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As a means of speech separation, time-frequency masking applies a gain function to the time-

frequency representation of noisy speech. On the other hand, nonnegative matrix factorization

(NMF) addresses separation by linearly combining basis vectors from speech and noise models to

approximate noisy speech. This paper presents an approach for improving the perceptual quality of

speech separated from background noise at low signal-to-noise ratios. An ideal ratio mask is esti-

mated, which separates speech from noise with reasonable sound quality. A deep neural network

then approximates clean speech by estimating activation weights from the ratio-masked speech,

where the weights linearly combine elements from a NMF speech model. Systematic comparisons

using objective metrics, including the perceptual evaluation of speech quality, show that the pro-

posed algorithm achieves higher speech quality than related masking and NMF methods. In addi-

tion, a listening test was performed and its results show that the output of the proposed algorithm is

preferred over the comparison systems in terms of speech quality.

VC 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4928612]
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I. INTRODUCTION

The performance of many speech processing applica-

tions and devices is impaired by the presence of background

noise. The accuracy of automatic speech recognition and

speaker identification systems is degraded when background

noise interferes with speech. Hearing aids that rely on signal

amplification amplify both speech and noise. Many compu-

tational techniques address monaural speech separation in

noisy environments, but only a few studies based on time-

frequency (T-F) masking show improved speech intelligibil-

ity (Kim et al., 2009; Healy et al., 2013). In these studies,

speech quality remains an issue.

Nonnegative matrix factorization (NMF) has been exten-

sively used for separating speech from background noise.

NMF uses the product of a basis matrix and activation matrix

to approximate a signal, where the basis matrix provides

spectral structure and the activation matrix linearly combines

the basis matrix elements (Lee and Seung, 1999; Seung and

Lee, 2001). The main goals of NMF are to train an appropri-

ate basis matrix that provides a generalized spectral represen-

tation of speech and noise, and to determine an activation

matrix that combines the basis elements so that the error

between the signal and its approximation is minimized.

Supervised NMF uses trained speech and noise models

that, when linearly combined, estimate noisy speech

(Virtanen, 2007; Smaragdis, 2007; Wilson et al., 2008;

F�evotte et al., 2009). The basis matrix is obtained by concat-

enating a speech model and a noise model. The objective

during speech enhancement is to produce an activation ma-

trix that is split into a speech portion and a noise portion,

where the portions are combined with the corresponding

models to generate an approximation of the speech and noise

components of the mixture. For instance, the first portion of

the activation matrix is combined with the speech basis ma-

trix to approximate the speech portion of the mixture,

whereas the second portion of the activation matrix and the

noise model estimate the noise. The speech and noise esti-

mates are then combined to produce a Wiener-like mask

applied to the mixture to extract the speech. Supervised

NMF has been shown to improve the objective quality of

separated speech, however, it has not been shown to improve

the intelligibility of extracted speech.

A recent modification to supervised NMF is the nonneg-

ative factorial hidden Markov model (N-FHMM) (Mysore

and Smaragdis, 2011). This semi-supervised approach uses a

nonnegative hidden Markov model (N-HMM) to model

speech, while the model for the noise is determined during

the separation process. N-HMM uses several small diction-

aries and HMM to model the spectral structure and temporal

dynamics of speech, respectively (Mysore et al., 2010). A

single dictionary is selected to approximate the speech in

each time frame. N-FHMM produces a Wiener mask that is

used to separate the speech from the noise. The challenge

with N-FHMM is how to ensure that the appropriate diction-

ary is used in each frame, which may not always occur.

In Williamson et al. (2014a,b), we have shown that com-

bining a T-F masking approach with NMF reconstruction pro-

duces higher quality speech than supervised NMF and

masking alone, and other two-stage methods. A deep neurala)Electronic mail: williado@cse.ohio-state.edu
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network (DNN) is used to estimate a T-F mask (binary and

soft) that, when applied to the noisy mixture, produces a

speech estimate. This speech estimate is further enhanced by

applying NMF reconstruction, which approximates the masked

speech by linearly combining elements from a speech model.

