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Objectives: Assessing high-sensitivity tests for mortal illness is crucial in emergency and critical care 
medicine. Estimating the 95% confidence interval (CI) of the likelihood ratio (LR) can be challenging when 
sample sensitivity is 100%. We aimed to develop, compare, and automate a bootstrapping method to 
estimate the negative LR CI when sample sensitivity is 100%. 

Methods: The lowest population sensitivity that is most likely to yield sample sensitivity 100% is located 
using the binomial distribution. Random binomial samples generated using this population sensitivity are 
then used in the LR bootstrap. A free R program, “bootLR,” automates the process. Extensive simulations 
were performed to determine how often the LR bootstrap and comparator method 95% CIs cover the true 
population negative LR value. Finally, the 95% CI was compared for theoretical sample sizes and 
sensitivities approaching and including 100% using: (1) a technique of individual extremes, (2) SAS 
software based on the technique of Gart and Nam, (3) the Score CI (as implemented in the StatXact, SAS, 
and R PropCI package), and (4) the bootstrapping technique. 

Results: The bootstrapping approach demonstrates appropriate coverage of the nominal 95% CI over a 
spectrum of populations and sample sizes. Considering a study of sample size 200 with 100 patients with 
disease, and specificity 60%, the lowest population sensitivity with median sample sensitivity 100% is 
99.31%. When all 100 patients with disease test positive, the negative LR 95% CIs are: individual extremes 
technique (0,0.073), StatXact (0,0.064), SAS Score method (0,0.057), R PropCI (0,0.062), and bootstrap 
(0,0.048). Similar trends were observed for other sample sizes. 

Conclusions: When study samples demonstrate 100% sensitivity, available methods may yield 
inappropriately wide negative LR CIs. An alternative bootstrapping approach and accompanying free 
open-source R package were developed to yield realistic estimates easily. This methodology and 
implementation are applicable to other binomial proportions with homogeneous responses. 

Keywords Keywords 
Sensitivity and specificity, confidence intervals, Monte Carlo method, data interpretation, statistical, 
bootstrapping, biostatistics 

This journal article is available at ScholarlyCommons: https://repository.upenn.edu/hcmg_papers/43 

https://repository.upenn.edu/hcmg_papers/43


For Peer Review
 

 

 

 

 

 

Estimating Negative Likelihood Ratio Confidence when Test 

Sensitivity is 100%: A Bootstrapping Approach 
 

 

Journal: Statistical Methods in Medical Research 

Manuscript ID: SMM-14-0124.R2 

Manuscript Type: Original Article 

Keywords: 
Sensitivity and Specificity, Confidence Intervals, Monte Carlo Method, Data 
Interpretation, Statistical, Bootstrapping, Biostatistics 

Abstract: 

Objectives: Assessing high sensitivity tests for mortal illness is crucial in 
emergency and critical care medicine. Estimating the 95% confidence 
interval (CI) of the likelihood ratio (LR) can be challenging when sample 
sensitivity is 100%.  We aimed to develop, compare, and automate a 
bootstrapping method to estimate the negative LR CI when sample 

sensitivity is 100%.  
Methods: The lowest population sensitivity that is most likely to yield 
sample sensitivity 100% is located using the binomial distribution. Random 
binomial samples generated using this population sensitivity are then used 
in the LR bootstrap. A free R program, “bootLR,” automates the 
process.  Extensive simulations were performed to determine how often 
the LR bootstrap and comparator method 95% CI’s cover the true 
population negative LR value. Finally, the 95% CI was compared for 
theoretical sample sizes and sensitivities approaching and including 100% 
using: (1) a technique of individual extremes, (2) SAS software based on 
the technique of Gart and Nam, (3) the Score CI (as implemented in the 
StatXact, SAS, and R PropCI package), and (4) the bootstrapping 

technique.    
Results: The bootstrapping approach demonstrates appropriate coverage of 
the nominal 95% CI over a spectrum of populations and sample 
sizes.  Considering a study of sample size 200 with 100 patients with 
disease, and specificity 60%, the lowest population sensitivity with median 
sample sensitivity 100% is 99.31%. When all 100 patients with disease 
test positive, the negative LR 95% CI’s are: individual extremes technique 
(0,0.073), StatXact (0,0.064), SAS Score method (0,0.057), R PropCI 
(0,0.062), and bootstrap (0,0.048). Similar trends were observed for other 
sample sizes.  
Conclusions: When study samples demonstrate 100% sensitivity, available 

methods may yield inappropriately wide negative LR CIs. An alternative 
bootstrapping approach and accompanying free open source R package 

https://mc.manuscriptcentral.com/smmr

Statistical Methods in Medical Research



For Peer Review

were developed to yield realistic estimates easily. This methodology and 
implementation are applicable to other binomial proportions with 
homogeneous responses. 

