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The use of regression analysis has been instrumental in allowing evolutionary biologists to estimate the strength and mode of

natural selection. Although directional and correlational selection gradients are equal to their corresponding regression coefficients,

quadratic regression coefficients must be doubled to estimate stabilizing/disruptive selection gradients. Based on a sample of 33

papers published in Evolution between 2002 and 2007, at least 78% of papers have not doubled quadratic regression coefficients,

leading to an appreciable underestimate of the strength of stabilizing and disruptive selection. Proper treatment of quadratic

regression coefficients is necessary for estimation of fitness surfaces and contour plots, canonical analysis of the γ matrix, and

modeling the evolution of populations on an adaptive landscape.

KEY WORDS: Adaptive landscape, canonical analysis, correlational selection, disruptive selection, fitness surface, nonlinear

selection, stabilizing selection.

Understanding the strength, mode, and frequency of selection

in the wild continues to be an important challenge for evolu-

tionary biologists (Hoekstra et al. 2001; Kingsolver et al. 2001;

Stinchcombe et al. 2002; Geber and Griffen 2003; Hereford et al.

2004; Kingsolver and Pfennig 2007). A particularly influential ap-

proach to addressing these questions has been the application of

regression-based techniques for estimating selection in contem-

porary or experimental populations (Lande and Arnold 1983).

The Lande–Arnold approach has revolutionized microevolution-

ary studies of selection over the last 25 years, and offers investi-

gators the potential to estimate directional, stabilizing/disruptive,

and correlational selection on phenotypic traits using relatively

simple statistical models.

Here we draw attention to an area of confusion in the ap-

plication of regression-based methods for estimating the strength

of nonlinear selection. In their original paper and subsequent de-

velopments of these approaches, Lande and Arnold (1983) stated

that selection coefficients could be estimated through regression
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techniques. However, the subtle differences that exist between se-

lection gradients, as formulated by Lande and Arnold (1983), and

standard regression coefficients have often not been appreciated in

the literature. Since 1983, many authors have assumed, or at least

implied, that selection coefficients are exactly equal to regression

coefficients. Simply put, stabilizing and disruptive selection gra-

dients are equal to twice the corresponding quadratic regression

coefficients. Only directional and correlational selection gradients

are equal to their corresponding regression coefficients.

TWO FORMS OF QUADRATIC REGRESSION

Relative fitness of individuals within a population may be a com-

plex function of phenotypic values. Lande and Arnold (1983)

argued that this individual selection function can often be approx-

imated by a quadratic regression in which relative fitness, w, is a

function of linear and squared (quadratic) trait values

w = α + βT z + 1

2
zT γz + ε (1a)

(see also Phillips and Arnold 1989). Here, z = {z1, z2,. . ., zn}T is

the column vector of phenotypic values for n traits, standardized

so that their means are zero, α and ε are intercept and error terms,

β = {β1, β2, . . .}T is the column vector of directional selection

gradients, and γ is the matrix of nonlinear selection gradients

γ =

⎡
⎢⎢⎢⎢⎢⎣

γ11 γ12 . . . γ1n

γ12 γ22 . . .
...

...
...

. . .
...

γ1n . . . . . . γnn

⎤
⎥⎥⎥⎥⎥⎦

,

where γii is a stabilizing/disruptive selection gradient for trait i,

and γij is a correlational selection gradient for traits i and j.

In the univariate (single trait) case equation (1a) reduces to

w = α + βi zi + 1/2γi i z
2
i + ε (1b)

or in the bivariate case,

w = α + βi zi + β j z j + 1/2γi i z
2
i + 1/2γ j j z

2
j + γi j zi z j + ε. (1c)

Following Lande and Arnold (1983), quadratic fitness surfaces

have been represented by several authors using these equations

(e.g., Kalisz 1986; Rausher and Simms 1989; Brodie 1992; O’Neil

1997; Arnold et al. 2001; Kingsolver and Pfennig 2007; Garant

et al. 2007).