Importantly, the masking stage removes the need for a noise

model during reconstruction. However, using reconstruction to

approximate the masked speech is a limiting factor since the

mask may contain errors that degrade perceptual quality.

DNNs have been used to estimate various targets such as

ideal binary masks (IBMs), ideal ratio masks (IRMs), and

spectrograms (Wang and Wang, 2013; Narayanan and Wang,

2013; Xu et al., 2014; Han et al., 2014). In this study, we pro-

pose to use a DNN for estimating NMF activation matrices

from clean speech. We will use two stages of DNNs to sepa-

rate speech from background noise, where the initial DNN is

part of the feature extraction stage for the second DNN. In the

feature extraction stage, a DNN will be trained to approximate

the IRM, and the ratio mask will be applied to the mixture to

get a speech estimate. Temporal correlations will be

accounted for by using a sliding window to augment the fea-

tures and training labels for the DNN. Features will be then

extracted from this speech estimate and the second DNN will

learn a mapping from the ratio-masked speech features to

NMF activation matrices of clean speech. The product

between the trained speech model and the estimated activation

matrix will provide an estimate of clean speech in the T-F do-

main. Noticeable artifacts are produced when estimated IBMs

or IRMs are used as training targets for DNNs, however, they

effectively suppress background noise. On the other hand,

NMF (and related techniques) provide good approximations

when they are used to estimate clean speech. Using DNNs to

estimate the clean model activations, after denoising with an

estimated IRM, should produce estimates that have fewer

unwanted artifacts and are closer to clean speech.

Two-stage methods for improving speech quality are

presented in our previous work (Williamson et al., 2014a,b).

In Williamson et al. (2014a), a soft mask is used to separate

speech from background noise; then NMF is used for recon-

struction. The soft mask is estimated using a DNN, where

the IBM is used as the training target. In Williamson et al.

(2014b), a ratio mask constructed from a binary mask is used

for separation, followed by NMF reconstruction. Our pro-

posed approach significantly differs from these earlier stud-

ies in several ways. The first is the use of a DNN to estimate

the ideal ratio mask, i.e., not the IBM. Second, the present

study uses a sliding window to augment features and training

labels. Third, we use a second DNN to estimate the NMF

activations of clean speech, not NMF reconstruction.

A number of evaluations are performed to assess the

overall quality of separated speech at different signal-to-

noise ratios and with different interferences. Our proposed

approach and relevant comparison systems are evaluated

with the perceptual evaluation of speech quality (PESQ)

measure. In addition, a listening study is conducted where

individuals with normal hearing compare pairs of signals

and select the preferred signal in terms of quality. The results

show that the proposed algorithm produces higher speech

quality and is preferred over comparison systems.

The rest of the paper is organized as follows. The pro-

posed approach is described in Sec. II. Section III evaluates

and compares the proposed system with related approaches

using objective metrics. The human listening study is

described in Sec. IV. Finally, concluding remarks are given

in Sec. V.

II. ALGORITHM DESCRIPTION

A diagram of the proposed approach is given in Fig. 1. In

the feature extraction stage, an ideal ratio mask is estimated

from the noisy speech mixture using a deep neural network.

The estimated IRM is applied to the cochleagram of the mix-

ture to produce a speech estimate. The resulting separated

speech is augmented by incorporating temporal continuity

between successive time frames. A second deep neural net-

work, using the speech separated by ratio masking as input,

estimates the NMF activation matrix of clean speech. The

product between the speech model and the estimated activa-

tion matrix gives an approximation of clean speech STFT

(short-time Fourier transform) magnitude response. Finally,

the estimated STFT magnitude response is combined with the

STFT phase response of noisy speech to produce the final

estimate of the speech signal using overlap-and-add synthesis.

Sections IIA and IIB describe these steps in more detail.