  

 

 

Page 1 of 34

https://mc.manuscriptcentral.com/smmr

Statistical Methods in Medical Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

1 

 

 

 

Estimating Negative Likelihood Ratio Confidence when Test Sensitivity is 100%: A 

Bootstrapping Approach 
 

 
Authors: 
 
Keith A. Marill, M.D. 
University of Pittsburgh 
Department of Emergency Medicine 
 
Yuchiao Chang, Ph.D. 
Harvard Medical School 
Department of Medicine 
 
Kim  F. Wong, Ph.D. 
University of Pittsburgh 
Center for Simulation and Modeling 
Department of Chemistry 
 
Ari B. Friedman, B.S., M.A. 
Fellow, Leonard Davis Institute of Health Economics 
University of Pennsylvania 
 
 
Author correspondence: 
Keith A. Marill, M.D. 
3600 Forbes Avenue 
Suite 400A Iroquois Building 
Pittsburgh, PA  15261 
Phone: 617-312-0106 
Fax: 412-647-6999 

marillka@upmc.edu 
 
No reprints are available. 
 
 
Running title: Bootstrapping Neg LR Confidence when Test Sensitivity is 100% 
 
 
Key words: Sensitivity and Specificity; Confidence Intervals; Monte Carlo Method; Data Interpretation, 
Statistical; Bootstrapping; Biostatistics 
 
 
Presented at the Society For Academic Emergency Medicine Annual Meeting, May 15, 2013, Atlanta, 
Georgia. 

 

 

Page 2 of 34

https://mc.manuscriptcentral.com/smmr

Statistical Methods in Medical Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

2 

 

The project described was supported by Award Number 5K12HL109068 (KAM) from the 

National Heart, Lung, and Blood Institute. The content is solely the responsibility of the authors 

and does not necessarily represent the official views of the National Heart, Lung, and Blood 

Institute or the National Institutes of Health. 

Page 3 of 34

https://mc.manuscriptcentral.com/smmr

Statistical Methods in Medical Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

3 

 

Abstract: 
 
Objectives: Assessing high sensitivity tests for mortal illness is crucial in emergency and critical 

care medicine. Estimating the 95% confidence interval (CI) of the likelihood ratio (LR) can be 

challenging when sample sensitivity is 100%.  We aimed to develop, compare, and automate a 

bootstrapping method to estimate the negative LR CI when sample sensitivity is 100%. 

Methods: The lowest population sensitivity that is most likely to yield sample sensitivity 100% 

is located using the binomial distribution. Random binomial samples generated using this 

population sensitivity are then used in the LR bootstrap. A free R program, “bootLR,” automates 

the process.  Extensive simulations were performed to determine how often the LR bootstrap and 

comparator method 95% CI’s cover the true population negative LR value. Finally, the 95% CI 

was compared for theoretical sample sizes and sensitivities approaching and including 100% 

using: (1) a technique of individual extremes, (2) SAS software based on the technique of Gart 

and Nam, (3) the Score CI (as implemented in the StatXact, SAS, and R PropCI package), and 

(4) the bootstrapping technique.   

Results: The bootstrapping approach demonstrates appropriate coverage of the nominal 95% CI 

over a spectrum of populations and sample sizes.  Considering a study of sample size 200 with 

100 patients with disease, and specificity 60%, the lowest population sensitivity with median 

sample sensitivity 100% is 99.31%. When all 100 patients with disease test positive, the negative 

LR 95% CI’s are: individual extremes technique (0,0.073), StatXact (0,0.064), SAS Score 

method (0,0.057), R PropCI (0,0.062), and bootstrap (0,0.048). Similar trends were observed for 

other sample sizes.  

Conclusions: When study samples demonstrate 100% sensitivity, available methods may yield 

inappropriately wide negative LR CIs. An alternative bootstrapping approach and accompanying 
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free open source R package were developed to yield realistic estimates easily. This methodology 

and implementation are applicable to other binomial proportions with homogeneous responses. 
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Introduction: 

The primary mission of emergency and critical care medicine is to detect rapidly and manage 

appropriately life-threatening illness.  Consequently, physicians seek highly sensitive diagnostic 

tests for serious illness.  The emphasis on test sensitivity often comes at an acknowledged cost of 

relatively low test specificity. 

 

Assessing highly sensitive diagnostic tests for life threatening illness is critical in emergency and 

critical care clinical research.  Likelihood ratios (LR) based on sensitivity and specificity (Figure 

1) are a popular metric used to assess diagnostic tests.[1-3]  The negative likelihood ratio (Neg 

LR) is commonly used to assess the decrease in the odds of disease after a negative test result.  

When investigating highly sensitive diagnostic tests, emergency researchers may obtain perfect 

100% sensitivity for disease in their study sample. An important example includes Perry, et al.’s 

observation that head computed tomography (CT) is 100% sensitive and specific for 

subarachnoid hemorrhage within 6 hours of headache onset, potentially obviating the need for 

lumbar puncture if head CT is negative.[4]  Other critical and emergency care examples include: 

use of the serum d-dimer to diagnose acute aortic dissection, chest CT angiography for 

pulmonary embolism, C-reactive protein for bacterial infection, recognition of cardiac syncope 

in the setting of trauma, emergency imaging of ovarian torsion, and others.[5-11]   

 

Sample sensitivity of 100%, as found in these examples, yields a sample estimate Neg LR of 

zero, which has limited practical utility.  In reality, the absence of a false negative result in the 

study sample does not preclude the existence of a false negative in the population of interest.  
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This is true regardless of sample size determinations and the sample size studied.  There is 

always some uncertainty, and the 95% confidence interval (CI) for this Neg LR will range from 

zero to some upper bound.  The upper bound of the 95% CI for the Neg LR becomes the critical 

metric for evaluating a diagnostic test when the Neg LR sample estimate is zero. 

