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ABSTRACT

How canwe estimate the importance of nodes in a knowledge graph
(KG)? A KG is a multi-relational graph that has proven valuable for
many tasks including question answering and semantic search. In
this paper, we present GENI, a method for tackling the problem of
estimating node importance in KGs, which enables several down-
stream applications such as item recommendation and resource
allocation. While a number of approaches have been developed to
address this problem for general graphs, they do not fully utilize
information available in KGs, or lack flexibility needed to model
complex relationship between entities and their importance. To ad-
dress these limitations, we explore supervised machine learning al-
gorithms. In particular, building upon recent advancement of graph
neural networks (GNNs), we develop GENI, a GNN-based method
designed to deal with distinctive challenges involved with predict-
ing node importance in KGs. Our method performs an aggregation
of importance scores instead of aggregating node embeddings via
predicate-aware attention mechanism and flexible centrality adjust-
ment. In our evaluation of GENI and existing methods on predicting
node importance in real-world KGs with different characteristics,
GENI achieves 5–17% higher NDCG@100 than the state of the art.
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Figure 1: An example knowledge graph on movies and re-

lated entities. Different edge types represent different types

of relations (e.g., “directed” and “starred-in”), and different

shapes denote different entity types. Rounded rectangles are

importance scores known in advance for some movies.

1 INTRODUCTION

Knowledge graphs (KGs) such as Freebase [2], YAGO [19], and DB-
pedia [16] have proven highly valuable resources for many applica-
tions including question answering [7], recommendation [26], se-
mantic search [1], and knowledge completion [23]. A KG is a multi-
relational graph where nodes correspond to entities, and edges cor-
respond to relations between the two connected entities. An edge in
a KG represents a fact stored in the form of “<subject> <predicate>
<object>”, (e.g., “<Tim Robbins> <starred-in> <The Shawshank
Redemption>”). KGs are different from traditional graphs that have
only a single relation; KGs normally consist of multiple, different
relations that encode heterogeneous information as illustrated by
an example movie KG in Figure 1.

Given a KG, estimating the importance of each node is a crucial
task that enables a number of applications such as recommendation,
query disambiguation, and resource allocation optimization. For
example, consider a situation where a customer issues a voice query
“Tell me what Genie is” to a voice assistant backed by a KG. If the
KG contains several entities with such a name, the assistant could
use their estimated importance to figure out which one to describe.
Furthermore, many KGs are large-scale, often containing millions
to billions of entities for which the knowledge needs to be enriched
or updated to reflect the current state. As validating information
in KGs requires a lot of resources due to their size and complexity,
node importance can be used to guide the system to allocate limited
resources for entities of high importance.
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Figure 2: Our method GENI outperforms existing methods

in predicting importance of nodes in real-worldKGs.Higher

values are better. See Section 4.4 and Table 4 for details.

How can we estimate the importance of nodes in a KG? In this
paper, we focus on the setting where we are given importance
scores of some nodes in a KG. An importance score is a value that
represents the significance or popularity of a node in the KG. For
example, the number of pageviews of a Wikipedia page can be
used as an importance score of the corresponding entity in a KG
since important nodes tend to attract a lot of attention and search
traffic. Then given a KG, how can we predict node importance by
making use of importance scores known for some nodes along with
auxiliary information in KGs such as edge types (predicates)?

In the past, several approaches have been developed for node
importance estimation. PageRank (PR) [18] is an early work on
this problem that revolutionized the field of Web search. However,
PR scores are based only on the graph structure, and unaware of
importance scores available for some nodes. Personalized PageRank
(PPR) [11] dealt with this limitation by letting users provide their
own notion of node importance in a graph. PPR, however, does not
take edge types into account. HAR [17] extends ideas used by PR
and PPR to distinguish between different predicates in KGs while
being aware of importance scores and graph topology. Still, we
observe that there is much room for improvement, as evidenced
by the performance of existing methods on real-world KGs in Fig-
ure 2. So far, existing techniques have approached this problem in
a non-trainable framework that is based on a fixed model structure
determined by their prior assumptions on the propagation of node
importance, and involve no learnable parameters that are optimized
based on the ground truth.

In this paper, we explore a new family of solutions for the task of
predicting node importance in KGs, namely, regularized supervised
machine learning algorithms. Our goal is to develop a more flexible
supervised approach that learns from ground truth, and makes
use of additional information in KGs. Among several supervised
algorithms we explore, we focus on graph neural networks (GNNs).
Recently, GNNs have received increasing interests, and achieved
state-of-the-art performance on node and graph classification tasks
across data drawn from several domains [6, 10, 14, 22, 25]. Designed
to learn from graph-structured data, and based on neighborhood
aggregation framework, GNNs have the potential to make further
improvements over earlier approaches. However, existing GNNs

have focused on graph representation learning via embedding ag-
gregation, and have not been designed to tackle challenges that
arise with supervised estimation of node importance in KGs. Chal-
lenges include modeling the relationship between the importance
of neighboring nodes, accurate estimation that generalizes across
different types of entities, and incorporating prior assumptions on
node importance that aid model prediction, which are not addressed
at the same time by existing supervised techniques.

We present GENI, a GNN for Estimating Node Importance in
KGs. GENI applies an attentive GNN for predicate-aware score
aggregation to capture relations between the importance of nodes
and their neighbors. GENI also allows flexible score adjustment
according to node centrality, which captures connectivity of a node
in terms of graph topology. Our main contributions are as follows.
• We explore regularized supervised machine learning algo-
rithms for estimating node importance in KGs, as opposed to
non-trainable solutions where existing approaches belong.
• We present GENI, a GNN-based method designed to address
the challenges involved with supervised estimation of node
importance in KGs.
• Weprovide empirical evidence and an analysis of GENI using
real-world KGs. Figure 2 shows that GENI outperforms the
state of the art by 5%-17% percentage points on real KGs.

The rest of this paper is organized as follows. We present pre-
liminaries in Section 2, and describe our method in Section 3. After
providing experimental results on real KGs in Section 4, we review
related works in Section 5, and conclude in Section 6.

2 PRELIMINARIES

2.1 Problem Definition

A knowledge graph (KG) is a graph G = (V ,E = {E1,E2, . . . ,EP })
that represents multi-relational data where nodes V and edges E
correspond to entities and their relationships, respectively; P is
the number of types of edges (predicates); and Ep denotes a set of
edges of type p ∈ {1, . . . , P}. In KGs, there are often many types
of predicates (i.e., P ≫ 1) between nodes of possibly different
types (e.g., movie, actor, and director nodes), whereas in traditional
graphs, nodes are connected by just one type of edges (i.e., P = 1).

An importance score s ∈ R≥0 is a non-negative real number that
represents the significance or popularity of a node. For example,
the total gross of a movie can be used as an importance score for a
movie KG, and the number of pageviews of an entity can be used
in a more generic KG such as Freebase [2]. We assume a single set
of importance scores, so the scores can compare with each other to
reflect importance.

We now define the node importance estimation problem.
Definition 2.1 (Node Importance Estimation). Given a KG G =

(V ,E = {E1,E2, . . . ,EP }) and importance scores {s} for a subset
Vs ⊆ V of nodes, learn a function S : V → [0,∞) that estimates the
importance score of every node in KG.