A. Feature extraction

The first phase of feature extraction uses a DNN to esti-

mate the IRM. The DNN is trained from the following com-

plementary set of features that are extracted from the

gammatone filter responses of noisy speech: amplitude modu-

lation spectrogram, relative spectral transform and perceptual

linear prediction, and Mel-frequency cepstral coefficients, as

well as their deltas (Wang et al., 2013). The DNN is trained to

estimate the ideal ratio mask, which is defined as

FIG. 1. Block diagram of the proposed approach.
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IRM t; fð Þ ¼
S2 t; fð Þ

S2 t; fð Þ þ N2 t; fð Þ
; (1)

where IRM(t, f) denotes the gain at time frame t and frequency

channel f. S2ðt; f Þ and N2ðt; f Þ represent the clean speech and

noise energy, respectively. The gain at each T-F unit may be

interpreted as the proportion of energy that is attributed to

speech, so when the IRM is applied to noisy speech, each T-F

unit retains the correct amount of speech energy. The IRM

has been shown to be more effective for DNN mapping than

other training targets such as the IBM, the target binary mask,

cochleagram, and spectrogram in terms of combined speech

quality and intelligibility (Wang et al., 2014).

We employ a context window for the features and train-

ing targets of the DNN, meaning that for each time frame ad-

jacent frames (before and after) are reshaped into a feature

vector for that time frame. In other words, the DNN maps a

set of frames of features to a set of frames of IRM labels

around each time frame. A context window is used because

useful speech information is carried across time frames. In

addition its utility has been shown in a recent study on voice

activity detection (Zhang and Wang, 2014). The DNN output

is appropriately unwrapped and averaged to produce an esti-

mate of the IRM, which is applied to the cochleagram of the

noisy speech to produce a speech estimate. The DNN for this

phase is referred to as the IRM-DNN.

Specifically, the IRM-DNN consists of four layers (three

hidden, one output), where the hidden layers each have 1024

nodes. The hidden nodes use rectified linear activation func-

tions (Nair and Hinton, 2010), while the output nodes use a

sigmoidal activation function. The input and hidden layers

of the DNN are trained with a dropout rate of 0.2. The

weights are randomly initialized to values between �1 and

1, and they are updated using mini-batch stochastic gradient

descent with ADAGRAD (Duchi et al., 2010) and momentum.

The mini-batch size is set to 512 and the scaling factor for

ADAGRAD is 0.005. The momentum is set to 0.5 for the first

5 epochs and to 0.9 thereafter. The DNN is trained to mini-

mize the mean-square error over 150 epochs. A development

set was used to determine these parameter values, where the

set of values that minimized the cost function is used.

The second phase of feature extraction computes the

log-magnitude spectrogram of the ratio-masked speech and

then uses a sliding window to concatenate adjacent frames

into a single feature vector for each time frame. These fea-

tures are normalized to have zero mean and unit variance

and are then used to train the second DNN.

B. DNN for NMF activation matrix estimation

A depiction of the second DNN is shown in Fig. 2. The

input to this DNN is the log-magnitude spectrogram of ratio-

masked speech, which is computed as follows:

Ŝ1ðt; f Þ ¼ eIRMðt; f Þ � Yðt; f Þ; (2)

where � denotes the Hadamard product (element-wise mul-

tiplication), eIRM is the estimated IRM, Y is the spectro-

gram of the noisy speech, and Ŝ1 is the ratio-masked speech

estimate. The subscript 1 indicates that it is the spectrogram

estimate after the first DNN. The training target for this

DNN is the NMF activation weights in the current frame.

This DNN is referred to as NMF-DNN. The parameters for

the NMF-DNN match those of the IRM-DNN.

For training, a NMF basis matrix, Wtr, is iteratively

trained from a set of clean spectrograms, D, using (Eggert

and Korner, 2004)

D ¼ d1; d2; :::; dN½ �;

Htr  Htr �

W
T
tr

D

WtrHtr

� �

W
T
tr1H þ k

Wtr  Wtr �

D

WtrHtr

� �

H
T
tr þ 1W 1HH

T
tr �Wtr

� �

1HH
T
tr þ 1W

D

WtrHtr

� �

H
T
tr �Wtr

� � ;

(3)

where 1H is an all-one matrix with the same dimensions as D,

and 1W is an all-one square matrix. D is generated by concat-

enating the clean spectrograms from a set of N clean speech

signals (i.e., d1; d2; :::; dN). k is a parameter that controls

sparseness and it is set to 0.1 (see Williamson et al., 2014b).