Regression analyses as performed by common statistical soft-

ware are based on a slightly different formulation of the rela-

tionship between the dependent and independent variables—i.e.,

between relative fitness (w) and traits (z). The representation of

quadratic regression in standard statistical texts (e.g., Box and

Draper 1987, eq. 10.3.3) is given by

w = a + bT z + zT Qz + ε, (2a)

where a represents the intercept in the regression model and b is

a column vector of linear regression coefficients. In this case, Q

is the matrix of quadratic regression coefficients

Q =

⎡
⎢⎢⎢⎢⎢⎣

q11
1
2 q12 . . . 1

2 q1n

1
2 q12 q22 . . .

...
...

...
. . .

...
1
2 q1n . . . . . . qnn

⎤
⎥⎥⎥⎥⎥⎦

,

where qii and qij are the quadratic and cross-product regression

coefficients. Writing equation (2a) in bivariate form yields the

equation commonly found in statistical texts (e.g., Draper and

Smith 1981, eq. 5.1.4)

w = a + bi zi + b j z j + qii z
2
i + q j j z

2
j + qi j zi z j + ε. (2b)

Standard statistical packages report estimates for the parameters

a, bi, qii, and qij. The expression for fitness in terms of selection

gradients in equation (1) is only equivalent to the expression for

fitness defined by classical regression (eq. 2) when α = a, βi =
bi, γij = qij, and γii = 2qii. In other words, quadratic regression

coefficients (qii) obtained from statistical software must be dou-

bled if they are to be reported as stabilizing/disruptive selection

gradients. Likewise the standard errors should also be doubled, al-

though neither P-values nor the statistical power of the regressions

will be affected.

ORIGIN OF THE LANDE–ARNOLD FORMULATION

Mathematically, neither formulation (1) nor (2) is more correct

than the other; the two forms are simply different. However, the

selection gradients in form (1) lead to some useful interpretations,

and because of this, it is helpful to understand the origin of the
1/2 in the Lande-Arnold formulation. The factor of 1/2 enters into

the selection gradient formulation (eq. 1) so that coefficients of

stabilizing selection will be equivalent to partial derivatives of

fitness with respect to squared trait values. This consideration

applies to coefficients of stabilizing/disruptive selection (γii) but

not to coefficients of correlational selection (γij, i �= j).

The linear and quadratic selection gradients, β and γ, respec-

tively describe the average slope and curvature of the individual

selection surface. For the linear selection gradient, this averaging

of slope is given by

β =
∫

p(z)
∂w

∂z
dz, (3a)

where p(z) is the phenotype distribution, the gradient operator is

defined as ∂/∂z = (∂/∂z1, ∂/∂z2, . . . , ∂/∂zn)T , and the integral

is taken over all zi (Lande and Arnold 1983, eq. 9). Similarly,

the nonlinear selection gradients, γ, are equivalent to the average
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curvature of the relative fitness surface,

γ =
∫

p(z)
∂2w

∂z2
dz, (3b)

where the curvature operator is defined as the Hessian matrix

∂2

∂z2
=

⎡
⎢⎢⎣

∂2

∂z1z1
· · · ∂2

∂z1zn

...
. . .

...
∂2

∂zn z1
· · · ∂2

∂zn zn

⎤
⎥⎥⎦

(Lande and Arnold 1983, eq. 14b). The factor of 1/2 in estimation

equation (1) is necessary to achieve this equivalence between γ

as a selection coefficient (eq. 1) and γ as a descriptor of curvature

(eq. 3b).

