
machine learning &

knowledge extraction

Article

Estimating Neural Network’s Performance with Bootstrap:
A Tutorial

Umberto Michelucci 1,2,* and Francesca Venturini 1,3

����������
�������

Citation: Michelucci, U.; Venturini, F.

Estimating Neural Network’s

Performance with Bootstrap:

A Tutorial. Mach. Learn. Knowl. Extr.

2021, 3, 357–373. https://doi.org/

10.3390/make3020018

Academic Editor: Isaac Triguero

Received: 20 January 2021

Accepted: 25 March 2021

Published: 29 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 TOELT LLC, Birchlenstr. 25, 8600 Dübendorf, Switzerland; vent@zhaw.ch
2 School of Computing, University of Portsmouth, Portsmouth PO1 3HE, UK
3 Institute of Applied Mathematics and Physics, Zurich University of Applied Sciences, Technikumstrasse 9,

8401 Winterthur, Switzerland
* Correspondence: umberto.michelucci@toelt.ai

Abstract: Neural networks present characteristics where the results are strongly dependent on the
training data, the weight initialisation, and the hyperparameters chosen. The determination of the
distribution of a statistical estimator, as the Mean Squared Error (MSE) or the accuracy, is funda-
mental to evaluate the performance of a neural network model (NNM). For many machine learning
models, as linear regression, it is possible to analytically obtain information as variance or confidence
intervals on the results. Neural networks present the difficulty of not being analytically tractable due
to their complexity. Therefore, it is impossible to easily estimate distributions of statistical estima-
tors. When estimating the global performance of an NNM by estimating the MSE in a regression
problem, for example, it is important to know the variance of the MSE. Bootstrap is one of the most
important resampling techniques to estimate averages and variances, between other properties, of
statistical estimators. In this tutorial, the application of resampling techniques (including bootstrap)
to the evaluation of neural networks’ performance is explained from both a theoretical and practical
point of view. The pseudo-code of the algorithms is provided to facilitate their implementation.
Computational aspects, as the training time, are discussed, since resampling techniques always
require simulations to be run many thousands of times and, therefore, are computationally inten-
sive. A specific version of the bootstrap algorithm is presented that allows the estimation of the
distribution of a statistical estimator when dealing with an NNM in a computationally effective
way. Finally, algorithms are compared on both synthetically generated and real data to demonstrate
their performance.

Keywords: neural networks; machine learning; bootstrap; resampling; algorithms

1. Introduction

An essential step in the design of a neural network model (NNM) is the definition
of the neural network architecture [1]. In this tutorial, the analysis assumes that the
network architecture design phase is completed and the parameters not varied anymore.
It is assumed that a dataset S is available. For the training and testing of an NNM, S
is split into two parts, and called the training dataset (ST) and validation dataset (SV),
with S = ST ∪ SV and ST ∩ SV = ∅. The model is then trained on ST . Afterwards, a given
statistical estimator, θ, is evaluated on both ST and SV (indicated with θ(ST) and θ(SV))
to check for overfitting [1]. θ can be, for example, the accuracy in a classification problem,
or the Mean Square Error (MSE) in a regression one. θ is clearly dependent (sometimes
strongly) on both ST and SV , as the NNM was trained on ST . The metric evaluated on the
validation dataset SV may be indicated as

θ(SV) ≡ θST ,SV (SV) (1)

Mach. Learn. Knowl. Extr. 2021, 3, 357–373. https://doi.org/10.3390/make3020018 https://www.mdpi.com/journal/make

https://www.mdpi.com/journal/make
https://www.mdpi.com
https://orcid.org/0000-0002-6060-5365
https://doi.org/10.3390/make3020018
https://doi.org/10.3390/make3020018
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/make3020018
https://www.mdpi.com/journal/make
https://www.mdpi.com/article/10.3390/make3020018?type=check_update&version=2


Mach. Learn. Knowl. Extr. 2021, 3 358

to make its dependence on the two datasets ST and SV transparent. The difficulty in
evaluating the distributions of θST ,SV (SV) is that it is enough to split the data differently
(or in other words, to get different ST and SV), for the metric θST ,SV (SV) to assume a
different value. This poses the question on how to evaluate the performance of an NNM.

One of the most important characteristics of an NNM is its ability to generalise to
unseen data, or to maintain its performance when applied to any new dataset. If a model
can predict a quantity with an accuracy of, for example, 80%, the accuracy should remain
around 80% when the model is applied to new and unseen data. However, changing the
training data will change the performance of any given NNM. To give an example of why
giving one single number to measure the performance of a NNM can be misleading, let us
consider the following example. Suppose we are dealing with a dataset where one of the
features is the age. What would happen if, for sheer bad luck, one splits the dataset in one
(ST) with only young people, and one (SV) with only old people? The trained NNM will,
of course, not be able to generalize well to age groups that are different from those present
in ST . Therefore, the model performance, measured by the the statistical estimator θ, will
drop significantly. This problem can only be identified by considering multiple splits and
by studying the distribution of θ.

The only possibility to estimate the variance of the performance of the model given
a dataset S is to split S in many different ways (and, therefore, obtain many different
training and validation datasets). Then, the NNM has to be trained on each training dataset.
Finally, the chosen statistical estimator θ can be evaluated on the respective validation
datasets. This will allow to calculate the average and variance of θ, and use these values
as an estimate of the performance of the NNM when applied to different datasets. This
technique will be called the “split/train algorithm” in this tutorial. The major disadvantage
of this technique is that it requires to repeat the training of the NNM for every split, and is
therefore very time-consuming. If the model is large, it will require an enormous amount
of computing time, making it not always a practical approach.

This paper shows how this difficulty can be overcome using resampling techniques
to give an estimate of the average and the variance of metrics as the MSE or the accuracy,
thus avoiding the training of hundreds or thousands of models. An alternative to resam-
pling techniques are so-called ensemble methods, namely, algorithms that train a set of
models and then generate a prediction by taking a combination of each single prediction.
The interested reader is referred to [2–9].

The goal of this tutorial is to present the main resampling methods, and discuss their
applications and limitations when used with NNMs. With the information contained in
this tutorial, a reader with some experience in programming should be able to implement
them. This tutorial is not meant to be an exhaustive review of the mentioned algorithms.
The interested reader is referred to the extensive list of references given in each section for
a discussion of the theoretical limitations.

The main contributions of this tutorial are four. Firstly, it highlights the role of
the Central Limit Theorem (CLT) in describing the distribution of averaging statistical
estimators, like the MSE, in the context of NNMs. Particularly in this work, it is shown
how the distribution of, for example, the MSE will tend to a normal distribution for
increasing sample size, thus justifying the use of the average and the standard deviation
to describe it. Secondly, it provides a short review of the main resampling techniques
(hold-out set approach, leave-one-out cross-validation, k-fold cross-validation, jackknife,
subsampling, split/train, bootstrap) with an emphasis on the challenges when using neural
networks. For most of the above-mentioned techniques, the steps are described with the
help of a pseudo-code to facilitate the implementation. Thirdly, bootstrap, split/train,
and the mixed approach between bootstrap and split/train are discussed in more depth,
again with the help of the pseudo-code, including the application to synthetic and real
datasets. Finally, limitations and promising future research directions in this area are briefly
discussed. Details of implementations of resampling techniques on the problem of high



Mach. Learn. Knowl. Extr. 2021, 3 359

complexity goes beyond the scope of this work, and the reader is referred to the following
examples [10–12].