All divisions in Eq. (3) represent element-wise division. Htr

is the trained activation matrix that linearly combines the ele-

ments of Wtr so that their product approximates D [Eq. (4)].

FIG. 2. (Color online) Structure of DNN that maps a sliding window of log-

magnitude spectrogram features from ratio-masked speech to a single frame

of clean speech NMF activations.
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As evaluated in Williamson et al. (2014b), the generalized

KL-divergence outperforms other cost functions in terms of

PESQ performance, so this is what we use in this current

study. Once the NMF basis matrix is determined, the trained

activation matrix is discarded:

D � WtrHtr: (4)

NMF activation matrices, HS2 , from clean speech spec-

trograms, S2, are then computed separately for each signal in

a second set of clean speech training data, where these activa-

tions linearly combine the column vectors of Wtr to approxi-

mate the clean speech spectrograms (i.e., S2 � WtrHS2 ).

The clean NMF activations are iteratively computed using

Eq. (5). The clean activations are modified so that only the

activations with values above the average activation amount

in each time frame are retained, and activations below the av-

erage are set to zero. This is done since the activation vector

contains many small values that do not contribute much to

listening quality of the result:

HS2  HS2 �

W
T
tr

S2

WtrHS2

� �

W
T
tr1H þ k

: (5)

Each signal in this set of clean training data is combined

with various noises at different SNRs and processed through

the IRM-DNN to produce a ratio mask that is subsequently

applied to the mixture to generate ratio-masked speech. Log-

magnitude spectrogram features are extracted from the ratio-

masked signals and used to train the second DNN to estimate

the clean NMF activations. This DNN minimizes the mean-

square error between the clean NMF activations and its esti-

mated versions.

Once the clean NMF activations are estimated using the

second DNN, the product between the NMF basis matrix and

the estimated activation matrix, ĤS2 , is taken to produce the

estimated spectrogram of the clean speech signal using Eq. (6),

Ŝ2 ¼ WtrĤS2 : (6)

Ŝ2 is the spectrogram estimate after the second DNN. This

estimate is combined with the noisy phase, and then overlap-

and-add synthesis is used to produce the final time-domain

estimate.

III. EXPERIMENT I: OBJECTIVE EVALUATION AND

COMPARISON

A. Experimental setup

Our system is developed and evaluated by constructing

training, development, and testing sets from the IEEE male

speech corpus (IEEE, 1969), where datasets are developed for

each DNN. The signals are downsampled to 16 kHz prior to

processing. The IRM-DNN is trained by combining 250 utter-

ances with random cuts from babble, factory, speech-shaped

noise (SSN), and military vehicle noise at �6, �3, and 0 dB,

resulting in 3000 training utterances (250 utterances� 4

noises� 3 SNRs). The features into IRM-DNN are extracted

from the 64-channel gammatone filter response of noisy

speech. Unlike Wang et al. (2013), the features are extracted

at the frame level (i.e., not per frequency channel) and a sin-

gle DNN is trained from the noisy speech. A development set

of 30 sentences mixed with each combination of noise and

SNR is used to fine-tune parameters for the IRM-DNN. The

NMF-DNN is trained by combining a different set of 250

utterances with random cuts of the noises at each SNR. These

3000 examples are each processed through the trained IRM-

DNN, where the log-magnitude spectrogram is then computed

from the ratio-mask speech. The spectrograms are computed

using a window length of 32ms, a 512 point FFT, and 75%

overlap between adjacent segments. A window of five frames

is used for the context window, resulting in 1285 [i.e.,

ð512=2þ 1Þ5] input units into NMF-DNN. A Hann window

is used. NMF-DNN consists of three hidden layers each

including 1024 hidden units. The same development set used

to determine parameter values for the IRM-DNN is also used

to determine parameter values for the NMF-DNN. The NMF

basis matrix is trained from the concatenation of magnitude

spectrograms from ten clean speech utterances, using the

above spectrogram parameters and a context window that

spans five frames. The NMF basis matrix consists of 80 basis

vectors. The complete system is tested with a unique set of

720 noisy speech mixtures (60 clean utterances� 4 noises� 3

SNRs), where the random cuts of noise used in the testing

mixtures do not overlap with the random cuts of noise used

for the training and development mixtures.