Figure 1 shows an example KG on movies and related entities
with importance scores given in advance for some movies. We
approach the importance estimation problem by developing a su-
pervised framework learning a function that maps any node in KG
to its score, such that the estimation reflects its true importance as
closely as possible.



Table 1: Comparison of methods for estimating node impor-

tance. Neighborhood: Neighborhood awareness. Predicate:
Making use of predicates. Centrality: Centrality awareness.

Input Score: Utilizing input importance scores. Flexibility:
Flexible adaptation.

GENI HAR [17] PPR [11] PR [18]
Neighborhood ✓✓✓ ✓ ✓ ✓
Predicate ✓✓✓ ✓
Centrality ✓✓✓ ✓ ✓ ✓
Input Score ✓✓✓ ✓ ✓
Flexibility ✓✓✓

Note that even when importance scores are provided for only
one type of nodes (e.g., movies), we aim to do estimation for all
types of nodes (e.g,. directors, actors, etc.).

Definition 2.2 (In-Domain and Out-Of-Domain Estimation). Given
importance scores for some nodes Vs ⊆ V of type T (e.g., movies),
predicting the importance of nodes of type T is called an “in-
domain” estimation, and importance estimation for those nodes
whose type is not T is called an “out-of-domain” estimation.

As available importance scores are often limited in terms of
numbers and types, developing a method that generalizes well for
both classes of estimation is an important challenge for supervised
node importance estimation.

2.2 Desiderata for Modeling Node Importance

in KGs

Based on our discussion on prior approaches (PR, PPR, and HAR),
we present the desiderata that have guided the development of our
method for tackling node importance estimation problem. Table 1
summarizesGENI and existing methods in terms of these desiderata.

Neighborhood Awareness. In a graph, a node is connected to
other nodes, except for the special case of isolated nodes. As neigh-
boring entities interact with each other, and they tend to share com-
mon characteristics (network homophily), neighborhoods should
be taken into account when node importance is modeled.

Making Use of Predicates. KGs consist of multiple types of
predicates. Under the assumption that different predicates could
play a different role in determining node importance, models should
make predictions using information from predicates.

Centrality Awareness. Without any other information, it is
reasonable to assume that highly central nodes are more important
than less central ones. Therefore, scores need to be estimated in
consideration of node centrality, capturing connectivity of a node.

Utilizing Input Importance Scores. In addition to graph topol-
ogy, input importance scores provide valuable information to infer
relationships between nodes and their importance. Thus, models
should tap into both the graph structure and input scores for more
accurate prediction.

Flexible Adaptation. Our assumption regarding node impor-
tance such as the one on centrality may not conform to the real
distribution of input scores over KGs. Also, we do not limit models
to a specific type of input scores. On the other hand, models can
be provided with input scores that possess different characteristics.
It is thus critical that a model can flexibly adapt to the importance
that input scores reflect.

2.3 Graph Neural Networks

In this section, we present a generic definition of graph neural
networks (GNNs). GNNs are mainly based on neighborhood aggre-
gation architecture [8, 10, 14, 22, 25]. In a GNN with L layers, its
ℓ-th layer (ℓ = 1, . . . ,L) receives a feature vector ®hℓ−1i for each node
i from the (ℓ−1)-th layer (where ®h0i is an input node feature ®zi ), and
updates it by aggregating feature vectors from the neighborhood
N(i) of node i , possibly using a different weight wℓ

i, j for neigh-
bor j . As updated feature vectors become the input to the (ℓ + 1)-th
layer, repeated aggregation procedure through L layers in principle
captures L-th order neighbors in learning a node’s representation.
This process of learning representation ®hℓi of node i by ℓ-th layer
is commonly expressed as [10, 24, 25]:
®hℓ
N(i) ← Transformℓ

(
Aggregate

({(
®hℓ−1j ,w

ℓ
i, j

) �� j ∈ N(i)}))
(1)

®hℓi ← Combine
(
®hℓ−1i , ®hℓ

N(i)

)
(2)

where Aggregate is an aggregation function defined by the model
(e.g., averaging or max-pooling operation); Transform is a model-
specific function that performs a (non-linear) transformation of
node embeddings via parameters in ℓ-th layer shared by all nodes
(e.g., multiplication with a shared weight matrixWℓ followed by
some non-linearity σ (·)); Combine is a function that merges the
aggregated neighborhood representation with the node’s represen-
tation (e.g., concatenation).
3 METHOD

Effective estimation of node importance in KGs involves addressing
the requirements presented in Section 2.2. As a supervised learning
method, the GNN framework naturally allows us to utilize input
importance scores to train a model with flexible adaptation. Its prop-
agation mechanism also allows us to be neighborhood aware. In this
section, we present GENI, which further enhances the model in
three ways.
• Neighborhood Importance Awareness: GNN normally propa-
gates information between neighbors through node embed-
ding. This is to model the assumption that an entity and its
neighbors affect each other, and thus the representation of
an entity can be better represented in terms of the represen-
tation of its neighbors. In the context of node importance
estimation, neighboring importance scores play a major role
on the importance of a node, whereas other neighboring fea-
tures may have little effect, if any. We thus directly aggregate
importance scores from neighbors (Section 3.1), and show
empirically that it outperforms embedding propagation (Sec-
tion 4.4).
• Making Use of Predicates: We design predicate-aware atten-
tion mechanism that models how predicates affect the im-
portance of connected entities (Section 3.2).
• Centrality Awareness: We apply centrality adjustment to in-
corporate node centrality into the estimation (Section 3.3).

An overview of GENI is provided in Figure 3. In Sections 3.1
to 3.3, we describe the three main enhancements using the basic
building blocks of GENI shown in Figure 3(a). Then we discuss an
extension to a general architecture in Section 3.4. Table 2 provides
the definition of symbols used in this paper.
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Figure 3: Description of node importance estimation by GENI. (a): Estimation of the importance of node i based on the embed-

dings of node i and its neighbors j1, . . . , j4 (connected by blue edges). The final estimation s∗(i) is produced via three components

of GENI shown in colored boxes, which are described in Sections 3.1 to 3.3. (b): An illustration of the proposed model that con-

sists of two layers, each of which contains two score aggregation heads. Note that the model can consist of different numbers

of layers, and each layer can also have different numbers of score aggregation heads. A discussion on the extension of the

basic model in (a) to a more comprehensive architecture in (b) is given in Section 3.4.

Table 2: Table of symbols.