This tutorial is structured in the following way. In Section 2 the notation is explained,
followed by a discussion of the CLT and its relevance for NNMs in Section 3. A short in-
troduction to the idea behind bootstrap is presented in Section 4, while other resampling
algorithms are discussed in Section 5. In Section 6, bootstrap, split/train, and the mixed
approach between bootstrap and split/train are explained in more detail, and compared. Prac-
tical examples with both synthetic and real data are described in Sections 7 and 8, respectively.
Finally, an outlook and the conclusions are presented in Sections 9 and 10, respectively.

2. Notation

n independent, identically distributed (iid) observations will be indicated here with
Xn ≡ (x1, . . . , xn). This dataset will come from a population described by a probability
density function (PDF) F generally unknown:

x1, . . . , xn ∼ F. (2)

Let us assume that the statistical estimator θ (for example, the average or the mean
squared error) is a functional. Loosely speaking, θ will be a mapping from the space
of possible PDFs into real numbers R. To make the concept clear, let’s suppose that the
estimator is the mean of the observations xi. In this case,

θ(F) =
∫ ∞

−∞
xF(x)dx, (3)

where it is clear that the right part of Equation (3) is a real number. Unfortunately, in all
practical cases, the “real” PDF F is unknown. Given a certain dataset Xn, the only possibility
is to approximate the estimator θ with θ̂n ≡ θ(Fn), where Fn indicates the empirical
distribution obtained from Xn by giving a probability of 1/n to each observation xi. This is
the idea at the basis of the bootstrap algorithm, as it will be discussed in detail in Section 4.

3. Central Limit Theorem for an Averaging Estimator θ

A lot of mathematics has been developed to get at least the asymptotic distribution
of θ̂n for n → ∞ [13–16]. The CLT [17], also known as the Lindeberg–Lévy central limit
theorem, enunciates that, considering a sequence of iid observations xi with µ = E[xi]
(the expected value of the inputs), and σ2 = Var(xi) = E[(xi − µ)2] < ∞, then

√
n(Xn − µ) −−−→

n→∞
N (0, σ2), (4)

where

Xn =
1
n

n

∑
i=1

xi. (5)

For any practical purpose, if n is large enough, the normal distribution N will give a
good approximation of the distribution of the average of a dataset of n iid observations, xi.

Let’s consider F to be a chi-squared distribution (notoriously asymmetric) with
k = 10 [18] normalized to have the average equal to zero (panel(a) in Figure 1). Let’s
now calculate the average of Xn, as in Equation (5) 106 times in three cases: n = 2, 10, 200.
The results are shown in Figure 1, panels (b) to (d). When the sample size is small (n = 2,
panel(b)), the distribution is clearly not symmetrical, but when the sample size grows
(panels (c) and (d)), the distribution approximates the normal distribution. Figure 1 is a
numerical demonstration of the CLT.

Typically, when dealing with neural networks both in regression and classification
problems, one has to deal with complicated functions like the MSE, the cross-entropy,
accuracy, or other metrics [1]. Therefore, it may seem that the central limit theorem does
not play a role in any practical application involving NNMs. This, however, is not true.



Mach. Learn. Knowl. Extr. 2021, 3 360

Consider, as an example, the MSE function of a given dataset of input observations xi with
average µ

MSE ≡ 1
n

n

∑
i=1

(xi − µ)2. (6)

−10 0 10 20 30
x

Co
un

ts

(a)
Distribution of x

−10 0 10 20
Average

Co
un

ts
(b) n=2

−5 0 5 10
Average

(c)
Distribution of Average

n=10

−1 0 1
Average

(d) n=200

Figure 1. A numerical demonstration of the CLT. Panel (a) shows the asymmetric chi-squared distribution of random values
for k = 10 [18], normalized to have the average equal to zero; in panels (b–d), the distribution of the average of the random
values is shown for sample size n = 2, n = 10, and n = 200, respectively.

It is immediately evident that Equation (6) is nothing other than the average of the
transformed inputs (xi − µ)2. Note that the CLT does not make any assumption on the
distribution of the observations. Thus, the CLT is also valid for the average of observations
that have been transformed (as long as the average and variance of the transformed
observations remain finite). In other words, it is valid for both xi and (xi − µ)2. This can be
formalized in the following Corollaries.

Corollary 1. Given a dataset of i.i.d. observations x1, . . . , xn with a finite mean µ and variance σ2,
define the quantities δi ≡ (xi − µ)2. The limiting form of the distributions of the MSE (the average
of the δi)

MSE =
1
n

n

∑
i=1

δi (7)

for n→ ∞ will be the normal distribution
√

n(MSE− µ(δi)) −−−→n→∞
N (0, σ(δi)), (8)

where with µ(δi) and σ(δi), we have indicated the expected value and the standard deviation of the
δi, respectively.

Proof. The first thing to note is that since the xi have finite mean and finite variance,
it follows that δi ≡ (xi − µ)2 will also have finite mean and finite variance, and therefore
the CLT can be applied to the average of the δi. By applying the CLT to the quantities δi,
Equation (8) is obtained. That concludes the proof.

A numerical demonstration of this result can be clearly seen in Section 7.1. In particular,
Figure 2 shows that the distribution of the MSEs approximates N when the sample size is
large enough.

Note that Corollary 1 can be easily generalized to any estimator in the form

θ =
1
n

n

∑
i=1

g(xi) (9)

if the quantities gi = g(xi) have a finite mean gi and variance σ2(gi). For completeness,
the Corollary 1 can be written in the general form.



Mach. Learn. Knowl. Extr. 2021, 3 361

0.04 0.06 0.08 0.10 0.12 0.14
MSE

Co
un

ts

MSE dist. Bootstrap SV
Gaussian Function

Figure 2. Distribution of the MSE values obtained by evaluating a trained NNM on 1800 bootstrap
samples generated from SV . The NNM used consists of a small neural network with two layers, each
having four neurons with the sigmoid activation functions, trained for 250 epochs, with a mini-batch
size of 16 with the Adam optimizer.

Corollary 2. Given a dataset of i.i.d. observations x1, . . . , xn with a finite mean µ and variance σ2,
we define the quantities gi ≡ g(xi). It is assumed that the average µ(gi) and the variance σ(gi)

2

are finite. The limiting form of the distributions of the estimator θ

θ =
1
n

n

∑
i=1

gi (10)

for n→ ∞ will be the normal distribution
√

n(θ − µ(gi)) −−−→n→∞
N (0, σ(gi)). (11)

Proof. The proof is trivial, as it is simply necessary to apply the central limit theorem to
the quantities gi since the θ is nothing other than the average of those quantities.

The previous corollaries play a major role for neural networks. The implications of
the final distributions of averaging metrics being Gaussian are that:

• The distribution is symmetric around the average, with the same number of observa-
tions below and above it; and

• The standard deviation of the distribution can be used as a statistical error, knowing
that ca. 68% of the results will be in a region of ±σ around the average.