The Lande and Arnold estimation equation (eq. 1) can also

be viewed as a second-order Taylor series approximation of the

individual fitness surface around the mean phenotype. In a Taylor

series expansion, each second derivative term is multiplied by a

factor of 1/2 . Because squared terms such as z2
i appear once in

the expansion, but cross-product terms such as zizj appear twice,

the 1/2 remains with the former but drops out of the latter, that is,

(
1

2

∂

∂z j

(
∂w(z)

∂zi

)
+ 1

2

∂

∂zi

(
∂w(z)

∂z j

))
zi z j

= ∂2w(z)

∂zi∂z j
zi z j = γi j zi z j

.
The factor of 1/2 in the estimation of γ also insures that the

role of γ is straightforward in other connections that depend on its

identity as second derivative. In that role, γ − ββT describes the

curvature of the adaptive landscape (where the adaptive landscape

is defined as ln(W̄ (z); Lande 1979; Estes and Arnold 2007) and

allows an estimation of the loss of genetic variation that occurs

each generation due to selection (given by �G = G(γ − ββT )G;

Lande 1980a; Lande and Arnold 1983; Phillips and Arnold 1989).

That role also leads directly to approximation of the selection sur-

face with a Gaussian function (Lande 1979, 1980a,b) and canon-

ical analysis of the selection surface (Phillips and Arnold 1989;

Blows and Brooks 2003), both of which we discuss below.

WHICH FORM OF QUADRATIC REGRESSION HAS

BEEN USED IN THE EMPIRICAL LITERATURE?

Lande and Arnold (1983) were, of course, aware of this differ-

ence between selection gradients and regression coefficients. In

their example using the Bumpus (1899) data, t the reported value

for the stabilizing selection gradient was estimated as twice the

quadratic regression coefficient given by standard statistical pack-

ages, although this was not explicitly stated. Although various

other authors have pointed out the need to double quadratic coef-

ficients when estimating stabilizing/disruptive selection gradients

(e.g., Endler 1986; Wolf and Brodie 1998), and a few empirical

studies have explicitly stated that they did so in their analyses of

selection (e.g., Widen 1991; Conner et al. 1996; Winn 2004), the

application of this convention does not appear to have been widely

reported. In a collection of 30 published papers on selection gradi-

ent analysis reviewed for a separate purpose (A. F. Agrawal and J.

R. Stinchcombe, unpubl. ms.), we found three papers that specif-

ically stated that quadratic regression coefficients were doubled

to estimate stabilizing/disruptive selection gradients. Although

some of the remainder may have done so without including an

explicit statement to that effect, it is difficult or impossible for the

reader to know. In at least one study, the authors reported halving,

rather than doubling, quadratic regression coefficients to obtain

γii values.

Because it was impossible to tell from published works the

extent to which the doubling of quadratic regression coefficients

had been implemented in empirical studies, and to assess the ex-

tent of this problem more systematically, we surveyed all papers

published in the journal Evolution from 2002 to 2007 inclusively

that used the Lande–Arnold approach to estimate coefficients of

nonlinear selection. We found 33 papers that reported estimates

of stabilizing/disruptive selection gradients (γii values). Only one

of these studies explicitly stated that quadratic regression coeffi-

cients had been doubled to estimate stabilizing/disruptive selec-

tion gradients. We contacted the first author of the remaining 32

papers asking for more detail on how γii values had been esti-

mated. To ensure candid responses, authors were promised both

confidentiality and that the resulting data would be analyzed and

presented in a way that made it impossible for a particular method

of analysis to be tied to an individual paper. We received responses

from all authors, and in 31 cases authors were able to definitively

describe the method of analysis, leading to an overall sample of

32 papers for which we had unambiguous confirmation of how the

analysis was performed. From this sample, 25 papers (78%) re-

ported unadjusted quadratic regression coefficients as γii values,

whereas seven papers (22%) doubled the quadratic regression co-

efficients as γii values. Depending on the method of analysis used

in the remaining paper for which we lack firm data, the percentage

of papers failing to double the quadratic regression coefficients

could range between 75% and 81% in this sample of 7 years of

papers published in Evolution. Several of the authors mentioned

in their replies that this issue had been a source of confusion for

them and their colleagues. Our recommendation is that authors

should double quadratic regression coefficients to estimate γii

values and that they explicitly state this in their methods.

