 
 glmer(y ~ x1 + x2 +  
 (1|cluster.id),family=binomial,nACQ=1) 
 
3.5 BUGS version 0.603 
 
BUGS (Bayesian inference Using Gibbs Sampling) is a software programme for 
fitting Bayesian models (Gilks et al., 1994).  In these simulations, we used the 
Classic BUGS software programme for a Unix platform.  Classic BUGS uses 
Gibbs Sampling, an implementation of Markov Chain Monte Carlo (MCMC) 
methods for estimating the posterior distribution of the model parameters (Gilks 
et al., 1996).  The following code was used: 
 

for (i in 1:N){ 
 y[i] ~ dbin(p[i],1); 

logit(p[i]) <- intercept[clusterid[i]] + 
beta[1]*x1[i] + beta[2]*x2[i]; 

} 
 
for (j in 1:M){ 
 intercept[j] ~ dnorm(lambda,tau); 
} 
 
sigma <- 1/sqrt(tau); 
tau ~ dgamma(0.001,0.001); 
lambda ~ dnorm(0,0.0001); 
beta[1] ~ dnorm(0,0.0001); 
beta[2] ~ dnorm(0,0.0001); 
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In the above model, diffuse, non-informative priors were assumed for the 
parameters of the regression model.  The random intercepts were assumed to have 
a normal distribution.  The prior distribution of the mean of this normal 
distribution was assumed to be a normal distribution with mean 0 and variance 
10,000.  The prior distribution for the precision (the inverse of the variance) of 
this normal distribution was assumed to be a Gamma distribution with shape and 
scale parameters both equal to 0.001.  The posterior mean of each regression 
parameter was determined from the monitored samples from the posterior 
distribution. 

When fitting the multilevel model using BUGS in the current simulations, 
1,000 burn-in iterations of the Gibbs sampler were performed when there were 
more than 5 clusters.  In scenarios in which there were 5 clusters, then 10,000 
burn-in iterations were employed.  In all scenarios, the Gibbs sampler was then 
monitored for an additional 1,000 iterations.  The Geweke convergence diagnostic 
was used to assess the convergence of Gibbs sampler for the parameters of 
interest ( 1β , 2β , and τ ) (Geweke, 1994).  If the z-statistic for the Geweke 
convergence diagnostic exceeded 1.96 in absolute value for any of the three 
parameters, then that analysis was discarded.  For the Bayesian analysis, sufficient 
iterations of the Monte Carlo simulations were used so that there were 1,000 
Bayesian analyses that converged per scenario.  Thus, the actual numbers of 
simulated datasets for the Bayesian analyses varied across the different scenarios. 
 
4. Results of the Monte Carlo simulations 
 
SAS Proc NLMIXED uses an adaptive algorithm to determine the number of 
quadrature points used for the adaptive Gaussian quadrature.  Across all analyses 
in all the simulated datasets, the selected number of quadrature points ranged 
from a low of 1 to a high of 5, with a mean of 4.1.  When the number of clusters 
was fixed, the mean number of quadrature points across the simulated datasets 
tended to decrease as the number of subjects per cluster increased.  In general, 
when the number of subjects per cluster was fixed, the effect of the number of 
clusters on the mean number of quadrature points was negligible. 
 
4.1 Estimation of 1β  
 
For each scenario and for each software procedure, the mean estimated regression 
coefficient for 1β was determined across the 1,000 simulated datasets.  The 
influence of the number of clusters and the number of subjects per cluster on 
estimating 1β  is reported graphically in Figure 1.  There is one panel for each of 
the seven software procedures (one in BUGS, one in HLM, two in R, two in SAS 
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and one in Stata).  Due to the large biases that occurred when there were 5 
clusters and 5 subjects per cluster, we have fixed the range of the vertical axes so 
that these values are not visible in the plots.  Had the vertical axes been extended 
to include the entire range of the estimated values of 1β , then most of the patterns 
would not have been discernable.  When there were five subjects per cluster and 
fewer than 10-15 clusters, then each software procedure performed poorly for 
estimating 1β .  In some scenarios, the bias was substantial, particularly when 
there were only five clusters.  In many scenarios, the use of BUGS tended to 
result in estimation that was modestly more biased compared to most of the other 
software procedures.  In general, estimation improved as the number of subjects 
per cluster increased.  When using Proc GLIMMIX in SAS or the HLM software, 
there was a trend towards increasing bias as the number of clusters increased from 
10 to 20.  A similar, though attenuated, pattern was observed when using the 
glmmPQL function in R.  For the remaining three likelihood-based software 
procedures, one observes that biases in estimating 1β  were less than 
approximately 5% once there were at least 20 subjects per cluster, regardless of 
the number of clusters.  Thus, even with 5 clusters, once there were at least 20 
subjects per cluster, bias tended to be less than 5%.  These findings suggest that, 
from an estimation perspective, previous guidelines suggesting the need for at 
least 10 clusters may have been overly conservative.  The above results suggest 
that, in our setting, estimation is minimally biased when there are a small number 
of clusters, provided the number of subjects per cluster is large enough. 
 