Symbol Definition

Vs set of nodes with known importance scores
®zi real-valued feature vector of node i
N(i) neighbors of node i
L total number of score aggregation (SA) layers
ℓ index for an SA layer
H ℓ number of SA heads in ℓ-th layer
pmij predicate ofm-th edge between nodes i and j
ϕ(e) learnable embedding of predicate e
σa, σs non-linearities for attention computation and score estimation
s ℓh (i) estimated score of node i by h-th SA head in ℓ-th layer
s∗(i) centrality-adjusted score estimation of node i
| | concatenation operator

d (i) in-degree of node i
c(i) centrality score of node i
c∗h (i) centrality score of node i scaled and shifted by h-th SA head
γh, βh learnable scale and shift parameters used by h-th SA head
®ah, ℓ learnable parameter vector to compute αh, ℓi j by h-th SA head in ℓ-th layer
αh, ℓi j node i ’s attention on node j computed with h-th SA head in ℓ-th layer
д(i) known importance score of node i

3.1 Score Aggregation

To directly model the relationship between the importance of neigh-
boring nodes, we propose a score aggregation framework, rather
than embedding aggregation. Specifically, in Equations (1) and (2),
we replace the hidden embedding ®hℓ−1j of node j with its score
estimation sℓ−1(j) and combine them as follows:

sℓ(i) =
∑

j ∈N(i)∪{i }

α ℓ
i j s

ℓ−1(j) (3)

where N(i) denotes the neighbors of node i , which will be a set
of the first-order neighbors of node i in our experiments. Here,

α ℓ
i j is a learnable weight between nodes i and j for the ℓ-th layer

(ℓ = 1, . . . ,L). We train it via a shared attention mechanism which
is computed by a pre-defined model with shared parameters and
predicate embeddings, as we explain soon. In other words, GENI
computes the aggregated score sℓ(i) by performing a weighted ag-
gregation of intermediate scores from node i and its neighbors. Note
that GENI does not apply Transformℓ function after aggregation
as in Equation (1), sinceGENI aggregates scores. Propagating scores
instead of node embeddings has the additional benefit of reducing
the number of model parameters.

To compute the initial estimation s0(i), GENI uses input node
features. In the simplest case, they can be one-hot vectors that
represent each node. More generally, they are real-valued vectors
representing the nodes, which are extracted manually based on
domain knowledge, or generated with methods for learning node
embeddings. Let ®zi be the input feature vector of node i . Then GENI
computes the initial score of i as

s0(i) = ScoringNetwork(®zi ) (4)
where ScoringNetwork can be any neural network that takes in a
node feature vector and returns an estimation of its importance. We
used a simple fully-connected neural network for our experiments.

3.2 Predicate-Aware Attention Mechanism

Inspired by recent work that showcased successful application
of attention mechanism, we employ a predicate-aware attention
mechanism that attends over the neighbor’s intermediate scores.

Our attention considers two factors. First, we consider the predi-
cate between the nodes because different predicates can play differ-
ent roles for score propagation. For example, even though a movie
may be released in a popular (i.e., important) country, the movie



itself may not be popular; on the other hand, a movie directed by a
famous (i.e., important) director is more likely to be popular. Second,
we consider the neighboring score itself in deciding the attention. A
director who directed a few famous (i.e., important) movies is likely
to be important; the fact that he also directed some not-so-famous
movies in his life is less likely to make him unimportant.

GENI incorporates predicates into attention computation by us-
ing shared predicate embeddings; i.e., each predicate is represented
by a feature vector of predefined length, and this representation is
shared by nodes across all layers. Further, predicate embeddings are
learned so as to maximize the predictive performance of the model
in a flexible fashion. Note that in KGs, there could be multiple edges
of different types between two nodes (e.g., see Figure 1). We use
pmij to denote the predicate ofm-th edge between nodes i and j , and
ϕ(·) to denote a mapping from a predicate to its embedding.

In GENI, we use a simple, shared self-attention mechanism,
which is a single layer feedforward neural network parameterized
by the weight vector ®a. Relation between the intermediate scores
of two nodes i and j , and the role an in-between predicate plays are
captured by the attentional layer that takes in the concatenation
of all relevant information. Outputs from the attentional layer are
first transformed by non-linearity σ (·), and then normalized via
the softmax function. Formally, GENI computes the attention α ℓ

i j
of node i on node j for ℓ-th layer as:

α ℓ
i j =

exp
(
σa

(∑
m ®a
⊤
ℓ
[sℓ(i)| |ϕ(pmij )| |s

ℓ(j)]
))

∑
k ∈N(i)∪{i } exp

(
σa

(∑
m ®a
⊤
ℓ
[sℓ(i)| |ϕ(pmik )| |s

ℓ(k)]
)) (5)

where σa is a non-linearity, ®aℓ is a weight vector for ℓ-th layer, and
| | is a concatenation operator.

3.3 Centrality Adjustment

Existing methods such as PR, PPR, and HAR make a common as-
sumption that the importance of a node positively correlates with
its centrality in the graph. In the context of KGs, it is also natural
to assume that more central nodes would be more important than
less central ones, unless the given importance scores present con-
tradictory evidence. Making use of this prior knowledge becomes
especially beneficial in cases where we are given a small number
of importance scores compared to the total number of entities, and
in cases where the importance scores are given for entities of a
specific type out of the many types in KG.

Given that the in-degree d(i) of node i is a common proxy for
its centrality and popularity, we define the initial centrality c(i) of
node i to be

c(i) = log(d(i) + ϵ) (6)
where ϵ is a small positive constant.

While node centrality provides useful information on the im-
portance of a node, strictly adhering to the node centrality could
have a detrimental effect on model prediction. We need flexibility to
account for the possible discrepancy between the node’s centrality
in a given KG and the provided input importance score of the node.
To this end, we use a scaled and shifted centrality c∗(i) as our notion
of node centrality:

c∗(i) = γ · c(i) + β (7)

where γ and β are learnable parameters for scaling and shifting. As
we show in Section 4.5, this flexibility allows better performance
when in-degree is not the best proxy of centrality.

To compute the final score, we apply centrality adjustment to the
score estimation sL(i) from the last layer, and apply a non-linearity
σs as follows:

s∗(i) = σs
(
c∗(i) · sL(i)

)
(8)

3.4 Model Architecture

The simple architecture depicted in Figure 3(a) consists of a scoring
network and a single score aggregation (SA) layer (i.e., L = 1),
followed by a centrality adjustment component. Figure 3(b) extends
it to a more general architecture in two ways. First, we extend the
framework to contain multiple SA layers; that is, L > 1. As a single
SA layer aggregates the scores of direct neighbors, stackingmultiple
SA layers enables aggregating scores from a larger neighborhood.
Second, we design each SA layer to contain a variable number of SA
heads, which perform score aggregation and attention computation
independently of each other. Empirically, we find using multiple
SA heads to be helpful for the model performance and the stability
of optimization procedure (Section 4.5).

Let h be an index of an SA head, and H ℓ be the number of SA
heads in ℓ-th layer. We define s ′ℓ−1h (i) to be node i’s score that is
estimated by (ℓ − 1)-th layer, and fed into h-th SA head in ℓ-th
(i.e., the next) layer, which in turn produces an aggregation sℓh (i) of
these scores:

sℓh (i) =
∑

j ∈N(i)∪{i }

αh, ℓi j s ′ℓ−1h (j) (9)

where αh, ℓi j is the attention coefficient between nodes i and j com-
puted by SA head h in layer ℓ.