 

An accurate upper bound of the 95% CI for the Neg LR is important for a highly sensitive test to 

determine the minimal amount by which a negative test result can be expected to lower the odds 

of disease.  The Neg LR metric can be used to compare the benefit of one highly sensitive test to 

another, and to weigh its benefit versus its cost and risks.  For example, if the upper bound 

estimate of the 95% CI is too high, it will incorrectly lower the perceived minimum benefit of the 

test.  

 

Calculating the 95% CI for sensitivity or specificity, which are binomial proportions, is 

accurately accomplished using techniques based on the binomial distribution.[12-14]  

Calculating the 95% CI for the LR, a ratio of binomial proportions that incorporates both 

sensitivity and specificity, can be challenging.  A number of modified Taylor series and other 

methods have been developed to estimate the result.[15-19]   

 

We hypothesized that when study samples yield 100% sensitivity, techniques relying on modified 

Taylor series methods to estimate the population Neg LR CI may yield inappropriately wide 

intervals with high upper bound values.  The primary objective of this study was to develop and 

compare an alternative bootstrapping method based more directly on the binomial distribution to 

estimate the negative LR CI particularly when study sample test sensitivity is 100%.  The 
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secondary objective was to write and distribute a freely available automated software program to 

perform the calculations for researchers and clinicians. 

 

Methods: 

A bootstrapping technique was developed to estimate the upper bound of the Neg LR for samples 

with 100% sensitivity and compared to a conservative approach and to other conventional 

methods available from commercial and open source statistical packages. 

 

Bootstrapping approach: problem 

Bootstrapping is a method of estimation which repeatedly resamples with replacement and 

calculates the statistic of interest on each hypothetical sample.[20,21]  Bootstrapping can be used 

“non-parametrically” by resampling the observed data without any distributional assumptions, or 

“parametrically,” by sampling repeatedly from a distribution whose parameters (e.g. mean and 

standard deviation for the normal distribution) match those of the observed data. Traditionally,  

Neg LR CIs are calculated by non-parametric bootstrapping. This is the convention we use 

throughout for bootstrap resampling except for the case when sample sensitivity or specificity 

equal 100%. Repeated random samples are drawn from a theoretical population based on the 

observed data, and the sample elements withdrawn are replaced in the population each time.  The 

distribution of the summary statistics of that collection of random samples withdrawn is the item 

of interest.  For instance, characteristics such as the distribution of the means of the samples 

drawn can be used to estimate CIs.  However, if all of the population elements are the same, such 

as when the sensitivity is 100% (all positive), then the collection of samples withdrawn are 

identical with all positive elements and no useful distribution can be discerned. 
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Bootstrapping approach: solution 

When a diagnostic test is found to have X sensitivity in a given sample, then X also serves as the 

best estimate for the population sensitivity.  This may also be true when the sample sensitivity is 

at the extreme of 100% or zero.  However, X is not the only population sensitivity that could 

have yielded a sample sensitivity of X result.  For example, both a population sensitivity of 70% 

and 72% are likely to have yielded a sample sensitivity of seven positive out of ten subjects (7/10 

or 70%).  Similarly, for any sample with 100% sensitivity, there are population sensitivities less 

than 100% that could have yielded the 100% sample sensitivity result.   

 

Our approach to computing the Neg LR 95% CI for a study sample with 100% sensitivity starts 

with calculating the lowest population sensitivity that is likely to yield a sample sensitivity of 

100% (Figure 2). Assuming the population sensitivity is p, the probability of observing a sample 

sensitivity of 100% is pn for a sample size of n.  We define that any population that is likely to 

yield a sample sensitivity of 100% has the probability of observing a sample sensitivity of 100% 

at least 0.5.   Thus, the lowest population sensitivity that is most likely to yield sample sensitivity 

100%  is calculated as
)5.0(log1

nep =  (Appendix, section 1).  For a sample size of 20, the lowest 

population sensitivity p that satisfies our definition is 96.6%. 

 

The next step is to draw 10,000 bootstrap samples each from those with and without the 

condition of interest. For sensitivity, bootstrapping is achieved by sampling repeatedly from a 

binomial distribution using parameters n and p, where n is the original sample size and p is the 

calculated lowest population sensitivity. For specificity, bootstrapping is achieved by resampling 
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the observed data. The two sets of bootstrap samples were then combined to calculate the Neg 

LR and its 95% CI. The CI of the bootstrap samples is determined using the bias corrected and 

accelerated (BCa) percentile method.[22]   The BCa confidence interval method is used to 

correct for bias or skewness in the bootstrap distribution.  Given the approximate 10% or less 

instability of the 95% CI results due to random variation particularly noted with low subject 

numbers, the entire procedure was repeated 50 times and the average value of the upper 95% CI 

was used. 