These results justify the use of the average of the statistical estimator, such as the MSE, and of
its standard deviation as the only parameters needed to describe the network performance.

4. Bootstrap

Bootstrap is essentially a resampling algorithm. It was introduced by Efron in 1979 [19],
and it offers a simulation-based approach for estimating, for example, the variance of
statistical estimates of a random variable. It can be used in both parametric and non-
parametric settings. The main idea is quite simple and consists of creating new datasets
from an existing one by resampling with repetition. The discussion here is limited to
the case of n observations that are iid (see Section 2 for more details). The estimator θ
calculated on the simulated datasets will then approximate the estimator evaluated on the
true population, which is unknown.



Mach. Learn. Knowl. Extr. 2021, 3 362

There has been a huge amount of work done on the use of bootstrap and its theoretical
limitations. The interested reader is referred to several general overviews [20–32], to the
discussion on the evaluation of the confidence intervals [26,27,29,33,34], to the discussion
on how to remove the iid hypothesis [26,35], and the application and limitations in various
fields, from medicine to nuclear physics and geochemistry [5,26–29,36–41]. An analysis of
the statistical theory on which the bootstrap method is based, goes beyond this tutorial
and will not be covered here.

The best way to understand the bootstrap technique is to describe it in pseudo-code,
as this illustrates its steps. The original bootstrap algorithm proposed by Efron [19], can be
seen in pseudo-code in Algorithm 1. In the Algorithm, Ns is an integer and indicates the
number of new samples generated with the bootstrap algorithm.

Algorithm 1: Pseudo-code of the bootstrap algorithm.

Result: The estimate θ̂n of θ(F).

1 for i = 1, . . . , Ns do
2 Generate a new sample X∗n,i selecting n elements from Xn with repetitions;
3 Calculate θ̂n,i ≡ θ(X∗n,i);
4 end

5 Evaluate θ̂n =
Ns

∑
i=1

θ̂n,i/Ns;

6 Evaluate σ2(θ̂n) =
Ns

∑
i=1

(θ̂n,i − θ̂n)
2/Ns;

As a consequence of Corollary 2 (Section 3), Algorithm 1 for a large enough Ns gives
an approximation of the average and variance of the statistical estimator θ. Being the
Gaussian distribution (albeit for Ns → ∞), these two parameters describe it completely.

An important question is how big Ns should be. In the original article, Efron [42] sug-
gests that Ns of the order of 100 is already enough to get reasonable estimates. Chernick [26]
considers Ns ≈ 500 already very large and more than enough. In the latter work, however,
it is indicated that, above a certain value of Ns, the error is due to the approximation of
the true distribution F by the empirical distribution Fn, rather than by the low number of
samples. Therefore, particularly given the computational power available today, it is not
meaningful to argue whether 100 or 500 is enough, as running the algorithm with many
thousands of samples will take only a few minutes on most modern computers. In many
practical applications, using Ns between 5000 and 10,000 is commonplace [26]. As a general
rule of thumb, Ns is large enough when the distribution of the estimator starts to resemble
a normal distribution.

The method described here is very advantageous when using neural networks be-
cause it allows an estimation of average and variance of quantities as the MSE or the
accuracy without training the model hundreds or thousands of times, as will be described
in Section 6. Thus, it is extremely attractive from a computational point of view and is a
very pragmatic solution to a potentially very time-consuming problem. The specific details
and pseudo-code of how to apply this method to NNMs will be discussed at length in
Section 6.

5. Other Resampling Techniques

For completeness, in this section, additional techniques—namely the hold-out set
approach, leave-one-out cross-validation, k-fold cross-validation, jackknife, and subsam-
pling—are briefly discussed, including their limitations. For an in-depth analysis, the
interested reader is referred to [43] and to the given literature.



Mach. Learn. Knowl. Extr. 2021, 3 363

5.1. Hold-Out Set Approach

The simplest approach to estimating a statistical estimator is to randomly divide the
dataset into two parts: a training ST and a validation dataset SV . The validation dataset is
sometimes called a hold-out set (from which derives the name of this technique). The model
is trained on the training dataset ST , and then used to evaluate θ on the validation dataset
SV . θ(SV) is used as an estimate of the expected value of θ. This approach is also used
to identify whether the model overfits, or, in other words, learns to unknowingly extract
some of the noise in the data as if that would represent an underlying model structure [1].
The presence of overfitting is checked by comparing θ(ST) and θ(SV). A large difference is
an indication that overfitting is present. The interested reader can find a detailed discussion
in [1]. Such an approach is widely used, but has two major drawbacks [43]. Firstly, since
the split is done only once, it can happen that SV is not representative of the entire dataset,
as described in the age example in Section 1. Using this approach would not allow for an
identification of such a problem, therefore giving the impression that the model has very
bad performance. In other words, this method is highly dependent on the dataset split.
The second drawback is that splitting the dataset will reduce the number of observations
available in the training dataset, therefore making the training of the model less effective.

The techniques explained in the following sections try to address these two drawbacks
with different strategies.

5.2. Leave-One-Out Cross-Validation

Leave-one-out cross-validation (LOOCV) can be well-understood with the pseudo-
code outlined in Algorithm 2.

Algorithm 2: Leave-one-out cross-validation (LOOCV) algorithm.

Result: Estimate of a statistical estimator: θ̂

1 Define an NNM by fixing the hyperparameters;
2 for i = 1, . . . , n do
3 Train the NNM on the dataset S where observation i has been removed. This

dataset will have a size of n− 1;
4 Evaluate the statistical estimator θ̂(i) by evaluating it on observation i;
5 end

6 Evaluate θ̂ =
n

∑
i=1

θ̂(i)/n;

This approach has the clear advantage that the model is trained on almost all obser-
vations. Therefore, we address the second drawback of the hold-out approach, namely
that there are less observations for training. This also has the consequence that the LOOCV
tends not to overestimate the estimate of the statistical estimator θ [43] as much as the
hold-out approach. The second major advantage is that this approach will not present the
problem that was described in the age example in the introduction as the training dataset
will include almost all observations, and it will vary n times.

The approach, however, has one major drawback: it is very computationally expensive
to implement, if the NNM training is resource-intensive. In all medium to large NNM
models, this approach is simply not a realistic possibility.

5.3. k-Fold Cross-Validation

k-fold cross-validation (k-fold CV) is similar to LOOCV but tries to address the
drawback that the model has to be trained n times. The method involves randomly
dividing the dataset in k groups (also called folds) of approximately equal size. The method
is outlined in pseudo-code in Algorithm 3.



Mach. Learn. Knowl. Extr. 2021, 3 364

Algorithm 3: k-fold cross-validation (k-fold CV) algorithm.

Result: Estimate of a statistical estimator: θ̂.

1 Define an NNM by fixing the hyperparameters;
2 Split the dataset in k groups (folds): S(i), with i = 1, . . . , k;
3 for i = 1, . . . , k do
4 Train the NNM on the dataset

⋃k
i=1,i 6=j S(i), or in other words the dataset

without the ith fold ;
5 Evaluate the statistical estimator θ̂(i) by evaluating it on S(i);
6 end

7 Evaluate θ̂ =
k

∑
i=1

θ̂(i)/k;

Therefore, LOOCV is simply a special case of k-fold CV for k = n. Typical k values are
5 to 10. The main advantage of this method with respect to LOOCV is clearly computational.
The model has to be trained only k times instead of n.