In the first SA layer, each SA head h receives input scores from a
separate scoring network ScoringNetworkh , which provides the
initial estimation s0h (i) of node importance. For the following layers,
output from the previous SA layer becomes the input estimation.
Since in ℓ-th (ℓ ≥ 1) SA layer, H ℓ SA heads independently produce
H ℓ score estimations in total, we perform an aggregation of these
scores by averaging, which is provided to the next layer. That is,

s ′ℓh (i) =

{
ScoringNetworkh (®zi ) if ℓ = 0
Average

({
sℓh (i)

�� h = 1, . . . ,H ℓ
})

if ℓ ≥ 1
(10)

Multiple SA heads in ℓ-th layer compute attention between neigh-
boring nodes in the same way as in Equation (5), yet independently
of each other using its own parameters ®ah, ℓ :

αh, ℓi j =
exp

(
σa

(∑
m ®a
⊤
h, ℓ[s

′ℓ−1
h (i)| |ϕ(pmij )| |s

′ℓ−1
h (j)]

))
∑
k ∈N(i)∪{i } exp

(
σa

(∑
m ®a
⊤
h, ℓ[s

′ℓ−1
h (i)| |ϕ(pmik )| |s

′ℓ−1
h (k)]

))
(11)

Centrality adjustment is applied to the output from the final SA
layer. In order to enable independent scaling and shifting by each
SA head, separate parameters γh and βh are used for each head h.
Then centrality adjustment by h-th SA head in the final layer is:

c∗h (i) = γh · c(i) + βh (12)
With HL SA heads in the final L-th layer, we perform additional

aggregation of centrality-adjusted scores by averaging, and apply a



non-linearity σs , obtaining the final estimation s∗(i):

s∗(i) = σs
(
Average

({
c∗h (i) · s

L
h (i)

�� h = 1, . . . ,HL
}))

(13)

3.5 Model Training

In order to predict node importance with input importance scores
known for a subset of nodes Vs ⊆ V , we train GENI using mean
squared error between the given importance score д(i) and the
model estimation s∗(i) for node i ∈ Vs ; thus, the loss function is

1
|Vs |

∑
i ∈Vs

(
s∗(i) − д(i)

)2 (14)

Note that ScoringNetwork is trained jointly with the rest of GENI.
To avoid overfitting, we apply weight decay with an early stopping
criterion based on the model performance on validation entities.

4 EXPERIMENTS

In this section, we aim to answer the following questions.
• How do GENI and baselines perform on real-world KGs with
different characteristics? In particular, how well do methods
perform in- and out-of-domain estimation (Definition 2.2)?
• How do the components of GENI, such as centrality adjust-
ment, and different parameter values affect its estimation?

We describe datasets, baselines, and evaluation plans in Sections 4.1
to 4.3, and answer the above questions in Sections 4.4 and 4.5.

4.1 Datasets

In our experiments, we use four real-world KGs with different char-
acteristics. Here we introduce these KGs along with the importance
scores used for in- and out-of-domain (OOD) evaluations (see Defi-
nition 2.2). Summaries of the datasets (such as the number of nodes,
edges, and predicates) are given in Table 3. More details such as data
sources and how they are constructed can be found in Appendix A.

fb15k is a subset of Freebase, which is a large collaborative
knowledge base containing general facts, and has been widely used
for research and practical applications [2, 3]. fb15k has a much
larger number of predicates and a higher density than other KGs
we evaluated. For each entity, we use the number of pageviews for
the corresponding Wikipedia page as its score. Note that we do
not perform OOD evaluation for fb15k since importance scores for
fb15k apply to all types of entities.

music10k is amusic KG sampled from theMillion SongDataset1,
which includes information about songs such as the primary artist
and the album the song belongs to. The dataset provides two types
of popularity scores called “song hotttnesss” and “artist hotttnesss”
computed by the Echo Nest platform by considering data frommany
sources such as mentions on the web, play counts, etc2. We use
“song hotttnesss” as input importance scores, and “artist hotttnesss”
for OOD performance evaluation.

tmdb5k is a movie KG derived from the TMDb 5000 movie
dataset3. It contains movies and related entities such as movie gen-
res, companies, countries, crews, and casts. We use the “popularity”
information for movies as importance scores, which is provided
by the original dataset. For OOD evaluation, we use a ranking of

1https://labrosa.ee.columbia.edu/millionsong/
2https://musicmachinery.com/tag/hotttnesss/
3https://www.kaggle.com/tmdb/tmdb-movie-metadata

top-200 highest grossing directors4. Worldwide box office grosses
given in the ranking are used as importance scores for directors.

imdb is a movie KG created from the public IMDb dataset, which
includes information such as movies, genres, directors, casts, and
crews. imdb is the largest KG among those we evaluate, with 12.6×
as many nodes as tmdb5k. IMDb dataset provides the number of
votes a movie received, which we use as importance scores. For
OOD evaluation, we use the same director ranking used for tmdb5k.

4.2 Baselines

Methods for node importance estimation in KGs can be classified
into two families of algorithms.

Non-Trainable Approaches. Previously developed methods
mostly belong to this category. We evaluate the following methods:
• PageRank (PR) [18]
• Personalized PageRank (PPR) [11]
• HAR [17]

Supervised Approaches.We explore the performance of rep-
resentative supervised algorithms on node importance estimation:
• Linear regression (LR): an ordinary least squares algorithm.
• Random forests (RF): a random forest regression model.
• Neural networks (NN): a fully-connected neural network.
• Graph attention networks (GAT) [22]: This is a GNN model
reviewed in Section 2.3. We add a final layer that takes the
node embedding and outputs the importance score of a node.

All these methods and GENI use the same data (node features and
input importance scores). In our experiments, node features are
generated using node2vec [9]. Depending on the type of KGs, other
types of node features, such as bag-of-words representation, can
also be used. Note that the graph structure is explicitly used only
by GAT, although other supervised baselines make an implicit use
of it when node features encode graph structural information.

We will denote each method by the name in parentheses. Experi-
mental settings for baselines and GENI are provided in Appendix B.

4.3 Performance Evaluation

We evaluate methods based on their in- and out-of-domain (OOD)
performance. We performed 5-fold cross validation, and report the
average and standard deviation of the following metrics on ranking
quality and correlation: normalized discounted cumulative gain
and Spearman correlation coefficient. Higher values are better for
all metrics. We now provide their formal definitions.

Normalized discounted cumulative gain (NDCG) is a mea-
sure of ranking quality. Given a list of nodes ranked by predicted
scores, and their graded relevance values (which are non-negative,
real-valued ground truth scores in our setting), discounted cumula-
tive gain at position k (DCG@k) is defined as:

DCG@k =
k∑
i=1

ri
log2(i + 1)

(15)

where ri denotes the graded relevance of the node at position i .
Note that due to the logarithmic reduction factor, the gain ri of each
node is penalized at lower ranks. Consider an ideal DCG at rank
position k (IDCG@k) which is obtained by an ideal ordering of

4https://www.the-numbers.com/box-office-star-records/worldwide/
lifetime-specific-technical-role/director

https://labrosa.ee.columbia.edu/millionsong/
https://musicmachinery.com/tag/hotttnesss/
https://www.kaggle.com/tmdb/tmdb-movie-metadata
https://www.the-numbers.com/box-office-star-records/worldwide/lifetime-specific-technical-role/director
https://www.the-numbers.com/box-office-star-records/worldwide/lifetime-specific-technical-role/director


Table 3: Real-worldKGs. See Section 4.1 andAppendixA for details. SCC: Strongly connected component. OOD:Out-of-domain.