4.2 Coverage of the 95% confidence intervals for 1β  
 
For each scenario and for each software procedure, the proportion of estimated 
95% confidence intervals for 1β  that contained the true value of 1β  was 
determined across the 1,000 simulated datasets.  These proportions are reported in 
Figure 2.  Due to the use of 1,000 iterations for each scenario, any coverage rate 
that exceeds 0.9635 or that is less than 0.9365 is statistically significantly 
different from 0.95 at a significance level less than 0.05 using a standard test 
based on the normal approximation due the binomial distribution.  On each panel 
we have superimposed three horizontal denoting coverage rates of 0.9365, 0.95, 
and 0.9635.   For Bayesian estimation using the BUGS software, we are reporting 
coverage of the 95% credible intervals, thus we are evaluating the frequentist 
performance of a Bayesian interval. 

Using Proc NLMIXED in SAS, estimated confidence intervals tended to be 
conservative, with empirical coverage rates that exceeded 95%.  Coverage rates 
approached 95% as the number of clusters increased.  However, the number of 
subjects per cluster did not appear to have an impact upon the empirical coverage 

  

9

Austin: A Comparison of Different Statistical Software Procedures

Published by The Berkeley Electronic Press, 2010



5 10 15 20

0.
90

0.
94

0.
98

Number of clusters

C
ov

er
ag

e 
of

 9
5%

 C
Is

 fo
r 

β 1
SAS Proc NLMIXED

5 10 15 20

0.
90

0.
94

0.
98

Number of clusters

C
ov

er
ag

e 
of

 9
5%

 C
Is

 fo
r 

β 1

SAS Proc GLIMMIX

5 10 15 20

0.
90

0.
94

0.
98

Number of clusters

C
ov

er
ag

e 
of

 9
5%

 C
Is

 fo
r 

β 1

HLM Software

5 10 15 20

0.
90

0.
94

0.
98

Number of clusters

C
ov

er
ag

e 
of

 9
5%

 C
Is

 fo
r 

β 1

Stata: xtlogit

5 10 15 20

0.
90

0.
94

0.
98

Number of clusters

C
ov

er
ag

e 
of

 9
5%

 C
Is

 fo
r 

β 1

R: glmmPQL function

5 10 15 20

0.
90

0.
94

0.
98

Number of clusters

C
ov

er
ag

e 
of

 9
5%

 C
Is

 fo
r 

β 1

R: glmer function

5 10 15 20

0.
90

0.
94

0.
98

Number of clusters

C
ov

er
ag

e 
of

 9
5%

 C
Is

 fo
r 

β 1

BUGS: MCMC

5 subjects/cluster
10 subjects/cluster
15 subjects/cluster
20 subjects/cluster
25 subjects/cluster
30 subjects/cluster
35 subjects/cluster
40 subjects/cluster
45 subjects/cluster
50 subjects/cluster

Figure 2. Coverage of 95% confidence intervals for β1

10

The International Journal of Biostatistics, Vol. 6 [2010], Iss. 1, Art. 16

http://www.bepress.com/ijb/vol6/iss1/16
DOI: 10.2202/1557-4679.1195



rate of the 95% confidence intervals.  It was not until the number of clusters was 
close to 20 that coverage rates were approximately equal to the advertised rates.  
In contrast, Proc GLIMMIX in SAS and xtlogit in Stata tended to produce 
confidence intervals with approximately correct coverage rates, except when there 
were only five subjects per cluster.  Even when there were very few clusters, Proc 
GLIMMIX and xtlogit produced confidence intervals with approximately correct 
coverage rates when there were at least 10 subjects per cluster.  Both the HLM 
software package and the glmer function in R produced confidence intervals with 
approximately correct coverage rates, except in some instances when there were 
only 5 or 10 subjects per cluster.  The glmmPQL function in R tended to result in 
confidence intervals whose coverage rates were lower than the advertised level.  
However, except when the number of subjects per cluster was very low, the 
empirical coverage rates tended to not be significantly different from 0.95.  In 
most instances, the number of clusters had, at most, a negligible impact on the 
coverage rates of confidence intervals. 
 