   

bootLR 

All computations were performed with the boot package in R, version 3.1.2. (Appendix, section 

2).  Given the multiple steps involved in determining the population sensitivity with median of 

samples equal to 100%, generating the bootstrap samples, and repeatedly performing the 

bootstrap procedure, a program, “bootLR,” was written in R to automate the process. The user 

simply provides the number of true positives and total subjects with disease and true negatives 

and total subjects without disease in the study sample.  The program performs the entire 

bootstrapping procedure and provides the positive and negative LR point estimates and 95% CI’s 

(Figure 3).  When sensitivity or specificity is 100%, bootLR generates samples from a parametric 

binomial (n, p) using the procedure described above.  In the case that sensitivity or specificity is 

not 100%, bootLR resamples from the observed, non-parametric data distributions.  A protocol 

repeating 10,000 samples 50 times was used because it provides low variance and high stability 

on repeat testing while using computing power generally available on a desktop PC.  Using a 

variety of sample sizes, this protocol demonstrated better stability than protocols repeating larger 

numbers of bootstrap samples fewer times. The bootLR package also permits specifying a 
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different number of bootstrap samples from the default 10,000, or repetitions to average over 

from the default 50, if desired. 

 

To evaluate the performance of the bootstrapping approach and bootLR, we compared results to 

a conservative approach, and methods available from commercial and open source statistical 

packages in two aspects: (1) the 95% CI coverage and (2) the upper bound of the 95% CI. 

  

Simple conservative approach 

A simple, conservative method for estimating the upper CI of the Neg LR is to use the lower 

extreme 95% CI for the individual sensitivity and specificity estimates.[16]  This would 

maximize the numerator, 1 – Sensitivity, and minimize the denominator, Specificity, of the Neg 

LR equation (Figure 1).  The 95% CI for sensitivity and specificity can be determined 

individually from the binomial distribution in general, and can also be estimated for sample 

sensitivity 100%.[12-14]  These computations were performed using the Clopper-Pearson exact 

CI with StatXact 10 (Cytel Software Corp., Cambridge, MA) and the downloadable PropCI 

package within the open source R software, version 3.1.2 (R Foundation for Statistical 

Computing, Vienna, Austria).[13]  This approach is overly conservative because it takes the 95% 

CI extreme for two sampling distributions simultaneously, which is expected to be more extreme 

than the 95% CI for their ratio as a whole.[16]  Any other method for calculating the 95% CI of 

the Neg LR that yields confidence intervals that are as wide or wider than this result may be 

considered incorrectly wide.  

 

Commercial and Open Source Methods 
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Commercial software such as Stata does not formally provide a function for the CI of the ratio of 

binomials (personal communication with technical support, 10/13).   In SAS (version 9.4), the CI 

for a ratio of binomial proportions was computed with two options.  The default option computed 

the CI by inverting two separate one-sided exact tests,[23] and the “SCORE” option computes 

the Farrington-Manning standardized Score statistic.[24,25]  StatXact 10 software offers three 

methods: (I) is comparable to the SAS “SCORE,” method (II) uses a modification of the Score 

statistic by inverting a single two-sided test,[26] and (III) is a legacy technique with relatively 

wide CI’s developed by Gart and Namm.[15,27]  We use StatXact Method (II).  The R PropCI 

version 0.2-5 software calculates the Wilson Score CI as programmed by Agresti, et al.[28,29] 

 

Testing for appropriate 95% CI coverage 

To determine whether each method provides appropriate coverage, we simulated samples from 

known theoretical populations.  We explored the scenarios of population sensitivity ranging from 

70% to 99.5%, population specificity 60%, with a total sample size of 40, 80, 200, 1000, and 

2000 patients and half of the patients with the condition of interest.  Five thousand random 

samples were drawn from each population. We calculated the NegLR and its 95% CI for each of 

the 5,000 simulated samples.  We then evaluated the number of times the 95% CI covers the 

population Neg LR. This compute-intensive simulation was performed with bootLR on a high-

performance computing cluster. We also determined how often sensitivity =100% when drawing 

100,000 samples from each of the specified populations to inform when the binomial sampling 

technique is expected to significantly affect the bootstrap technique results.  As a comparison, we 

also calculated the coverage for the 95% CI produced by the Conservative Method and the R 

PropCI package. 
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Comparing the upper bound of the 95%CI 

We calculated the 95% CI from different scenarios of observed samples with specificity fixed at 

60%, total sample size varying from 40 to 2000 patients, and half of the patients with the 

condition of interest.  In addition to the case with 100% sensitivity (0 false negative), we allowed 

for a small number (1-4) of false negatives for each sample and compared the upper bound of the 

95% CI of the Neg LR from each method.  This was done to assess the transition from very high 

sensitivity to the specific case of 100% sensitivity using the conventional bootstrap and our 

binomial sampling technique as compared to other methods. 

 

Results: 

We compared coverage by assessing how often the 95% confidence interval included the 

population negative likelihood ratio (Table 1).  bootLR method results are provided in Table 1a.  

Table 1b informs Table 1a by showing how often, on average, sample sensitivity=100% and the 

binomial sampling technique described above is used.  The lowest coverage of 92-93% in Table 

1a occurred when 1-2% of samples were expected to have sensitivity=100% in Table 1b.  When 

more than 2% of samples were expected to have sensitivity=100%, coverage was always 95% or 

more.  The Conservative method was overly conservative, as expected (Table 1c).  The R Score 

method using R PropCI provided good coverage up until high sensitivity of 99% or more where 

it fell to 91% coverage. 