Name # Nodes # Edges # Predicates # SCCs. Input Score Type # Nodes w/ Scores Data for OOD Evaluation

fb15k 14,951 592,213 1,345 9 # Pageviews 14,108 (94%) N/A
music10k 24,830 71,846 10 130 Song hotttnesss 4,214 (17%) Artist hotttnesss
tmdb5k 123,906 532,058 22 15 Movie popularity 4,803 (4%) Director ranking
imdb 1,567,045 14,067,776 28 1 # Votes for movies 215,769 (14%) Director ranking

nodes based on their relevance scores. Normalized DCG at position
k (NDCG@k) is then computed as:

NDCG@k =
DCG@k

IDCG@k
(16)

Our motivation for using NDCG@k is to test the quality of ranking
for the top k entities.

Spearman correlation coefficient (Spearman)measures the
rank correlation between the ground truth scores ®д and predicted
scores ®s; that is, the strength and direction of the monotonic rela-
tionship between the rank values of ®д and ®s . Converting ®д and ®s
into ranks ®дr and ®sr , respectively, Spearman correlation coefficient
is computed as:

Spearman =

∑
i (дr i − дr )(sr i − sr )√∑

i (дr i − дr )
2
√∑

i (sr i − sr )
2

(17)

where дr and sr are the mean of ®дr and ®sr .
For in-domain evaluation, we use NDCG@100 and Spearman as

they complement each other: NDCG@100 looks at the top-100 pre-
dictions, and Spearman considers the ranking of all entities with
known scores. For NDCG, we also tried different cut-off thresh-
olds and observed similar results. Note that we often have a small
volume of data for OOD evaluation. For example, for tmdb5k and
imdb, we used a ranking of 200 directors with known scores, while
tmdb5k and imdb have 2,578 and 287,739 directors, respectively.
Thus Spearman is not suitable for OOD evaluation as it considers
only those small number of entities in the ranking, and ignores all
others, even if they are predicted to be highly important; thus, for
OOD evaluation, we report NDCG@100 and NDCG@2000.

Additionally, we report regression performance in Appendix C.2.

4.4 Importance Estimation on Real-World Data

We evaluate GENI and baselines in terms of in- and out-of-domain
(OOD) predictive performance.

4.4.1 In-Domain Prediction. Table 4 summarizes in-domain predic-
tion performance. GENI outperforms all baselines on four datasets
in terms of both NDCG@100 and Spearman. It is noteworthy that
supervised approaches generally perform better in-domain predic-
tion than non-trainable ones, especially on fb15k and imdb, which
are more complex and larger than the other two. It demonstrates
the applicability of supervised models to our problem. On all KGs
except music10k, GAT outperforms other supervised baselines,
which use the same node features but do not explicitly take the
graph network structure into account. This shows the benefit of
directly utilizing network connectivity. By modeling the relation
between scores of neighboring entities, GENI achieves further per-
formance improvement over GAT. Among non-trainable baselines,
HAR often performs worse than PR and PPR, which suggests that
considering predicates could hurt performance if predicate weight
adjustment is not done properly.

4.4.2 Out-Of-Domain Prediction. Table 5 summarizes OOD pre-
diction results. GENI achieves the best results for all KGs in terms
of both NDCG@100 and NDCG@2000. In contrast to in-domain
prediction where supervised baselines generally outperform non-
trainable ones, we observe that non-trainable methods achieve
higher OOD results than supervised baselines on music10k and
tmdb5k. In these KGs, only about 4,000 entities have known scores.
Given scarce ground truth, non-trainable baselines could perform
better by relying on a prior assumption on the propagation of
node importance. Further, note that the difference between non-
trainable and supervised baselines is more drastic on tmdb5kwhere
the proportion of nodes with scores is the smallest (4%). On the
other hand, on imdb, which is our largest KG with the greatest
number of ground truth, supervised baselines mostly outperform
non-trainable methods. In particular, none of the top-100 directors
in imdb predicted by PR and PPR belong to the ground truth director
ranking. With 14% of nodes in imdb associated with known scores,
supervised methods learn to generalize better for OOD prediction.
Although neighborhood aware, GAT is not better than other super-
vised baselines. By applying centrality adjustment, GENI achieves
superior performance to both classes of baselines regardless of the
number of available known scores.

4.5 Analysis of GENI

4.5.1 Effect of Considering Predicates. To see how the considera-
tion of predicates affectsmodel performance, we runGENI on fb15k,
which has the largest number of predicates, and report NDCG@100
and Spearman when a single embedding is used for all predicates
(denoted by “shared embedding”) vs. when each predicate uses its
own embedding (denoted by “distinct embedding”). Note that using
“shared embedding”, GENI loses the ability to distinguish between
different predicates. In the results given in Table 6, we observe that
NDCG@100 and Spearman are increased by 3.6% and 12.7%, respec-
tively, when a dedicated embedding is used for each predicate. This
shows that GENI successfully makes use of predicates for modeling
the relation between node importance; this is especially crucial in
KGs such as fb15k that consist of a large number of predicates.

4.5.2 Flexibility for Centrality Adjustment. In Equation (7), we per-
form scaling and shifting of c(i) for flexible centrality adjustment
(CA). Here we evaluate the model with fixed CA without scaling
and shifting where the final estimation s∗(i) = σs (c(i) · s

L(i)). In
Table 7, we report the performance of GENI on fb15k and tmdb5k
obtained with fixed and flexible CA while all other parameters
were identical. When node centrality strongly correlates with input
scores, fixed CA obtains similar results to flexible CA. This is re-
flected on the result of tmdb5k dataset, where PR and log in-degree
baseline (LID), which estimates node importance as the log of its
in-degree, both estimate node importance close to the input scores.



Table 4: In-domain prediction results on real-world datasets. GENI consistently outperforms all baselines. Numbers after

± symbol are standard deviation from 5-fold cross validation. Best results are in bold, and second best results are underlined.