When the dataset is not big, k-fold CV has the drawback that it reduces the num-
ber of observations available for training and for estimating θ, since each fold will be k
times smaller than the original dataset. Additionally, it may be argued that using only
a few values of the statistical estimator (for example, 5 or 10) to study its distribution is
questionable [43].

5.4. Jackknife

The jackknife algorithm [44,45] is another resampling technique that was first devel-
oped by Quenouille [44] in 1949. It consists of creating n samples by simply removing one
observation each time from the available x1, . . . , xn. For example, one jackknife sample will
be x2, . . . , xn, with n− 1 elements. To estimate θ, the statistical estimator will be evaluated
on each sample (of size n − 1). Note that the jackknife may seem to be the exact same
method as LOOCV, but there is one major difference that is important to highlight. While
in LOOCV, θ̂ is evaluated on the ith observation held out (in other words, on one single
observation), in jackknife, t̂θ is evaluated on the remaining n− 1 observations.

With this method, it is only possible to generate n samples that can then be used to
evaluate an approximation of a statistical estimator. This is one significant limitation of the
method compared to bootstrap. If the size of the dataset is small, only a limited number
of samples will be available. The interested reader is referred to the reviews [28,29,46–50].
A second major limitation is that the jackknife estimation of an averaging estimator θ
coincides with the average and standard deviation of the observations [26]. Thus, using
jackknife is not helpful to approximate θ(F).

For the limitations discussed above, this technique is not particularly advantageous
when dealing with NNMs, and therefore, is seldom used in such a context, especially when
compared with the bootstrap algorithm and its advantages.

5.5. Subsampling

Another technique for resampling is subsampling, achieved by simply choosing from
a dataset Xn with n elements, m < n elements without replacement. As a result, the sam-
ples generated with this algorithm have a smaller size than the initial dataset Xn. As the
bootstrap algorithm, this one has been widely studied and used in the most different
fields, from genomics [51,52] to survey science [53,54], finance [55,56] and, of course, statis-
tics [26,57,58]. The two reviews [26,59] can be consulted by the interested reader. Precise
conditions under which approximating with subsampling lead to a good approximation of
the desired estimator can be found in [59–62].



Mach. Learn. Knowl. Extr. 2021, 3 365

Subsampling presents a fundamental difficulty when dealing with the average as
a statistical estimator. By its own nature, subsampling requires to consider a sample of
smaller size m than the available dataset (of size n). As seen previously, the CLT enunciates
that the standard deviation of a sample of size m will tend asymptotically to a normal
distribution with a standard deviation that is proportional to the inverse of

√
m. That

means that changing the sample size changes the standard deviation of the distribution
of θ. Note that this is not a reflection of properties of the MSE, but only of the sample
chosen. In the extreme case that m = n (one could argue that this is not subsampling
anymore, but let’s consider it as an extreme case) the average estimator will always have
the same value, exactly the average of the inputs, since the subsampling samples are
without replacement, and therefore the standard deviation will be zero. On the other hand,
if m = 1, the standard deviation will increase significantly and will coincide with the
standard deviation of the observations.

Therefore, the subsampling method presents the fundamental problem of the choice
of m. Since there is not a general criterion to choose m, the distribution of θ will reflect
the arbitrary choice of m and the properties of the data at the same time. This is why the
authors do not think that the subsampling method is well-suited to give a reasonable and
interpretable estimate of the distribution of a statistical estimator, as the MSE.

6. Algorithms for Performance Estimation

As discussed in Section 1, the performance of an NNM can be assessed by estimating
the variance of the statistical estimator θ. The distribution of θ can be evaluated by the
split/train algorithm by splitting a given dataset S randomly Ns times in two parts S(i)

T

and S(i)
V , each time training an NNM on S(i)

T and evaluating the statistical estimator on

S(i)
V , with i = 1, . . . , Ns. This algorithm is described with the help of the pseudo-code in

Section 6.1. This approach is unfortunately extremely time-consuming, as the training of
the NNM is repeated Ns times.

As an alternative, the approach based on bootstrap is discussed in Section 6.2. This
algorithm has an advantage over the split/train algorithm in being very time-efficient,
since the NNM is trained only once. After training, the distribution of a statistical estimator
is then estimated by using a bootstrap approach on SV .

6.1. Split/Train Algorithm

The goal of the algorithm is to estimate the distribution of a statistical estimator, like
the MSE or accuracy, when considering the many variations of splits, or in other words,
the different possible ST and SV . To do this, for each split a new model is trained, so as to
include the effect of the change of the training data.

The algorithm is described in pseudo-code in Algorithm 4. First, the dataset is ran-
domly split. S \ S(i)

T indicates the dataset obtained by removing all xi ∈ S(i)
T from S. Then,

the training is performed, and finally, the distribution of a statistical estimator is evaluated.
It is important to note that Algorithm 4 can be quite time-consuming since the NNM is

trained Ns times. Thus, if the training of a single NNM takes a few hours, Algorithm 4 can
easily take days and therefore may not be of any practical use. Remember that, as discussed
previously, Ns should be at least of the order of 500 for the results to be meaningful. Larger
values for Ns should be preferred, making this algorithm in many cases of no practical use.

From a practical perspective, besides the issue of the time, care must be taken in the
implementation when automatizing Algorithm 4. In fact, if a script trains hundreds of
models, it may happen that some will not converge. The results of these models will,
therefore, be quite different from all the others. This may skew the distribution of the
estimator. So, it is necessary to check that all the trained models reach approximately the
same value of the loss function. Models that do not converge should be excluded from the
analysis, as they will clearly falsify the results.



Mach. Learn. Knowl. Extr. 2021, 3 366

It is important to note that the estimate of the distribution of an averaging estimator
as the MSE will always depend on the data used. Therefore, the method allows to assess
the performance of an NNM, measured as its generalisation ability when applied to
unseen data.

Algorithm 4: Split/train algorithm applied to the estimation of the distribution
of a statistical estimator.

Result: Averages and standard deviations of a statistical estimator: θ̂T , θ̂V , σ(θ̂T),
σ(θ̂V)

1 Define an NNM by fixing the hyperparameters;
2 for i = 1, . . . , Ns do
3 Create S(i)

T from S by choosing m elements from S with m < n without
replacement;

4 S(i)
V ← S \ S(i)

T ;

5 Train the NNM on S(i)
T ;

6 Evaluate the statistical estimator θ
(i)
V by evaluating it on the results of the

NNM when applied to S(i)
V ;

7 Evaluate the statistical estimator θ
(i)
T by evaluating it on the results of the

NNM when applied to S(i)
T ;

8 end

9 Evaluate θ̂T =
Ns

∑
i=1

θ̂
(i)
T /Ns;

10 Evaluate σ2(θ̂T) =
Ns

∑
i=1

(θ̂
(i)
T − θ̂)2/Ns;

11 Evaluate θ̂V =
Ns

∑
i=1

θ̂
(i)
V /Ns;

12 Evaluate σ2(θ̂V) =
Ns

∑
i=1

(θ̂
(i)
V − θ̂)2/Ns;

6.2. Bootstrap

This section describes the application of bootstrap to estimate the distribution of a
statistical estimator. Let’s suppose one has an NNM trained on a given training dataset
ST and is interested in finding an estimate of the distribution of a statistical estimator,
for example, the MSE or the accuracy. In this case, one can apply bootstrap, as described in
Algorithm 1, to the validation dataset. The steps necessary are highlighted in pseudo-code
in Algorithm 5.