 

The upper bounds of the Neg LR 95% CI were compared between methods for samples with 

different sample sizes, with specificity set at 60%, and 0 false negative (100% sensitivity), the 
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condition of primary interest in this study (Figure 4), and up to 4 false negatives (Figure 5), 

(Table 2).  The 95% CI was also computed for a range of other specificities with a similar pattern 

of results (not shown). CI’s were computed with the six different methods, including the 

binomial sampling bootstrap technique when there are zero false negatives. 

 

Note in Table 1 and in the first column of Table 2 where there are zero false negatives (100% 

sensitivity), StatXact provides an estimate for the upper 95% CI that is higher than the simple 

conservative approach for larger samples.  The R Score method yields results intermediate 

between the StatXact and bootstrapping method.  As sample size increases (Figures 5c and 5d) 

the various Score method results cluster around the simple conservative results. The bootstrap 

results remain lower, even for samples with size 2,000 and 1 or more false negatives.  These 

samples use only conventional bootstrapping with no binomial sampling and are expected to be 

most accurate as they approach a large sample asymptotic result.[30]  The bootstrap curve has a 

mild upwards concave deflection moving from the zero to two false negative cases (Figure 5). 

This is as expected given the choice of the lowest consistent underlying population sensitivity 

estimate incorporated in the (1-sens) bootstrap for samples with zero false negatives. 

 

Discussion: 

The impetus for this work arose when the LR estimates under the condition of extreme 

sensitivity from commercial software were compared to those obtained using the simple 

conservative method.[31]  It was disconcerting to find that previous versions of commercial 

software consistently yielded a wider 95% confidence interval than the conservative 

methodology based on binomial sampling.  Available methods have improved, but we were still 

concerned the confidence intervals produced were overly wide.  An alternative pragmatic method 
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was sought for the special case particularly relevant to emergency and critical care research when 

sample sensitivity is 100%.  Bootstrapping is well suited for analyzing ratios of binomials, and it 

is used for this purpose in other areas of health care research such as cost effectiveness 

analysis.[32]  

 

The present study involved developing a methodology for the case where one of the samples is 

homogeneous (sensitivity 100%), and then comparing it to other available methods across 

varying sample sizes. The methodology can be adapted for other situations where the sample 

sensitivity or specificity is homogeneous, and either the negative or positive LR CI is being 

estimated (Figure 1), or for other metrics with homogeneous results.   

 

The bootstrap result appears to represent a realistic estimate of the metric sought with excellent 

nominal 95% CI coverage (Table 1).  Testing through an array of population sensitivities, 

specificities, and sample sizes, the bootstrap method coverage is noted to decrease to 92.3% for 

sample size 200 and population sensitivity of 96%.  Because of the marked decrease in bootstrap 

CI width as sensitivity approaches 100%, the CI of samples with sensitivity approaching and 

including 100% do not cover the 96% population sensitivity value.  This seems primarily to be a 

result of the inherent challenges in estimating bootstrap confidence intervals rather than our 

proposed treatment of samples with 100% sensitivity.  In fact, only 1.7% of samples with this 

size from this population would be expected to have sensitivity equal to 100% and invoke the 

binomial sampling procedure (Table 1b). 
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The bootstrap method developed generally yields lower values for the upper bound of the Neg 

LR 95% CI than the other available methods.  As noted from the first column of Table 2 with 

sensitivity of 100%, the differences can be substantial including an increase of up to 24% for the 

40 subject sample and 47% with 2000 subjects for the commercial as compared to bootstrapping 

method.     

 

The SAS commercial package provides both a default and an optional Score method.  The 

default method generally produces wide CIs with these skewed samples with one or more false 

negatives (Figure 5, Table 2).  The Score option seems preferred in this case. 

 

It may seem paradoxical that, compared to the PropCI Score method, the bootstrap technique 

95% CI generally covers the true population NegLR more often for populations with high 

sensitivity (Table 1), but it demonstrates a lower upper 95% CI for samples with 100% 

sensitivity (Figure 4).  We believe this is because the bootstrap technique generally has a smaller 

lower 95% CI limit for populations with high sensitivity (Fig 5, Table 2) which leads to higher 

proportions of coverage.  In essence, if the large sample bootstrap curves in Figure 5d) are taken 

as the most realistic coverage, then this suggests an upward bias to both the upper and lower 

Score confidence interval limits.  All of the techniques have a Neg LR lower 95% CI of zero and 

provide 100% coverage when the population sensitivity is 100%. 

 

Consistent with other reports, the Score method seems to be the best of the previously-available 

comparators assessed.[19]  It generally provides good coverage of the nominal 95% CI, but 

coverage dips to 91% for population sensitivities over 98% (Table 1).  When evaluating 
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diagnostic tests with anticipated very high sensitivity such as high sensitivity troponins, for 

example, the bootstrap method may be particularly useful.[33] 

 

The bootstrap methodology requires some sophistication with modeling and the use of R 

software. The basic code is provided in the appendix.  In order to provide easy accessibility for 

general users, an R package called “bootLR” has been written to simplify and automate the 

process.  The program provides both the positive and negative LR’s, and it can be used for all 

sample sizes and sensitivities and specificities. This includes the homogeneous cases where all 

test results are positive or negative for patients with or without disease.  For example, Perry, et 

al. found that noncontrast head CT had a sensitivity of 100% (121/121) and specificity of 100% 

(832/832) for acute subarachnoid hemorrhage when performed within 6 hours of symptom 

onset.[4]  bootLR results for this study are provided in Figure 3.  bootLR results for the other 

studies referenced in the Introduction are listed in Table 3.  The NegLR was not reported in these 

other studies, perhaps in part due to uncertainty in calculating a 95% CI when sample sensitivity 

is 100%.  We hope the bootLR package will ameliorate this. 