Method

fb15k music10k tmdb5k imdb

NDCG@100 Spearman NDCG@100 Spearman NDCG@100 Spearman NDCG@100 Spearman

PR 0.8354 ± 0.016 0.3515 ± 0.015 0.5510 ± 0.021 −0.0926 ± 0.034 0.8293 ± 0.026 0.5901 ± 0.011 0.7847 ± 0.048 0.0881 ± 0.004
PPR 0.8377 ± 0.015 0.3667 ± 0.015 0.7768 ± 0.009 0.3524 ± 0.046 0.8584 ± 0.013 0.7385 ± 0.010 0.7847 ± 0.048 0.0881 ± 0.004
HAR 0.8261 ± 0.005 0.2020 ± 0.012 0.5727 ± 0.017 0.0324 ± 0.044 0.8141 ± 0.021 0.4976 ± 0.014 0.7952 ± 0.036 0.1318 ± 0.005
LR 0.8750 ± 0.005 0.4626 ± 0.019 0.7301 ± 0.023 0.3069 ± 0.032 0.8743 ± 0.015 0.6881 ± 0.013 0.7365 ± 0.009 0.5013 ± 0.002
RF 0.8734 ± 0.005 0.5122 ± 0.019 0.8129 ± 0.012 0.4577 ± 0.012 0.8503 ± 0.016 0.5959 ± 0.022 0.7651 ± 0.010 0.4753 ± 0.005
NN 0.9003 ± 0.005 0.6031 ± 0.012 0.8015 ± 0.017 0.4491 ± 0.027 0.8715 ± 0.006 0.7009 ± 0.009 0.8850 ± 0.016 0.5120 ± 0.008
GAT 0.9205 ± 0.009 0.7054 ± 0.013 0.7666 ± 0.016 0.4276 ± 0.023 0.8865 ± 0.011 0.7180 ± 0.010 0.9110 ± 0.011 0.7060 ± 0.007
GENI 0.9385 ± 0.004 0.7772 ± 0.006 0.8224 ± 0.018 0.4783 ± 0.009 0.9051 ± 0.005 0.7796 ± 0.009 0.9318 ± 0.005 0.7387 ± 0.002

Table 5: Out-of-domain prediction results on real-world datasets. GENI consistently outperforms all baselines. Numbers after

± symbol are standard deviation from 5-fold cross validation. Best results are in bold, and second best results are underlined.

Method

music10k tmdb5k imdb

NDCG@100 NDCG@2000 NDCG@100 NDCG@2000 NDCG@100 NDCG@2000

PR 0.6520 ± 0.000 0.8779 ± 0.000 0.8337 ± 0.000 0.8079 ± 0.000 0.0000 ± 0.000 0.1599 ± 0.000
PPR 0.7324 ± 0.006 0.9118 ± 0.002 0.8060 ± 0.041 0.7819 ± 0.022 0.0000 ± 0.000 0.1599 ± 0.000
HAR 0.7113 ± 0.004 0.8982 ± 0.001 0.8913 ± 0.010 0.8563 ± 0.007 0.2551 ± 0.019 0.3272 ± 0.005
LR 0.6644 ± 0.006 0.8667 ± 0.001 0.4990 ± 0.013 0.5984 ± 0.002 0.3064 ± 0.007 0.2755 ± 0.003
RF 0.6898 ± 0.022 0.8796 ± 0.003 0.5993 ± 0.040 0.6236 ± 0.005 0.4066 ± 0.145 0.3719 ± 0.040
NN 0.6981 ± 0.017 0.8836 ± 0.005 0.5675 ± 0.023 0.6172 ± 0.009 0.2158 ± 0.035 0.3105 ± 0.019
GAT 0.6909 ± 0.009 0.8834 ± 0.003 0.5349 ± 0.016 0.5999 ± 0.007 0.3858 ± 0.065 0.4209 ± 0.016
GENI 0.7964 ± 0.007 0.9121 ± 0.002 0.9078 ± 0.004 0.8776 ± 0.002 0.4519 ± 0.051 0.4962 ± 0.025

Table 6: Performance of GENI on fb15k when a single em-

bedding is used for all predicates (shared embedding) vs.

when each predicate uses its own embedding (distinct em-

bedding).

Metric Shared Embedding Distinct Embedding

NDCG@100 0.9062 ± 0.008 0.9385 ± 0.004

Spearman 0.6894 ± 0.007 0.7772 ± 0.006

Table 7: Performance of PR, log in-degree baseline, and

GENI with fixed and flexible centrality adjustment (CA) on

fb15k and tmdb5k.

Method

fb15k tmdb5k

NDCG@100 Spearman NDCG@100 Spearman

PR 0.835 ± 0.02 0.352 ± 0.02 0.829 ± 0.03 0.590 ± 0.01
Log In-Degree 0.810 ± 0.02 0.300 ± 0.03 0.852 ± 0.02 0.685 ± 0.02
GENI-Fixed CA 0.868 ± 0.01 0.613 ± 0.01 0.899 ± 0.01 0.771 ± 0.01

GENI-Flexible CA 0.938 ± 0.00 0.777 ± 0.01 0.905 ± 0.01 0.780 ± 0.01

On the other hand, when node centrality is not in good agreement
with input scores, as demonstrated by the poor performance of PR
and LID as on fb15k, flexible CA performs much better than fixed
CA (8% higher NDCG@100, and 27% higher Spearman on fb15k).

4.5.3 Parameter Sensitivity. We evaluate the parameter sensitivity
of GENI by measuring performance on fb15k varying one of the
following parameters while fixing others to their default values

(shown in parentheses): number of score aggregation (SA) layers
(1), number of SA heads in each SA layer (1), dimension of predicate
embedding (10), and number of hidden layers in scoring networks
(1 layer with 48 units). Results presented in Figure 4 shows that the
model performance tends to improve as we use a greater number
of SA layers and SA heads. For example, Spearman increases from
0.72 to 0.77 as the number of SA heads is increased from 1 to 5. Using
more hidden layers for scoring networks also tends to boost perfor-
mance, although exceptions are observed. Increasing the dimension
of predicate embedding beyond an appropriate value negatively
affects the model performance, although GENI still achieves high
Spearman compared to baselines.
5 RELATEDWORK

Node Importance Estimation.Many approaches have been de-
veloped for node importance estimation [11, 13, 15, 17, 18, 20].
PageRank (PR) [18] is based on the random surfer model where an
imaginary surfer randomly moves to a neighboring node with prob-
ability d , or teleports to any other node randomly with probability
1−d . PR predicts the node importance to be the limiting probability
of the random surfer being at each node. Accordingly, PR scores are
determined only by the graph structure, and unaware of input im-
portance scores. Personalized PageRank (PPR) [11] deals with this
limitation by biasing the random walk to teleport to a set of nodes
relevant to some specific topic, or alternatively, nodes with known
importance scores. Random walk with restart (RWR) [13, 20] is a
closely related method that addresses a special case of PPR where
teleporting is restricted to a single node. PPR and RWR, however,
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Figure 4: Parameter sensitivity of GENI on fb15k. We report results varying one parameter on x-axis, while fixing all others.

are not well suited for KGs since they do not consider edge types. To
make a better use of rich information in KGs, HAR [17] extends the
idea of random walk used by PR and PPR to solve limiting probabil-
ities arising from multi-relational data, and distinguishes between
different predicates in KGs while being aware of importance scores.
Previous methods can be categorized as non-trainable approaches
with a fixed model structure that do not involve model parameter
optimization. In this paper, we explore supervised machine learning
algorithms with a focus on graph neural networks.