PESQ (ITU-R, 2001) and the short-time objective intelli-

gibility (STOI) (Taal et al., 2011) are used to evaluate the

speech quality and intelligibility, respectively. These objective

metrics have been shown to correlate well with perceptual

quality and intelligibility evaluations from human subjects.

We compare our approach to four related systems,

where two are NMF approaches and two systems incorporate

masking and NMF reconstruction. The supervised NMF

approach from Eggert and Korner (2004) uses trained speech

and noise models to approximate noisy speech. The speech

model matches the NMF basis matrix we use, while the

noise model is trained from the concatenated spectrograms

of all the noise signals. The work in Mysore and Smaragdis

(2011) uses a semi-supervised nonnegative factorial hidden

Markov model (N-FHMM) to separate speech from back-

ground noise. It uses a non-negative hidden Markov model

(N-HMM) as the speech model, and a noise model is learned

during testing. N-HMM uses several small dictionaries, each

of which represents a particular phoneme, and an HMM to

model transitions between different phonemes. The N-HMM

is trained from the same ten clean speech utterances used

for training the NMF basis matrix. The noise model is repre-

sented with a single large dictionary. Since our goal is to

demonstrate that using a DNN to determine activation

weights is better than using NMF reconstruction, we com-

pare our system to Williamson et al. (2014a) (i.e., SM/NMF

with SM standing for soft masking) and a system that uses

an estimated IRM and NMF reconstruction to separate

speech from noise (i.e., IRM/NMF). Both of these

approaches use DNNs to generate a mask, but Williamson

et al. (2014a) uses a soft mask in its first stage, where the

1402 J. Acoust. Soc. Am. 138 (3), September 2015 Williamson et al.



IBM is used as a ground-truth label during training. Context

windows are also used to modify the features, DNN outputs,

and NMF basis matrix for SM/NMF and IRM/NMF, and

they are used to augment the NMF and N-FHMM models.

B. Results and discussions

Table I shows the average PESQ and STOI scores for

each system at each SNR. Note that at �6 dB, the

approaches that perform masking and reconstruction offer

quality improvement over the NMF based approaches

(supervised and semi-supervised), indicating that a masking

stage removing noise is important. Our proposed approach

offers significant PESQ and STOI improvements over the

four comparison systems at every SNR. Informal listening

reveals that NMF and N-FHMM outputs contain residual

noise and speech distortions. This is likely due to inaccura-

cies in determining the speech and noise model activations

that combine to approximate noisy speech. In other words,

the product of the NMF basis matrix and estimated speech

model activations does not effectively approximate the

clean speech in the noisy speech signal. These approaches

often struggle when there is a high amount of noise, since

they operate independently on mixtures without prior train-

ing. The NMF-DNN outperforms NMF reconstruction

because some of the mistakes during the mask estimation

stage can be corrected by the second-stage DNN.

Estimating clean speech using the NMF-DNN, as opposed

to estimating masked-speech with NMF reconstruction,

helps to remove artifacts due to IRM estimation errors.