Note that Algorithm 5 does not require training of an NNM multiple times and is,
therefore, quite time-efficient. From a practical perspective, it is important to note that
the results of Algorithm 5 (θ̂n and σ(θ̂n)) approximate the ones from Algorithm 4 (θ̂V and
σ(θ̂V)). In fact, the main difference between the algorithms is that in Algorithm 4, an NNM
is trained each time on new data, while in Algorithm 5, the training is performed only once.
Assuming that the dataset is big enough and that the trained NNMs converge to similar
minima of the loss functions, it is reasonable to expect that their results will be comparable.



Mach. Learn. Knowl. Extr. 2021, 3 367

6.3. Mixed Approach between Bootstrap and Split/Train

The bootstrap approach, as described in the previous section, is computationally ex-
tremely attractive, but has one major drawback that needs further discussion. Similarly to
the hold-out technique, the estimate of the average of the MSE and its variance are strongly
influenced by the split: If SV is not representative of the dataset (see the age example in
Section 1), the Algorithm 5 will give the impression of bad performance of the NNM.

Algorithm 5: Bootstrap algorithm applied to the estimation of the distribution
of a statistical estimator.

Result: Average and standard deviation of a statistical estimator: θ̂n and σ2(θ̂n)

1 Define an NNM by fixing the hyperparameters;
2 Create ST from S by choosing m elements randomly from S with m < n without

replacement;
3 SV ← S \ ST ;
4 Train the NNM on ST ;
5 for i = 1, . . . , Ns do
6 Generate a new validation dataset S(i)

V by choosing n−m elements from SV
with repetitions (create a bootstrap sample);

7 Evaluate the statistical estimator θ̂(i) by evaluating it on the results of the

NNM when applied to S(i)
V ;

8 end

9 Evaluate θ̂n =
Ns

∑
i=1

θ̂(i)/Ns;

10 Evaluate σ2(θ̂n) =
Ns

∑
i=1

(θ̂(i) − θ̂)2/Ns;

A strategy to avoid this drawback is to run Algorithm 5 on the data a few times using
different splits. As a rule of thumb, when the the average of the MSE and its variance
obtained by the different splits are comparable, these will likely be due to the NNM and
not to the splits considered. Normally, considering 5 to 10 splits will give an indication of
whether the results can be used as intended. This approach has the advantage of being
able to use a large number of samples (the number of bootstrap samples) to estimate a
statistical estimator, without being insensitive to possible problematic cases due to splits
where training and test parts are not representative of each other and of the entire dataset.

7. Application to Synthetic Data

To illustrate the application of bootstrap and to show its potential compared to the
split/train approach, let’s consider a regression problem. A synthetic dataset (xi, yi) with
i = 1, . . . , n was generated with Algorithm 6. All the simulations in this paper were done
with n = 500. The data correspond to a quadratic polynomial to which random noise
taken from a uniform distribution was added. The goal in this problem is to extract the
underlying structure (the polynomial function) from the noise. A simple NNM was used
to predict the yi for each xi. The NNM consists of a neural network with two layers, each
having four neurons with the sigmoid activation functions, trained for 250 epochs, with a
mini-batch size of 16 with the Adam optimizer [63]. Classification problems can be treated
similarly and will not be discussed explicitly in this tutorial.



Mach. Learn. Knowl. Extr. 2021, 3 368

Algorithm 6: Algorithm for synthetic data generation.
Result: A dataset (xi, yi) for i = 1, . . . , n.

1 for i = 1, . . . , n do
2 xi ← −5 + 0.02i;
3 yi ← 1/50 · (2 + 3xi + 4x2

i );
4 εi ← random sample from U(−0.5, 0.5) with U(−0.5, 0.5) the uniform

distribution from −0.5 to 0.5;
5 yi ← yi + εi;
6 end

7.1. Results of Bootstrap

After generating the synthetic data, the dataset was split in 80%, used as a training
dataset (ST), and 20% used for validation (SV). Then, the bootstrap Algorithm 5 was
applied, training the NNM on ST and generating 1800 bootstrap samples from the SV
datasets. Finally, the MSE metric θ̂n on the bootstrap samples was evaluated, and its
distribution plotted in Figure 2. The black line is the distribution of the MSE on the
1800 bootstrap samples, while the red line is a Gaussian function with the same mean
and standard deviations as the evaluated MSE values. Figure 2 shows that, as expected
from Corollary 1, the distribution of the MSE values has a Gaussian shape. This justifies,
as discussed, the use of the average and standard deviation of the MSE values to completely
describe their distribution.

7.2. Comparison of Split/Train and Bootstrap Algorithms

Now let’s compare Algorithms 4 and 5. The results for the MSE metric θ̂n are sum-
marized in Figure 3. The black line shows the distribution obtained with Algorithm 4.
The gray lines are the distributions obtained with Algorithm 5. To illustrate how the
distribution depends on the data, θ̂n was evaluated for two different splits, (S(1)

T , S(1)
V )

and (S(2)
T , S(2)

V ). For each of the two cases, a model was trained on the respective training

datasets, S(1)
T and S(2)

T , and then Algorithm 5 was applied to S(1)
V and S(2)

V . Ns = 1800 was
used for both Algorithms 4 and 5. The corresponding averages of the metric distributions
(vertical dashed lines) are very similar for the shown cases. Note that, depending on the
split, the NNM may learn better or worse and, therefore, the average of MSE obtained by
using Algorithm 4 may vary, although most of the cases will still be between roughly one σ
of the average obtained by Algorithm 4. The second observation is that, although the aver-
age of the MSE may vary a bit, its variance stays quite constant. Finally, the results show
that, as expected, the distributions have a Gaussian shape, as expected from Corollary 1.
As it was mentioned, Algorithm 5 is computationally more efficient. For example, on a
system with an Intel 2.3 Ghz 8-Core i9 CPU, Algorithm 5 took less than a minute, while
Algorithm 4 took over an hour.

The comparison between the split/train and bootstrap algorithms is summarized in
Table 1, where the average of the MSE, its variance, and the running time are listed. In the
Table, the results of k-fold cross-validation and of the mixed approach (a few split/train
steps combined with several bootstrap samples) are also reported. Note that for the mixed
approach, the reported average of the MSE and σ are obtained over the several splits.

It is important to note that, in the split/train algorithm, the NNM was trained on
100 different splits, and in the bootstrap algorithm, only on one. To avoid the dependence
of the average of the MSE and of its variance on the single split, the mixed approach offers
the possibility to check for dependencies from the split still remaining computationally
efficient. For comparison, the k-fold CV is computationally efficient, but the distribution
of the MSE is composed of very limited (here k = 5) values. Thus, even if the results of
Table 1 are numerically similar, the difference is in the computation time and robustness of
these values.