4.3 Type I error rate for 0: 20 =βH  
 
For each scenario and for each software procedure, the proportion of simulated 
datasets in which the null hypothesis 0: 20 =βH  was rejected was determined 
across the 1,000 simulated datasets.  The empirical type I error rates for testing 
the hypothesis that 2β  was equal to zero are reported in Figure 3.  Due to the use 
of 1,000 iterations of the Monte Carlo simulations for each scenario, empirical 
type I error rates that are less than 0.0365 or that exceed 0.0635 are statistically 
significantly different than 0.05, using a test based on the normal approximation 
to the binomial distribution.  Three lines are superimposed on each panel denoting 
empirical type I error rates of 0.0365, 0.05, and 0.0635. 

When using Proc NLMIXED in SAS, empirical type I error rates were less 
than 0.05; however, they approached 0.05 as the number of clusters increased.  In 
most instances, the number of subjects per cluster did not have a large effect on 
the observed type I error rate.  In Stata, the use of the xtlogit function tended to 
result in type I error rates that were not significantly different from 0.05, 
regardless of the number of clusters or the number of subjects per cluster.  
Similarly, the glmer function in R tended to have acceptable empirical type I error 
rates, except when both the number of clusters and the number of subjects per 
cluster were equal to five.  The HLM software, Proc GLIMMIX in SAS, and the 
glmmPQL function in R tended to produce satisfactory type I error rates, except 
when there were only five subjects per cluster. 
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4.4 Estimation of the variance component 
 
For each scenario and for each software procedure, the mean estimated variance 
of the random effects was determined across the 1,000 simulated datasets.  The 
estimation of the variance of the random effect is reported in Figure 4 for each of 
the statistical software procedures.  For most of the statistical software 
procedures, estimation of the variance component tended to be poor when there 
were only 5 or 10 subjects per cluster, regardless of the number of clusters.  When 
using Proc NLMIXED in SAS, estimation of the variance components improved 
as the number of clusters increased.  With the exception of when there were 5 or 
10 subjects per cluster, estimates of the variance component tended to be biased 
downward.  When the number of clusters exceeded 10, then the relative bias was 
less than approximately 10%.  When using Proc GLIMMIX in SAS, estimates of 
the variance component tended to be biased downward when the number of 
clusters exceeded approximately 10.  However, the bias tended to be attenuated 
with an increasing number of subjects per cluster.  When using the xtlogit 
function in Stata, estimation improved as the number of clusters increased.  With 
the exception of when there were only five subjects per cluster, the relative bias 
tended to be less than 10% when there were at least 10 clusters.  When using R, 
estimation of the variance component tended to be superior when using the glmer 
function compared to when the glmmPQL function was used.  When using BUGS, 
estimation of the variance component was minimally biased once there were at 
least 30 subjects per cluster, regardless of the number of clusters.  If there were 10 
to 25 subjects per cluster, then estimation of the variance component was 
minimally biased once there were at least seven clusters. 
 
5. Discussion 
 
Our findings complement and corroborate those of previous studies.  Rodriquez 
and Goldman (1995) conducted a series of Monte Carlo simulations to compare 
the performance of two software packages (VARCL and ML3) for estimating 
multilevel logistic regression models (both VARCL and ML3 use an estimation 
method that is equivalent to marginal quasi-likelihood (MQL) for estimating non-
linear regression models (Rodriquez and Goldman, 1995)).  They found 
substantial biases in the estimation of fixed effects and/or variance components 
when the random effects were large.  Similar to our findings, they also observed 
that biased estimation occurred when the number of subjects per cluster was 
small.  Breslow and Clayton (1993), in a series of simulations, found that PQL 
resulted in estimates of variance components that were biased downwards, when 
estimating multilevel logistic regression models. This was similar to our finding 
that glmmPQL in R (which employs PQL for estimation) tended to produce 
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estimates of the variance component that were biased downwards.  Finally, 
Browne and Draper (2006) used simulations to compare the performance of 
MCMC methods for estimating random-effects logistic regression models with 
that of quasi-likelihood based methods (PQL or MQL).  They found that the use 
of PQL resulted in estimates of variance components that were biased 
downwards, whereas the use of Bayesian estimation, when done with Gamma 
prior distributions for the variance components, resulted in negligible bias.  These 
results are similar to ours (the HLM software and the glmmPQL function in R use 
PQL estimation methods).  Furthermore, they found that estimation of the fixed 
effects was less biased when Bayesian estimation was used compared to when 
either PQL or MQL was used. 