Graph Neural Networks (GNNs). GNNs are a class of neural
networks that learn from arbitrarily structured graph data. Many
GNN formulations have been based on the notion of graph con-
volutions. The pioneering work of Bruna et al. [4] defined the
convolution operator in the Fourier domain, which involved per-
forming the eigendecomposition of the graph Laplacian; as a result,
its filters were not spatially localized, and computationally costly.
A number of works followed to address these limitations. Henaff et
al. [12] introduced a localization of spectral filters via the spline pa-
rameterization. Defferrard et al. [6] designed more efficient, strictly
localized convolutional filters. Kipf and Welling [14] further simpli-
fied localized spectral convolutions via a first-order approximation.
To reduce the computational footprint and improve performance,
recent works explored different ways of neighborhood aggrega-
tion. One direction has been to restrict neighborhoods via sampling
techniques such as uniform neighbor sampling [10], vertex impor-
tance sampling [5], and random walk-based neighbor importance
sampling [25]. Graph attention networks (GAT) [22], which is most
closely related to our method, explores an orthogonal direction
of assigning different importance to different neighbors by em-
ploying self-attention over neighbors [21]. While GAT exhibited
state-of-the-art results, it was applied only to node classifications,
and is unaware of predicates. Building upon recent developments in
GNNs, GENI tackles the challenges for node importance estimation
in KGs, which have not been addressed by existing GNNs.
6 CONCLUSION

Estimating node importance in KGs is an important problem with
many applications such as item recommendation and resource allo-
cation. In this paper, we present a method GENI that addresses this
problem by utilizing rich information available in KGs in a flexible
manner which is required to model complex relation between enti-
ties and their importance. Our main ideas can be summarized as
score aggregation via predicate-aware attention mechanism and
flexible centrality adjustment. Experimental results on predicting
node importance in real-world KGs show that GENI outperforms
existing approaches, achieving 5–17% higher NDCG@100 than the
state of the art. For future work, we will consider multiple indepen-
dent input sources for node importance.
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In the appendix, we provide details on datasets, experimental
settings, and additional experimental results, such as a case study
on tmdb5k and regression performance evaluation for in-domain
predictions.

A DATASETS

Weperform evaluation using four real-world KGs that have different
characteristics. All KGs are constructed from public data sources,
which we specify in the footnote. Summaries of these datasets (such
as the number of nodes, edges, and predicates) are given in Table 3.
Below, we provide details on the construction of each KG.

fb15k.We use a sample of Freebase5 used by [3]. The original
dataset is divided into training, validation, and test sets. We com-
bined them into a single dataset, and later divided them randomly
into three sets based on our proportion for training, validation, and
test data. In order to find the number of pageviews of a Wikipedia
page, which is the importance score used for fb15k, we used Free-
base/Wikidata mapping6. Most entities in fb15k can be mapped
to the corresponding Wikidata page, from which we found the
link to the item’s English Wikipedia page, which provides several
information including the number of pageviews in the past 30 days.

music10k. We build music10k from the sample7 of the Million
Song Dataset8. This dataset is a collection of audio features and
metadata for one million popular songs. Among others, this dataset
includes information about songs such as the primary artist and
the album the song belongs to. We constructed music10k by adding
nodes for these three entities (i.e., songs, artists, and albums), and
edges of corresponding types between them as appropriate. Note
that music10k is much more fragmented than other datasets.

tmdb5k.We constructed tmdb5k from the TMDb 5000 movie
dataset9. This dataset contains movies and relevant information
such as movie genres, companies, countries, crews, and casts in a
tabular form. We added nodes for each of these entities, and added
edges between two related entities with appropriate types. For
instance, given that “Steven Spielberg” directed “Schindler’s List”,
we added two corresponding director and movie nodes, and added
an edge of type “directed” between them.

imdb. We created imdb from public IMDb datasets10. IMDb
datasets consist of several tables, which contain information such
as titles, genres, directors, writers, principal casts and crews. As for
tmdb5k, we added nodes for these entities, and connected them
with edges of corresponding types. In creating imdb, we focused
on entities related to movies, and excluded other entities that have
no relation with movies. In addition, IMDb datasets include titles
each person is known for; we added edges between a person and
these titles to represent this special relationship.

Scores. For fb15k, tmdb5k, imdb, we added 1 to the importance
scores as an offset, and log-transformed them as the scores were
highly skewed. For music10k, two types of provided scores were
all between 0 and 1, and we used them without log transformation.

5https://everest.hds.utc.fr/doku.php?id=en:smemlj12
6https://developers.google.com/freebase/
7https://think.cs.vt.edu/corgis/csv/music/music.html
8https://labrosa.ee.columbia.edu/millionsong/
9https://www.kaggle.com/tmdb/tmdb-movie-metadata
10https://www.imdb.com/interfaces/

B EXPERIMENTAL SETTINGS

B.1 Cross Validation and Early Stopping

We performed 5-fold cross validation; i.e., for each fold, 80% of
the ground truth scores were used for training, and the other 20%
were used for testing. For methods based on neural networks, we
applied early stopping by using 15% of the original training data
for validation and the remaining 85% for training, with a patience
of 50. That is, the training was stopped if the validation loss did not
decrease for 50 consecutive epochs, and the model with the best
validation performance was used for testing.

B.2 Software

We used several open source libraries, and used Python 3.6 for our
implementation.

Graph Library. We used NetworkX 2.1 for graphs and graph
algorithms:MultiDiGraph class was used for all KGs as there can be
multiple edges of different types between two entities; NetworkX’s
pagerank_scipy function was used for PR and PPR.

Machine Learning Library. We chose TensorFlow 1.12 as our
deep learning framework. We used scikit-learn 0.20.0 for other
machine learning algorithms such as random forest and linear
regression.

Other Libraries and Algorithms. For GAT, we used the refer-
ence TensorFlow implementation provided by the authors11. We
implemented HAR in Python 3.6 based on the algorithm descrip-
tion presented in [17]. For node2vec, we used the implementation
available from the project page12. NumPy 1.15 and SciPy 1.1.0 were
used for data manipulation.

B.3 Hyperparameters and Configurations

PageRank (PR) andPersonalizedPageRank (PPR). Weused
the default values for NetworkX’s pagerank_scipy function with
0.85 as a damping factor.

HAR [17]. We used 0.85 as a damping factor as in PR and PPR.
While themaximumnumber of iterations was set to 30,HAR usually
converged in less than 30 iterations. HAR is designed to compute
two types of importance scores, hub and authority. For music10k,
tmdb5k, and imdb KGs, these scores are identical since each edge
in these graphs has a matching edge with an inverse predicate
going in the opposite direction. Thus for these KGs, we only report
authority scores. For fb15k, we compute both types of scores, and
report authority scores as hub scores are slightly worse overall.

Linear Regression (LR) and Random Forests (RF). For both
methods, we used default parameter values defined by scikit-learn.

NeuralNetworks (NN). Let [n1,n2,n3,n4] denote a 3-layer neu-
ral network where n1,n2,n3 and n4 are the number of neurons in
the input, first hidden, second hidden, and output layers, respec-
tively. ForNN, we used an architecture of [NF , 0.5×NF , 0.25×NF , 1]
where NF is the dimension of node features. We applied a rectified
linear unit (ReLU) non-linearity at each layer, and used Adam opti-
mizer with a learning rate α = 0.001, β1 = 0.9, β2 = 0.999, and a
weight decay of 0.0005.