Mach. Learn. Knowl. Extr. 2021, 3 369

0.04 0.06 0.08 0.10 0.12 0.14
MSE

Co
un

ts

MSE dist. Train/Split
MSE dist. Bootstrap S(1)

V

MSE dist. Bootstrap S(2)
V

Average MSE Train/Split
Average MSE Bootstrap S(1)

V

Average MSE Bootstrap S(2)
V

Figure 3. Distribution of the MSE values obtained by using Algorithms 4 (black line) and 5 (gray lines).
The gray lines were obtained by generating 1800 bootstrap samples from two different validation

datasets S(1)
V and S(2)

V , as described in the text. The vertical dashed lines indicate the average of the
respective distributions.

Table 1. Comparison of the average of the MSE and its variance obtained with selected algorithms
applied to the synthetic dataset. The running times were obtained on a 23 GHz 8-Core Intel i9 with
32 Gb 2667 MHz DDR4 Memory.

Algorithm <MSE> σ Running Time

Split/Train (100 splits) 0.098 0.01 5.8 min
Simple Bootrap (100 bootstrap samples) 0.097 0.009 5.7 s

k-fold cross-validation (k = 5) 0.106 0.008 0 18 s
Mixed approach (10 splits/100 bootstrap samples) 0.105 0.01 59 s

8. Application to Real Data

To test the different approaches on real data, the Boston dataset [64] was chosen. This
dataset contains house prices collected by the US Census Service in the area of Boston, US.
Each observation has 13 features and the target variable is the average price of a house
with those features. The interested reader can find the details in [65].

The results are summarized in Table 2. As visible from Table 2, the average of the MSE
and its variance obtained with the different algorithms are numerically similar, as obtained
on the synthetic dataset. Here, as in the example of Section 7.2, the difference is also in the
computation time and robustness of these values.

Table 2. Comparison of the average of the MSE and its variance obtained with selected algorithms
applied to the Boston Dataset. The running times were obtained on a 23 GHz 8-Core Intel i9 with
32 Gb 2667 MHz DDR4 Memory. <MSE> and σ are expressed in the table in 1000 USD.

Algorithm <MSE> σ Running Time

Split/Train (100 splits) 75.1 18.4 5.6 min
Simple Bootrap (100 bootstrap samples) 74.7 17.8 6.2 s

k-fold cross-validation (k = 5) 77.2 17.2 16.7 s
Mixed Bootrap (10 splits/100 bootstrap samples) 75.0 15.2 63 s



Mach. Learn. Knowl. Extr. 2021, 3 370

9. Limitations and Promising Research Developments

It is important to note that the algorithms discussed in this work are presented as
practical implementation techniques, but are not based on theoretical mathematical proof,
with the exception of Section 3. One of the main obstacles in proving such results is the
intractability of neural networks (see, for example, [66]) due to their complexity and non-
linearity. Although not yet based on mathematical proofs, those approaches are important
tools to be able to estimate the value of a statistical estimator without incurring in problems
as described, for example, in the example with the age in the introduction.

The field offers several promising research directions. One interesting question is
whether the degradation of the performance of NNMs due to small datasets differs when
using the different techniques. This would enable to choose which technique works better
with less data. Another promising field is to study different network topologies and the
role of the architecture on the resampling results. It is not obvious at all, that different
network architectures behave the same when using different resampling results. Finally, it
would be important to support the results arising from simulations described in this paper
with mathematical proofs. This, in the opinion of the authors, would be one of the most
important research directions to pursue in the future.

10. Conclusions

This tutorial showed how the distributions of an average estimator, as the MSE or the
accuracy, tends asymptotically to a Gaussian shape. The estimation of the average and
variance of such an estimator, the only two parameters needed to describe its distribution,
are therefore of great importance when working with NNMs. They allow to assess the
performance of an NNM, perceived as its ability to generalise when applied to unseen data.

Classical resampling techniques were explained and discussed, with a focus on their
application with NNMs: the hold-out set approach, leave-one-out cross-validation, k-fold
cross-validation, jackknife, bootstrap, and split/train. The pseudo-code included is meant
to facilitate the implementation. The relevant practical aspects, as with the computation
time, were discussed. The application and performance of bootstrap and split/train
algorithms were demonstrated with the help of synthetically generated and real data.

The mixed bootstrap algorithm was proposed as a technique to obtain reasonable
estimates of the distribution of statistical estimators in a computationally efficient way.
The results are comparable with the ones obtained with the much more computationally-
intensive algorithms, like the split/train one.

11. Software

The code used in this tutorial for the simulations is available at [67].

Author Contributions: Conceptualization, U.M. and F.V.; methodology, U.M.; software, U.M.; vali-
dation, U.M. and F.V.; original draft preparation, U.M.; review and editing, F.V. and U.M. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MSE Mean Square Error
NNM Neural Network Model
CLT Central Limit Theorem
iid independent identically distributed
PDF Probability Density Function
LOOCV Leave-one-out cross-validation
CV cross-validation



Mach. Learn. Knowl. Extr. 2021, 3 371

References
1. Michelucci, U. Applied Deep Learning—A Case-Based Approach to Understanding Deep Neural Networks; APRESS Media, LLC: New

York, NY, USA, 2018.
2. Izonin, I.; Tkachenko, R.; Verhun, V.; Zub, K. An approach towards missing data management using improved GRNN-SGTM

ensemble method. Eng. Sci. Technol. Int. J. 2020. [CrossRef]
3. Tkachenko, R.; Izonin, I.; Kryvinska, N.; Dronyuk, I.; Zub, K. An Approach towards Increasing Prediction Accuracy for the

Recovery of Missing IoT Data based on the GRNN-SGTM Ensemble. Sensors 2020, 20, 2625. [CrossRef]
4. Izonin, I.; Tkachenko, R.; Vitynskyi, P.; Zub, K.; Tkachenko, P.; Dronyuk, I. Stacking-based GRNN-SGTM Ensemble Model for

Prediction Tasks. In Proceedings of the 2020 International Conference on Decision Aid Sciences and Application (DASA), Sakheer,
Bahrain, 8–9 November 2020; pp. 326–330.

5. Alonso-Atienza, F.; Rojo-Álvarez, J.L.; Rosado-Muñoz, A.; Vinagre, J.J.; García-Alberola, A.; Camps-Valls, G. Feature selection
using support vector machines and bootstrap methods for ventricular fibrillation detection. Expert Syst. Appl. 2012, 39, 1956–1967.
[CrossRef]

6. Dietterich, T.G. Ensemble Methods in Machine Learning. In Multiple Classifier Systems; Springer: Berlin/Heidelberg, Germany,
2000; pp. 1–15.

7. Perrone, M.P.; Cooper, L.N. When Networks Disagree: Ensemble Methods for Hybrid Neural Networks; Technical report; Brown Univ
Providence Ri Inst For Brain And Neural Systems: Providence, RI, USA, 1992.

8. Tkachenko, R.; Tkachenko, P.; Izonin, I.; Vitynskyi, P.; Kryvinska, N.; Tsymbal, Y. Committee of the combined RBF-SGTM
neural-like structures for prediction tasks. In International Conference on Mobile Web and Intelligent Information Systems; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 267–277.