Our survey results indicate that γii values are most often re-

ported as unadjusted quadratic regression coefficients, meaning

that stabilizing/disruptive selection coefficients have often been

underestimated by a factor of two. In a small fraction of cases,

authors have correctly doubled quadratic regression coefficients

to estimate γii values but, because it was not explicitly stated in
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Table 1. Distribution of reported and true disruptive/stabilizing

selection gradients (γ ii) published in Evolution from 2002 to 2007

in original units.

Percentile Reported γii True γii

Minimum −2.19 −4.38
25th Percentile −0.099 −0.13
Median −0.003 −0.005
75th Percentile 0.06 0.084
Maximum 2.209 4.418
Percentage of Negative Estimates 51.6%

A total of 673 estimates were tabulated from 32 studies, 25 of which re-

ported uncorrected quadratic regression coefficients. The number of nega-

tive estimates, indicative of stabilizing selection, is given in the last row.

their methods, it is impossible for the average reader to know that

correct adjustment was done. The percentage change in the point

estimates of typical strength of selection from our survey sug-

gests that the failure to multiply quadratic regression coefficients

by two leads to an underestimate of the typical strength of nonlin-

ear selection across all studies by 25–40% (Table 1). It remains

unclear how many of the estimates of γii reviewed by Kingsolver

et al. (2001) underestimate the strength of selection by a factor of

two.

Many of the reported estimates of nonlinear selection in our

sample are not significantly different from zero, and because dou-

bling them does not affect statistical significance or power, the

true values of stabilizing and disruptive selection are larger, but

still not significantly different from zero. The approximately sym-

metrical distribution of stabilizing and selection gradients around

zero is also similar to the pattern found in the Kingsolver et al.

(2001) study, suggesting that stabilizing selection is less common

than previously thought (or disruptive selection more common), or

Figure 1. Misinterpretation of regression analysis can lead to qualitatively incorrect inference of the selection surface. In this example,

we imagine a case in which regression analysis returns quadratic coefficients of q11 = q22 = −0.10, and q12 = −0.15 (and all directional

selection gradients are zero). If one wrongly assumes that γ ii = qii , then the selection surface predicted by equation (1) is a saddle

(contour plot of selection surface shown in left panel). In reality, γ ii = 2qii , and the correct selection surface is a peak (right panel). See

text for details.

that estimates of stabilizing or disruptive selection are heavily in-

fluenced by sampling error (cf. Kingsolver et al. 2001; Knapczyk

and Conner 2007).

APPLICATIONS OF QUADRATIC SELECTION

COEFFICIENTS

One of the major contributions of the Lande–Arnold approach

was the approximation of fitness surfaces using multiple regres-

sion (e.g., Arnold et al. 2001; Arnold 2003; Hereford et al. 2004),

which provides several useful tools. First, the fitness surface can

be visualized by plotting the fitness function for a set of traits

(Brodie et al. 1995). Second, one can predict the fitness of other

phenotypes in the population (e.g., O’Neil 1999). Both applica-

tions require the correct application of the partial regression co-

efficients. Either equations (1) or (2) can be used to plot a fitness

surface but the corresponding coefficients must be appropriately

applied (i.e., γii or qii, respectively). We recommend that authors

explicitly report which equation has been used to generate fitness

contour plots and surfaces to remove any ambiguity for readers

(e.g., Arnold and Bennett 1988; Brodie 1992).