There are certain limitations to the current paper.  First, we only examined 
procedures in BUGS, HLM, R, SAS, and Stata for fitting multilevel logistic 
regression models.  We did not consider other software packages such as MLwiN.  
Our simulations were conducted in a Unix environment; MLwiN is available only 
on a PC environment under a Windows-based operating system.  Second, we 
restricted our focus on the estimation of multilevel logistic regression models.  
We did not consider multilevel linear models or multilevel Poisson regression 
models.  The reason for this restriction was due to the frequency with which 
dichotomous outcomes occur in health research.  Third, we examined a limited set 
of scenarios.  We considered a bivariate regression model, in which one 
regression coefficient was zero.  Thus, we could examine estimation of non-null 
regression coefficients, coverage of confidence intervals, empirical type I error 
rates, and estimation of the variance component.  Due to the computationally 
intensive nature of the simulations when Bayesian methods were used, we were 
unable to examine more complex regression models, with a larger number of 
covariates or variance components.  Fourth, we only considered models with a 
random intercept and did not consider models with random slopes.  One 
justification for this decision was that random intercept models may be used more 
frequently in the medical literature than models that incorporate random slopes.  
Due to the simplicity of the regression model that we considered, our findings 
may not be generalizable to other regression models.  Fifth, three of the software 
procedures used adaptive Gauss-Hermite to estimate the likelihood function.  
However, the default number of quadrature points varied across the procedures.  
In xtlogit in Stata, the default number was 12, while in the glmer function in R, 
the default was 1.  The default in Proc NLMIXED in SAS is to use an adaptive 
algorithm to determine the number of quadrature points.  We used the default 
setting in each procedure, to reflect how that procedure would be used by a 
typical user.  Examining a variety quadrature points for each software procedure 
was beyond the scope of the current simulations.  The sixth limitation was that we 
assumed diffuse, non-informative priors for the model parameters in the Bayesian 
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analysis conducted in BUGS.  With small to moderate sized datasets, the posterior 
distribution may be more influenced by the choice of prior distributions than 
when the number of clusters and number of subjects per cluster are large.  
However, due to the time-intensive nature of Monte Carlo simulations of MCMC 
analyses, it was not feasible to examine the performance of Bayesian modeling 
under a variety of prior distributions. 

It has previously been suggested that one should not fit multilevel models to 
data consisting of fewer than 10 clusters (Snijders and Boskers, 1999).  Our 
findings, in the context of a bivariate regression model, would suggest that, in 
some settings, one may take a more nuanced approach to the minimum sample 
sizes for fitting multilevel models.  For estimation and inference concerning 
regression coefficients, the findings of our Monte Carlo study suggest that one 
can consider settings in which there are as few as five clusters, as long as the 
number of subjects per cluster exceeds approximately 30.  As noted above, 
estimation and inference may be superior using one software procedure compared 
to another software procedure.  Conversely, when there were more than 10 
clusters, estimation and inference was poor for some software procedures if the 
number of subjects per cluster was too low.  Finally, if the focus is on accurate 
estimation of the variance component, then the minimum number of clusters 
depends on the acceptable degree of bias and the software procedure used.  When 
using the BUGS software, then accurate estimation of variance components was 
achieved regardless of the number of clusters, provided that the number of 
subjects per cluster was at least 30.  For several of the other software procedures, 
one would suggest that there should be at least 10 to 15 clusters.  Among these 
competing likelihood-based software procedures, estimation of variance 
components tended to be better when procedures based on adaptive Gaussian 
quadrature were implemented (Proc NLMIXED in SAS, xtlogit in Stata, and 
glmer in R). 

There are two primary conclusions to our study.  First, in the specific 
regression model that we considered, there were qualitative differences in the 
performance of different statistical software procedures for estimating multilevel 
logistic models.  Second, depending on the software procedure used, the bivariate 
logistic regression models that we considered can be reliably fit when the number 
of clusters is small, provided that there are a sufficient number of subjects per 
cluster. 
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