9. Sagi, O.; Rokach, L. Ensemble learning: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1249. [CrossRef]
10. Tiwari, M.K.; Chatterjee, C. Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural

networks (BANNs). J. Hydrol. 2010, 382, 20–33. [CrossRef]
11. Zio, E. A study of the bootstrap method for estimating the accuracy of artificial neural networks in predicting nuclear transient

processes. IEEE Trans. Nucl. Sci. 2006, 53, 1460–1478. [CrossRef]
12. Zhang, J. Inferential estimation of polymer quality using bootstrap aggregated neural networks. Neural Netw. 1999, 12, 927–938.

[CrossRef]
13. Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; CRC Press: Boca Raton, FL, USA, 1994.
14. Good, P.I. Introduction to Statistics through Resampling Methods and R; John Wiley & Sons: Hoboken, NJ, USA, 2013.
15. Chihara, L.; Hesterberg, T. Mathematical Statistics with Resampling and R; Wiley Online Library: Hoboken, NJ, USA, 2011.
16. Williams, J.; MacKinnon, D.P. Resampling and distribution of the product methods for testing indirect effects in complex models.

Struct. Equ. Model. A Multidiscip. J. 2008, 15, 23–51. [CrossRef]
17. Montgomery, D.C.; Runger, G.C. Applied Statistics and Probability for Engineers; Wiley: Hoboken, NJ, USA, 2014.
18. Johnson, N.; Kotz, S.; Balakrishnan, N. Chi-squared distributions including chi and Rayleigh. In Continuous Univariate

Distributions; John Wiley & Sons: Hoboken, NJ, USA, 1994; pp. 415–493.
19. Efron, B. Bootstrap Methods: Another Look at the Jackknife. Ann. Statist. 1979, 7, 1–26. [CrossRef]
20. Paass, G. Assessing and improving neural network predictions by the bootstrap algorithm. In Advances in Neural Information

Processing Systems; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1992; pp. 196–203.
21. González-Manteiga, W.; Prada Sánchez, J.M.; Romo, J. The Bootstrap—A Review; Universidad Carlos III de Madrid: Getafe, Spain, 1992.
22. Lahiri, S. Bootstrap methods: A review. In Frontiers in Statistics; World Scientific: Singapore, 2006; pp. 231–255.
23. Swanepoel, J. Invited review paper a review of bootstrap methods. S. Afr. Stat. J. 1990, 24, 1–34.
24. Hinkley, D.V. Bootstrap methods. J. R. Stat. Soc. Ser. B (Methodol.) 1988, 50, 321–337. [CrossRef]
25. Efron, B.; others. Second thoughts on the bootstrap. Stat. Sci. 2003, 18, 135–140. [CrossRef]
26. Chernick, M.R. Bootstrap Methods: A Guide for Practitioners and Researchers; John Wiley & Sons: Hoboken, NJ, USA, 2011;

Volume 619.
27. Lahiri, S. Bootstrap methods: A practitioner’s guide-MR Chernick, Wiley, New York, 1999, pp. xiv+ 264 , ISBN 0-471-34912-7.

J. Stat. Plan. Inference 2000, 1, 171–172. [CrossRef]
28. Chernick, M.; Murthy, V.; Nealy, C. Application of bootstrap and other resampling techniques: Evaluation of classifier performance.

Pattern Recognit. Lett. 1985, 3, 167–178. [CrossRef]
29. Efron, B. The Jackknife, the Bootstrap and Other Resampling Plans; SIAM: Philadelphia, PA, USA, 1982.
30. Zainuddin, N.H.; Lola, M.S.; Djauhari, M.A.; Yusof, F.; Ramlee, M.N.A.; Deraman, A.; Ibrahim, Y.; Abdullah, M.T. Improvement

of time forecasting models using a novel hybridization of bootstrap and double bootstrap artificial neural networks. Appl. Soft
Comput. 2019, 84, 105676. [CrossRef]

31. Li, X.; Deng, S.; Wang, S.; Lv, Z.; Wu, L. Review of small data learning methods. In Proceedings of the 2018 IEEE 42nd Annual
Computer Software and Applications Conference (COMPSAC), Tokyo, Japan, 23–27 July 2018; Volume 2, pp. 106–109.

32. Reed, S.; Lee, H.; Anguelov, D.; Szegedy, C.; Erhan, D.; Rabinovich, A. Training deep neural networks on noisy labels with
bootstrapping. arXiv 2014, arXiv:1412.6596.

33. Diciccio, T.J.; Romano, J.P. A review of bootstrap confidence intervals. J. R. Stat. Soc. Ser. B (Methodol.) 1988, 50, 338–354.
[CrossRef]

http://doi.org/10.1016/j.jestch.2020.10.005
http://dx.doi.org/10.3390/s20092625
http://dx.doi.org/10.1016/j.eswa.2011.08.051
http://dx.doi.org/10.1002/widm.1249
http://dx.doi.org/10.1016/j.jhydrol.2009.12.013
http://dx.doi.org/10.1109/TNS.2006.871662
http://dx.doi.org/10.1016/S0893-6080(99)00037-4
http://dx.doi.org/10.1080/10705510701758166
http://dx.doi.org/10.1214/aos/1176344552
http://dx.doi.org/10.1111/j.2517-6161.1988.tb01731.x
http://dx.doi.org/10.1214/ss/1063994968
http://dx.doi.org/10.1016/S0378-3758(00)00132-4
http://dx.doi.org/10.1016/0167-8655(85)90049-2
http://dx.doi.org/10.1016/j.asoc.2019.105676
http://dx.doi.org/10.1111/j.2517-6161.1988.tb01732.x


Mach. Learn. Knowl. Extr. 2021, 3 372

34. Khosravi, A.; Nahavandi, S.; Srinivasan, D.; Khosravi, R. Constructing optimal prediction intervals by using neural networks and
bootstrap method. IEEE Trans. Neural Netw. Learn. Syst. 2014, 26, 1810–1815. [CrossRef] [PubMed]

35. Gonçalves, S.; Politis, D. Discussion: Bootstrap methods for dependent data: A review. J. Korean Stat. Soc. 2011, 40, 383–386.
[CrossRef]

36. Chernick, M.R. The Essentials of Biostatistics for Physicians, Nurses, and Clinicians; Wiley Online Library: Hoboken, NJ, USA, 2011.
37. Pastore, A. An introduction to bootstrap for nuclear physics. J. Phys. G Nucl. Part Phys. 2019, 46, 052001. [CrossRef]
38. Sohn, R.; Menke, W. Application of maximum likelihood and bootstrap methods to nonlinear curve-fit problems in geochemistry.

Geochem. Geophys. Geosyst. 2002, 3, 1–17. [CrossRef]
39. Anirudh, R.; Thiagarajan, J.J. Bootstrapping graph convolutional neural networks for autism spectrum disorder classification.

In Proceedings of the ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Brighton, UK, 12–17 May 2019; pp. 3197–3201.