 

The “bootLR” package is distributed as free, open-source software via the Comprehensive R 

Archive Network (CRAN).  Users can download and install this package by typing, 

‘install.packages("bootLR")’ into their R console.  Once installed, the “bootLR” package must be 

loaded at the beginning of each session of use with the dropdown menu for “Packages” in the 

toolbar or with the command ‘library(bootLR)’.  bootLR automatically installs and loads the R 

“boot” package in order to use the bootstrap command.  After loading “bootLR,” the help page 
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can be accessed with the command ‘?BayesianLR.test’.  A detailed technical description of the 

“bootLR” package is forthcoming. 

 

Limitations: 

Bootstrapping is inherently dependent on obtaining a representative sample of the intended 

population for which the diagnostic test will be applied and on the quality of the sample data.  

Furthermore, a Bayesian decision-making approach is also always limited by the uncertainty in 

the pretest probability of disease or “prior.”  Perhaps the greatest limitation of the methodology 

developed is that by using random sampling based on chance, some instability of results is 

introduced.  This instability is magnified when small sample sizes with rare events are studied.   

A large number, 10,000 bootstrap samples, was used in the bootstrap procedure, and the 

procedures were repeated 50 times and averaged, to minimize instability in the results.  These 

single study sample computations were performed within a few seconds with a Xeon 

microprocessor chip running Windows 7 (Microsoft Corp, Redmond, WA).   

 

A second limitation is the bias found in the conventional bootstrap approach when applied to 

small and skewed samples.  The BCa method compensates largely, but not completely, for this 

phenomenon.[34]  The relative disadvantages of a Monte Carlo approach are balanced against 

the advantage of a relatively simple intuitive modeling technique that avoids empirical 

assumptions found in some analytic methods. 

 

Conclusions: 
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When sample sensitivity is 100%, as is commonly the case in the study of emergency and critical 

care diagnostic tests, available software packages sometimes yield varying wide 95% CI upper 

bound results for the Neg LR.  An alternative bootstrapping approach that relies on binomial 

sampling of the lowest population sensitivity likely to yield a sample sensitivity of 100% was 

developed.  The bootstrapping approach yields appropriate results based on actual 95% CI 

coverage, but when sample sensitivity is 100%, the upper bound of the Neg LR 95% CI is 

generally lower than that obtained with other available methods.   

 

Our technique and associated software enable calculation of 95% CI upper bound Neg LR limits, 

and the method can be used to compute CIs for other ratios of binomial proportions that include 

homogeneous sample results.  Utilizing narrower confidence intervals with more appropriate 

coverage should ensure that studies of diagnostic tests and decision rules to rule out low 

probability events can be more confident in proclaiming that a negative test result means a 

patient is truly at low risk.  These improved confidence interval characteristics could help reduce 

unnecessary diagnostic testing and associated costs and adverse effects in our patients. 
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Appendix: 

1) Computing the population probability where a sample of size 100 has a 50% chance of 

being entirely positive (100% sensitive) 
prob<- exp(log(0.5)/100) 
prob 
[1] 0.9930925 
 

2) Bootstrap Neg LR (1-Sens/Spec) where sens=100/100 and spec=60/100 (single iteration) 
# Lines beginning with # are treated as explanatory 
# comments in R, not code 
 
sens<-rbinom(10000, size=100, prob=.9931)/100 
spec<-rep(1:0,c(60,40)) 
specf<- function(spec,i) {return (1/mean(spec[i]))} 
specb<- boot(spec, specf, R=10000) 
lr<-((1-sens)*specb$t) 
 
# Analyze LR bootstrap finding median, and standard and 
# BCa percentile 95% CIs. 
# To obtain bca CI on a non-boot result, use a dummy boot 
# and replace t and t0 with the results of interest. 
dummy<-rep(1:0,c(6,4)) 
dummyf<- function(dummy,i) {return (mean(dummy[i]))} 
dummyb<- boot(dummy, dummyf, R=10000) 
b$t<-matrix(lr, nrow=10000, byrow=T) 
#(1-.9931)/.6 = .0115 
b$t0<-.0115 
boot.ci(dummyb, t0=b$t0, t=b$t, conf=.95, type=c("bca"))  
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Figure 1: LR+, LR-, and relation to pre- and post-test odds 

 

Figure 2: Schematic flow diagram of the bootstrap procedure for computing the 95% CI of the 

Negative LR when sensitivity is 100%. 

 

Figure 3: User code for installing, loading, and running the new R package “bootLR,” and the 

pos and neg LR with 95% CI results obtained for the utility of noncontrast head CT to identify 

subarachnoid hemorrhage within 6 hours of symptom onset (Ref. 4). 

 

Figure 4: Negative LR 95% CI upper bound when sensitivity =100%, specificity=60%, for 

subject sample sizes of (a) 40, (b) 200, (c) 1,000, and (d) 2,000. 