The potential for confusion in the interpretation of selection

surfaces can be illustrated with a two-trait fitness contour plot

(Fig. 1). As described by Phillips and Arnold (1989), if γ2
i j is

greater than γii × γjj there will be a saddle in the fitness surface

(when γii and γjj < 0), but a fitness peak will exist on the surface if

γ2
i j < γi i × γ j j . If one incorrectly assumes that qii from equation

(2) are equivalent to γii, it is easy to find a case in which γ2
i j >

qii × q j j but γ2
i j < 4 × qii × q j j . (Recall that 4 × qii × qjj =

γii × γjj). In these instances, the incorrect use of a quadratic

regression coefficient instead of a selection gradient would lead to

the mistaken inference that a saddle existed in the fitness surface,

when in fact a fitness peak was present (Fig. 1).
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Another use of selection gradients is in modeling the evolu-

tionary trajectory of the population mean on an adaptive landscape

(Lande 1979). In this context, the individual selection surface is

commonly represented as a Gaussian function

w(z) = exp

{
−1

2
(z − θ)T ω−1(z − θ)

}
, (4)

where the column vector θ is the location of a selective maxima

on the surface (Lande 1979). The strength of nonlinear selec-

tion is given by the symmetric matrix ω, which is analogous to

a variance–covariance matrix. The adaptive landscape (average

population fitness as a function of average trait values) corre-

sponding to the individual selection function (4) is likewise Gaus-

sian with an optimum at θ and a selection matrix given by ω + P,

where P is the within-population phenotypic variance–covariance

matrix before selection (Lande 1979). The selection coefficients

ω can be easily calculated from γ and β (Estes and Arnold 2007).

Quadratic regression coefficients estimated using form (2) should

be doubled before conversion to ω.

Multivariate analyses of nonlinear selection are also affected

by confusing the two forms of quadratic regression. Canonical

analysis of the matrix of nonlinear selection gradients allows an

interpretation of stabilizing and disruptive selection to be made on

trait combinations that describe the greatest amount of nonlinear

variation on fitness surfaces (Phillips and Arnold 1989; Simms

1990; Simms and Rausher 1993; Blows and Brooks 2003). Al-

though canonical analysis has been advocated for > 15 years

(Phillips and Arnold 1989; Simms 1990), its potential utility in

empirical studies and meta-analyses has only recently become

more widely appreciated (Björklund and Senar 2001; Blows and

Brooks 2003; Blais et al. 2004; Brooks et al. 2005; Bentsen et al.

2006; Holleley et al. 2006; Blows 2007a,b; Garant et al. 2007;

Hunt et al. 2007; Kruuk and Garant 2007).

Canonical analysis can proceed through either of two ap-

proaches: the use of response-surface methodology implemented

in common statistics packages or eigenanalysis of an estimated

γ matrix. The former involves a diagonalization of Q (Bisgaard

and Ankenman 1996; Blows and Brooks 2003) whereas the lat-

ter involves a diagonalization of γ (Phillips and Arnold 1989).

Because γ = 2Q, the normalized eigenvectors of γ and Q will

be the same but the corresponding eigenvalues of γ will be twice

those of Q. In other words, doing the analysis in either way is

equivalent in the sense that the orientation of the eigenvectors

and the relative sizes of the eigenvalues are unaffected. However,

the eigenvalues (and their standard errors) obtained from Proc

RSREG or similar procedures should be doubled to obtain the

eigenvalues of γ. Eigenvectors will not be correct, however, if

they are simply calculated from a matrix of unadjusted regression

coefficients estimated as in equation (2b) (i.e., if the off-diagonal

elements are not halved).

Conclusions
The application of the Lande–Arnold framework has been instru-

mental in allowing empiricists to measure the strength and form of

selection on a wide variety of taxa in a formal and consistent man-

ner that can be related to equations for evolutionary change. The

form and strength of nonlinear selection, particularly the strength

of stabilizing selection, are empirical issues that are fundamen-

tal to evolutionary biology (Endler 1986; Kingsolver et al. 2001;

Kingsolver and Pfennig 2007), and underlie much of quantitative

genetics theory (Johnson and Barton 2005). The unfortunate con-

fusion in the literature with regard to the estimation of quadratic

selection gradients is likely to have resulted in a general underes-

timation of the strength of stabilizing selection by up to one half.

Because of this confusion we have been retreating from rather

than advancing toward the solution to one of the classic problems

in evolutionary biology, the maintenance of genetic variation in

the presence of strong selection (Johnson and Barton 2005).
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