40. Gligic, L.; Kormilitzin, A.; Goldberg, P.; Nevado-Holgado, A. Named entity recognition in electronic health records using transfer
learning bootstrapped neural networks. Neural Netw. 2020, 121, 132–139. [CrossRef]

41. Ruf, J.; Wang, W. Neural networks for option pricing and hedging: A literature review. J. Comput. Financ. 2019, 24, 1–46.
[CrossRef]

42. Efron, B. Better bootstrap confidence intervals. J. Am. Stat. Assoc. 1987, 82, 171–185. [CrossRef]
43. Gareth, J.; Daniela, W.; Trevor, H.; Robert, T. An Introduction to Statistical Learning: With Applications in R; Spinger:

Berlin/Heidelberg, Germany, 2013.
44. Quenouille, M.H. Approximate tests of correlation in time-series. J. R. Stat. Soc. Ser. B (Methodol.) 1949, 11, 68–84.
45. Cameron, A.C.; Trivedi, P.K. Microeconometrics: Methods and Applications; Cambridge University Press: Cambridge, UK, 2005.
46. Miller, R.G. The jackknife—A review. Biometrika 1974, 61, 1–15.
47. Efron, B. Nonparametric estimates of standard error: The jackknife, the bootstrap and other methods. Biometrika 1981, 68, 589–599.

[CrossRef]
48. Wu, C.F.J. Jackknife, bootstrap and other resampling methods in regression analysis. Ann. Stat. 1986, 14, 1261–1295. [CrossRef]
49. Efron, B.; Stein, C. The jackknife estimate of variance. Ann. Stat. 1981, 9, 586–596. [CrossRef]
50. Shao, J.; Wu, C.J. A general theory for jackknife variance estimation. Ann. Stat. 1989, 17, 1176–1197. [CrossRef]
51. Bickel, P.J.; Boley, N.; Brown, J.B.; Huang, H.; Zhang, N.R. Subsampling methods for genomic inference. Ann. Appl. Stat. 2010,

4, 1660–1697. [CrossRef]
52. Robinson, D.G.; Storey, J.D. subSeq: Determining appropriate sequencing depth through efficient read subsampling. Bioinformatics

2014, 30, 3424–3426. [CrossRef] [PubMed]
53. Quiroz, M.; Villani, M.; Kohn, R.; Tran, M.N.; Dang, K.D. Subsampling MCMC—An introduction for the survey statistician.

Sankhya A 2018, 80, 33–69. [CrossRef]
54. Elliott, M.R.; Little, R.J.; Lewitzky, S. Subsampling callbacks to improve survey efficiency. J. Am. Stat. Assoc. 2000, 95, 730–738.

[CrossRef]
55. Paparoditis, E.; Politis, D.N. Resampling and subsampling for financial time series. In Handbook of Financial Time Series; Springer:

Berlin/Heidelberg, Germany, 2009; pp. 983–999.
56. Bertail, P.; Haefke, C.; Politis, D.N.; White, H.L., Jr. A subsampling approach to estimating the distribution of diversing statistics

with application to assessing financial market risks. In UPF, Economics and Business Working Paper; Universitat Pompeu Fabra:
Barcelona, Spain, 2001.

57. Chernozhukov, V.; Fernández-Val, I. Subsampling inference on quantile regression processes. Sankhyā Indian J. Stat. 2005, 67,
253–276.

58. Politis, D.N.; Romano, J.P.; Wolf, M. Subsampling for heteroskedastic time series. J. Econom. 1997, 81, 281–317. [CrossRef]
59. Politis, D.N.; Romano, J.P.; Wolf, M. Subsampling; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1999.
60. Delgado, M.A.; Rodrıguez-Poo, J.M.; Wolf, M. Subsampling inference in cube root asymptotics with an application to Manski’s

maximum score estimator. Econ. Lett. 2001, 73, 241–250. [CrossRef]
61. Gonzalo, J.; Wolf, M. Subsampling inference in threshold autoregressive models. J. Econom. 2005, 127, 201–224. [CrossRef]
62. Politis, D.N.; Romano, J.P. Large sample confidence regions based on subsamples under minimal assumptions. Ann. Stat. 1994,

22, 2031–2050. [CrossRef]
63. Kingma, D.P.; Ba, J.A. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on

Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015; pp. 1–15.
64. Harrison, D., Jr.; Rubinfeld, D.L. Hedonic housing prices and the demand for clean air. J. Environ. Econ. Manag. 1978, 5, 81–102.

[CrossRef]
65. Original paper by Harrison, D.; Rubinfeld, D. The Boston Housing Dataset Website. 1996. Available online: https://www.cs.

toronto.edu/~delve/data/boston/bostonDetail.html (accessed on 15 March 2021).

http://dx.doi.org/10.1109/TNNLS.2014.2354418
http://www.ncbi.nlm.nih.gov/pubmed/25216487
http://dx.doi.org/10.1016/j.jkss.2011.07.003
http://dx.doi.org/10.1088/1361-6471/ab00ad
http://dx.doi.org/10.1029/2001GC000253
http://dx.doi.org/10.1016/j.neunet.2019.08.032
http://dx.doi.org/10.2139/ssrn.3486363
http://dx.doi.org/10.1080/01621459.1987.10478410
http://dx.doi.org/10.1093/biomet/68.3.589
http://dx.doi.org/10.1214/aos/1176350142
http://dx.doi.org/10.1214/aos/1176345462
http://dx.doi.org/10.1214/aos/1176347263
http://dx.doi.org/10.1214/10-AOAS363
http://dx.doi.org/10.1093/bioinformatics/btu552
http://www.ncbi.nlm.nih.gov/pubmed/25189781
http://dx.doi.org/10.1007/s13171-018-0153-7
http://dx.doi.org/10.1080/01621459.2000.10474261
http://dx.doi.org/10.1016/S0304-4076(97)86569-4
http://dx.doi.org/10.1016/S0165-1765(01)00494-3
http://dx.doi.org/10.1016/j.jeconom.2004.08.004
http://dx.doi.org/10.1214/aos/1176325770
http://dx.doi.org/10.1016/0095-0696(78)90006-2
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html


Mach. Learn. Knowl. Extr. 2021, 3 373

66. Jones, L.K. The computational intractability of training sigmoidal neural networks. IEEE Trans. Inf. Theory 1997, 43, 167–173.
[CrossRef]

67. Michelucci, U. Code for Estimating Neural Network’s Performance with Bootstrap: a Tutorial. 2021. Available online:
https://github.com/toelt-llc/NN-Performance-Bootstrap-Tutorial (accessed on 20 March 2021).

http://dx.doi.org/10.1109/18.567673
https://github.com/toelt-llc/NN-Performance-Bootstrap-Tutorial

	Introduction
	Notation
	Central Limit Theorem for an Averaging Estimator 
	Bootstrap
	Other Resampling Techniques
	Hold-Out Set Approach
	Leave-One-Out Cross-Validation
	k-Fold Cross-Validation
	Jackknife
	Subsampling

	Algorithms for Performance Estimation
	Split/Train Algorithm
	Bootstrap
	Mixed Approach between Bootstrap and Split/Train

	Application to Synthetic Data
	Results of Bootstrap
	Comparison of Split/Train and Bootstrap Algorithms

	Application to Real Data
	Limitations and Promising Research Developments
	Conclusions
	References