 

Figure 5: Negative LR and the upper bound for associated 95% CIs as a function of false 

negatives for subject sample sizes of (a) 40, (b) 200, (c) 1,000, and (d) 2,000. 

 

Table 1: Coverage of the population Neg LR by the 95% CI with varying population sensitivity, 

fixed specificity = 60%, and varying sample size produced by the (a) bootLR, (b) percentage of 

samples expected to have sensitivity=100% to inform bootLR result, (c) Conservative method, 

and (d) R PropCI package. 

 

Table 2: Negative LR and associated 95% CIs as a function of false negatives for 40, 200, 1,000, 

and 2,000 subjects data. 
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Table 3: Test characteristics for referenced clinical studies 
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Post-test odds = LR * Pre-test odds 
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USER INPUT: 

> install.packages("bootLR") 

> library(bootLR) 

 

> BayesianLR.test(121,121,832,832) 

 

RESULT: 

Likelihood ratio test of a 2x2 table 

 

data: 

   truePos  totalDzPos    trueNeg   totalDzNeg  

       121         121              832            832  

Positive LR: Inf (287.258 - Inf) 

Negative LR: 0 (0 - 0.024) 

95% confidence intervals computed via BCa bootstrapping. 
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Figure 4: Negative Likelihood Ratio Upper 95% CI When Sample Sensitivity Equals 100%,

Specificity Equals 60%

Figure 4a
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Figure 4b
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     Figure 5: Negative LR and associated 95% CIs as a function of false negatives for subject 
     sample sizes of (a) 40, (b) 200, (c) 1,000, and (d) 2,000
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1a: bootLR Method

Total Sample Size 70% 80% 90% 95% 96% 97% 98% 99% 99.50%

40 94.90 94.16 98.56 99.26 99.60 99.70 99.88 100.00 100.00

80 94.48 94.56 93.00 99.30 99.38 99.56 99.46 100.00 99.98

200 95.64 95.44 94.04 94.50 92.26 95.30 99.14 99.62 99.86

1000 94.92 94.90 95.46 95.02 94.42 94.58 94.64 94.58 98.60

2000 94.64 94.64 95.48 94.80 95.50 94.36 94.76 94.86 94.58

1b: Percent of random samples from population that have sensitivity=100%

Total Sample Size 70% 80% 90% 95% 96% 97% 98% 99% 99.50%

40 0.07% 1.13% 12.11% 35.84% 44.04% 54.36% 66.74% 81.83% 90.56%

80 0.00% 0.01% 1.42% 12.88% 19.67% 29.50% 44.41% 66.85% 81.83%

200 0.00% 0.00% 0.01% 0.57% 1.66% 4.80% 13.25% 36.59% 60.89%

1000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.66% 8.19%

2000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.67%

Shaded area includes categories where >1% of samples have sensitivity=100%

1c: Conservative Method

Total Sample Size 70% 80% 90% 95% 96% 97% 98% 99% 99.50%

40 99.66 99.32 99.56 99.70 99.52 99.78 99.34 99.60 99.66

80 99.72 99.34 99.32 99.50 99.34 99.36 99.32 99.00 99.06

200 99.40 99.36 98.94 98.88 99.20 99.32 99.06 99.18 98.60

1000 99.42 99.06 98.52 98.54 98.00 98.32 98.10 98.12 98.38

2000 99.22 99.20 98.36 97.98 98.14 97.64 97.66 97.36 97.96

1d: R Score Method

Total Sample Size 70% 80% 90% 95% 96% 97% 98% 99% 99.50%

40 94.80 95.38 97.24 95.34 95.40 95.46 93.94 93.94 91.20

80 95.02 95.26 95.68 96.38 95.66 96.02 95.18 94.10 96.12

200 95.10 94.66 94.66 95.86 95.22 96.32 95.74 95.24 91.60

1000 94.80 95.12 95.00 95.04 95.40 95.34 95.02 95.36 95.72

2000 94.40 95.40 95.56 94.78 95.12 94.20 95.30 95.36 96.34

R Score method using PropCI

Population specificity=60%, number of samples from population=5,000 for all simulations in Tables 1a,c,d

Table 1: How often does the 95% CI include the population Neg LR?

Population Sensitivity

Population Sensitivity

Population Sensitivity

Conservative method using the simultaneous upper or lower bounds for the sensitivity and specificity 95% CI computed using the 

Clopper-Pearson exact CI with PropCI

Population Sensitivity
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40 Subjects 0 1 2 3 4

Test Sensitivity 20/20 (100%) 19/20 (95%) 18/20 (90%) 17/20 (85%) 16/20 (80%)

Neg LR Point Estimate 0.000 0.083 0.167 0.250 0.333

Simple conservative Neg LR Upper 95% CI 0.467 0.690 0.879 1.051 1.211

Statxact Neg LR Upper 95% CI 0.297 0.429 0.554 0.694 0.809

SAS Neg LR Upper 95% CI 0.244 0.847 2.513 2.518 13.907

SAS Neg LR Upper 95% CI (Score Method) 0.260 0.437 0.592 0.771 0.859

R Score Neg LR Upper 95% CI 0.274 0.417 0.545 0.668 0.787

Lowest population sensitivity with 50% of 

samples with sensitivity 100%
96.59%

Bootstrap Neg LR Upper 95% CI 0.240 0.313 0.474 0.629 0.726

R Score Neg LR Lower 95% CI 0.0000 0.0145 0.0448 0.0835 0.1276

Bootstrap Neg LR Lower 95% CI 0.0000 0.0000 0.0000 0.0086 0.0696

200 Subjects

Test Sensitivity 100/100 (100%) 99/100 (99%) 98/100 (98%) 97/100 (97%) 96/100 (96%)