GraphAttentionNetworks (GAT) [22].We used aGATmodel
with two attentional layers, each of which consists of four attention
11https://github.com/PetarV-/GAT
12https://snap.stanford.edu/node2vec/
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Table 8: Top-10 movies and directors with highest predicted importance scores by GENI, HAR, and GAT on tmdb5k. “ground
truth rank”−“estimated rank” is shown for each prediction.

(a) Top-10 movies (in-domain estimation). A ground truth rank is com-

puted from known importance scores of movies used for testing.

GENI HAR GAT

1 The Dark Knight Rises 13 Rock of Ages 277 The Dark Knight Rises 12

2 Star Trek Into Darkness 31 The Dark Knight
Rises 11 Star Trek Beyond 43

3 Star Trek 35 V for Vendetta 29 Captain America: Civil War -2
4 Monsters, Inc. 13 Monsters, Inc. 12 Cloverfield 87
5 The Godfather: Part II 13 Suicide Squad 22 Star Trek Into Darkness 29

6 The Dark Knight -2 Spectre 9 Transformers: Age of
Extinction 4

7 Avatar -2 Batman Begins 5 Catwoman 173
8 Clash of the Titans 90 Movie 43 161 The Man from U.N.C.L.E. 74

9 Alice Through the
Looking Glass 59 Avatar -6 Cinderella 9

10 Ghostbusters 37 Bolt 126 Mission: Impossible -
Rogue Nation 2

(b) Top-10 directors (out-of-domain estimation). A ground truth rank
corresponds to the rank in a director ranking (N/A indicates that the

director is not in the director ranking).

GENI HAR GAT

1 Steven Spielberg 0 Steven Spielberg 0 Noam Murro N/A
2 Tim Burton 9 Martin Scorsese 44 J Blakeson N/A
3 Ridley Scott 6 Ridley Scott 6 Pitof N/A
4 Martin Scorsese 42 Clint Eastwood 19 Paul Tibbitt N/A
5 Francis Ford Coppola 158 Woody Allen 112 Rupert Sanders N/A
6 Peter Jackson -4 Robert Zemeckis 1 Alan Taylor 145
7 Robert Rodriguez 127 Tim Burton 4 Peter Landesman N/A
8 Gore Verbinski 8 David Fincher 40 Hideo Nakata N/A
9 Joel Schumacher 63 Oliver Stone 105 Drew Goddard N/A
10 Robert Zemeckis -3 Ron Howard -2 Tim Miller N/A

heads, which is followed by a fully connectedNN (FCNN). Following
the settings in [22], we used a Leaky ReLU with a negative slope of
0.2 for attention coefficient computation, and applied an exponential
linear unit (ELU) non-linearity to the output of each attention head.
The output dimension of an attention head in all layers except the
last was set to max(0.25 × NF , 20). For FCNN after the attentional
layers, we used an architecture of [0.75 × NF , 1] with ReLU as
non-linearity. Adam optimizer was applied with a learning rate
α = 0.005, β1 = 0.9, β2 = 0.999, and a weight decay of 0.0005.

GENI. We used an architecture where each score aggregation
(SA) layer contains four SA heads. For fb15k, we used a model with
three SA layers, and for other KGs, we used a model with one SA
layer. For ScoringNetwork, a two-layer FCNN with an architec-
ture of [NF , 0.75 × NF , 1] was used. GENI was trained with Adam
optimizer using a learning rate α = 0.005, β1 = 0.9, β2 = 0.999, and
a weight decay of 0.0005. The dimension of predicate embedding
was set to 10 for all KGs. We used a Leaky ReLU with a negative
slope of 0.2 for attention coefficient computation (σa ), and a RELU
for the final score estimation (σs ). We defined N(i) as outgoing
neighbors of node i . Similar results were observed when we defined
N(i) to include both outgoing and incoming neighbors of node i .
Since the initial values for γ and β (parameters for centrality ad-
justment) affect model performance, we determined these initial
values for each dataset based on the validation performance.

node2vec [9]. We set the number of output dimensions to 64 for
fb15k, music10k, and tmdb5k, and 128 for imdb. Other parameters
were left to their default values. Note that node2vec was used in
our experiments to generate node features for supervised methods.
C ADDITIONAL EVALUATION

C.1 Case Study

We take a look at the predictions made by GENI, HAR, and GAT on
tmdb5k. Given popularity scores for some movies, methods esti-
mate the importance score of all other entities in tmdb5k. Among
them, Table 8 reports the top-10 movies and directors that are esti-
mated to have the highest importance scores by each method with
“ground truth rank”−“estimated rank” shown for each entity.

In-domain estimation is presented in Table 8(a). A ground
truth rank is computed from the known importance scores of
movies reserved for testing. The quality of the top-10 movies pre-
dicted by GENI and GAT are comparable to each other, and they
also contain the same movie titles such as “The Dark Knight Rises.”

On the other hand, the top-10 movies predicted by HAR is qual-
itatively worse than the two others: among the ten predictions,
ground truth ranks of three movies are out of top 100.

Out-of-domain estimation is presented in Table 8(b). As im-
portance scores for directors are unknown, we use the director
ranking introduced in Section 4.1. A ground truth rank denotes
the rank in the director ranking, and “N/A” indicates that the di-
rector is not included in the director ranking. The quality of the
top-10 directors estimated by GENI and HAR are similar to each
other with five directors appearing in both rankings (e.g., Steven
Spielberg). Although GAT is on par with GENI for in-domain es-
timation, its out-of-domain estimation is significantly worse than
others: nine out of ten predictions are not even included in the list
of top-200 highest earning directors. By respecting node centrality,
GENI yields a much better ranking consistent with ground truth.
C.2 Regression Performance Evaluation for

In-Domain Predictions

In order to see how accurately supervised approaches recover the
importance of nodes, we measure the regression performance of
their in-domain predictions. In particular, we report RMSE (root-
mean-squared error) of supervisedmethods in Table 9. Non-trainable
methods are excluded since their output is not in the same scale
as the input scores. GENI performs better than other supervised
methods on all four real-world datasets. Overall, the regression
performance of supervised approaches follows a similar trend to
their performance in terms of ranking measures reported in Table 4.

Table 9: RMSE (root-mean-squared error) of in-domain

prediction for supervised methods. Lower RMSE is better.

GENI consistently outperforms all baselines. Numbers af-

ter ± symbol are standard deviation from 5-fold cross vali-

dation. Best results are in bold, and second best results are

underlined.

Method fb15k music10k tmdb5k imdb

LR 1.3536 ± 0.017 0.1599 ± 0.002 0.8431 ± 0.028 1.7534 ± 0.005
RF 1.2999 ± 0.024 0.1494 ± 0.002 0.9223 ± 0.015 1.8181 ± 0.011
NN 1.2463 ± 0.015 0.1622 ± 0.009 0.8496 ± 0.012 2.0279 ± 0.033
GAT 1.0798 ± 0.031 0.1635 ± 0.007 0.8020 ± 0.010 1.2972 ± 0.018
GENI 0.9471 ± 0.017 0.1491 ± 0.002 0.7150 ± 0.003 1.2079 ± 0.011
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