Neg LR Point Estimate 0.000 0.017 0.033 0.050 0.067

Simple conservative Neg LR Upper 95% CI 0.073 0.110 0.142 0.171 0.200

Statxact Neg LR Upper 95% CI 0.064 0.091 0.119 0.143 0.167

SAS Neg LR Upper 95% CI 0.054 0.152 0.254 0.344 0.454

SAS Neg LR Upper 95% CI (Score Method) 0.057 0.087 0.115 0.140 0.165

R Score Neg LR Upper 95% CI 0.062 0.091 0.118 0.143 0.166

Lowest population sensitivity with 50% of 

samples with sensitivity 100%
99.31%

Bootstrap Neg LR Upper 95% CI 0.048 0.063 0.094 0.121 0.147

R Score Neg LR Lower 95% CI 0.0000 0.0029 0.0091 0.0169 0.0258

Bootstrap Neg LR Lower 95% CI 0.0000 0.0000 0.0000 0.0012 0.0154

1000 Subjects

Test Sensitivity 500/500 (100%) 499/500 (99.8%) 498/500 (99.6%) 497/500 (99.4%) 496/500 (99.2%)

Neg LR Point Estimate 0.0000 0.0033 0.0067 0.0100 0.0133

Simple conservative Neg LR Upper 95% CI 0.0132 0.0200 0.0259 0.0313 0.0367

Statxact Neg LR Upper 95% CI 0.0134 0.0194 0.0245 0.0294 0.0341

SAS Neg LR Upper 95% CI 0.0114 0.0322 0.0525 0.0720 0.0933

SAS Neg LR Upper 95% CI (Score Method) 0.0119 0.0181 0.0236 0.0283 0.0339

R Score Neg LR Upper 95% CI 0.0127 0.0188 0.0241 0.0292 0.0341

Lowest population sensitivity with 50% of 

samples with sensitivity 100%
99.86%

Bootstrap Neg LR Upper 95% CI 0.0097 0.0125 0.0186 0.0241 0.0294

R Score Neg LR Lower 95% CI 0.00000 0.00059 0.00183 0.00340 0.00518

Bootstrap Neg LR Lower 95% CI 0.00000 0.00000 0.00000 0.00025 0.00318

2000 Subjects

Test Sensitivity 1000/1000 (100%) 999/1000 (99.9%) 998/1000 (99.8%) 997/1000 (99.7%) 996/1000 (99.6%)

Neg LR Point Estimate 0.0000 0.0017 0.0033 0.0050 0.0067

Simple conservative Neg LR Upper 95% CI 0.0065 0.0098 0.0127 0.0154 0.0179

Statxact Neg LR Upper 95% CI 0.0069 0.0097 0.0124 0.0148 0.0173

SAS Neg LR Upper 95% CI 0.0058 0.0165 0.0270 0.0370 0.0467

SAS Neg LR Upper 95% CI (Score Method) 0.0060 0.0091 0.0119 0.0144 0.0167

R Score Neg LR Upper 95% CI 0.0064 0.0094 0.0121 0.0147 0.0171

Lowest population sensitivity with 50% of 

samples with sensitivity 100%
99.93%

Bootstrap Neg LR Upper 95% CI 0.0047 0.0065 0.0093 0.0121 0.0147

R Score Neg LR Lower 95% CI 0.00000 0.00029 0.00091 0.00170 0.00259

Bootstrap Neg LR Lower 95% CI 0.00000 0.00000 0.00000 0.00013 0.00163

Half of patients do not have the condition, and specificity is a constant 60% for all samples.

Number of False Negatives

Table 2: Upper and Lower 95% CI as a function of Test Sensitivity
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Reference # Diagnostic Test and Disease Sensitivity Specificity Sample NLR Reported NLR 95% CI Bootstrap NLR 95% CI

4 Head CT for subarachnoid hemorrhage 100%, 121/121 100%, 832/832 0 0 - .02 0 - 0.024

5 Serum D-Dimer for aortic dissection 100%, 24/24 69%, 24/35 0 Not reported 0 - 0.16

6 Serum D-Dimer for aortic dissection 100%, 16/16 67%, 32/48 0 Not reported 0 - 0.25

7 Low contrast chest CTA for pulmonary embolism 100%, 40/40 97.1%, 200/206 0 Not reported 0 - 0.071

8 Recognition of cardiac syncope in trauma 100%, 24/24 43%, 25/58 0 Not reported 0 - 0.28

9 C-reactive protein for bacterial infection 100%, 41/41 Not reported 0 Not reported  - 

10 CT for ovarian torsion, (reader 1) 100%, 20/20 85%, 17/20 0 Not reported 0 - 0.16

Table 3: Test characteristics for referenced clinical studies
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