IRM/NMF offers slight improvements over SM/NMF

because the estimated IRM outperforms soft masking, con-

sistent with the observation from Wang et al. (2014) and

justifying the use of the IRM as the first phase of feature

extraction for our proposed algorithm. The IRM/NMF out-

performs SM/NMF likely because predicting ratio targets is

less sensitive to estimation errors than predicting binary tar-

gets, since errors in binary decisions may be more costly to

speech quality. Figure 3 illustrates spectrogram results for

the different systems at �3 dB with babble noise. Notice

that portions of the speech are removed in the IRM/NMF

and SM/NMF approaches, but some of that speech energy is

restored in the proposed signal. The spectrograms from

supervised NMF and semi-supervised N-FHMM show that

at this low SNR, portions of the speech activations

approximate noise components, which is indicated by the

prevalence of remaining noise.

Table II shows the PESQ performance of the systems

averaged over the different noise types. From these results

we see that NMF and N-FHMM improve objective speech

quality a little bit, and SM/NMF and IRM/NMF improve a

little more. The proposed method substantially outperforms

both kinds of method for each noise type. When the mixture

contains military vehicle noise, the two masking based meth-

ods do not lead to improvement over unprocessed noisy

speech. Similar results are seen in Table III, which shows

the average objective intelligibility of the systems for the

different noise types.

IV. EXPERIMENT II: HUMAN SUBJECT TESTING

Although our proposed approach outperforms compari-

son systems in quality and intelligibility based on objective

metrics, the true indication of quality improvement must

come from human listeners. Thus, we conduct a listening

study to determine if human subjects prefer the quality of our

proposed approach over others. More specifically, we com-

pare our proposed approach described in Sec. II to speech

separated by an estimated IRM and speech separated using

N-FHMM (Mysore and Smaragdis, 2011). We use N-FHMM

over NMF since the training and testing methodologies of the

former are consistent with the proposed algorithm, where

only a speech model is trained (i.e., it has no access to the

noise signal that is present in a mixture). Comparing the pro-

posed algorithm to speech separated by an estimated IRM

allows us to determine if using a deep neural network to pre-

dict clean NMF activations offers quality improvements over

ratio masking alone. Likewise, comparing against N-FHMM

addresses the question of whether our algorithm improves

perceptual quality over a model-based approach that uses tra-

ditional methods to determine activations.

A. Experimental setup

Our listening study compares pairs of signals and has

the participant select the signal that they prefer in terms of

quality. A preference rating is often used in speech quality

evaluations, particularly for quality comparisons (Arehart

et al., 2007; Koning et al., 2015). The listeners are instructed

to play each signal at least once. After listening to the pair of

signals, the subject is instructed to select one of three

options: signal A is preferred, signal B is preferred, or nei-

ther signal is preferred over the other. The last option indi-

cates that the qualities of the signals are approximately

identical. Pairwise scoring is employed, with the score ofþ 1

awarded to the preferred method and �1 to the other. For a

similar-preference response (i.e., the third option) each

method is awarded the score of 0. If the participant indicates

that signal A or signal B is better, than they provide an

improvement score, ranging from 0 to 4 with increments of

0.01 for the higher quality signal. A grade of 0 indicates that

the quality of the two signals is identical, 1 indicates that the

quality of the preferred signal is slightly better than the other

signal, 2 indicates that the quality of the preferred signal is

better than the other signal, while grades of 3 and 4 indicate

TABLE I. Average PESQ and STOI scores for different systems at each

SNR. Bold indicates best result.

PESQ STOI

�6 dB �3 dB 0 dB �6 dB �3 dB 0 dB

Noisy speech 1.650 1.816 1.990 0.584 0.641 0.701

SM/NMF 2.037 2.119 2.188 0.643 0.689 0.724

IRM/NMF 2.055 2.130 2.195 0.656 0.696 0.727

N-FHMM 1.841 1.976 2.141 0.580 0.632 0.695

NMF 1.939 2.110 2.285 0.632 0.694 0.754

Proposed 2.370 2.570 2.736 0.775 0.820 0.851
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that the quality of the preferred signal is largely and hugely

better than the other signal, respectively (see Koning et al.,

2015). Figure 4 displays the graphical interface that the sub-

ject used to complete the evaluation.

The systems and signals used during this study are gen-

erated as described in Sec. III A. Only signals processed with

combinations of factory, speech-shaped noise, or military ve-

hicle noise at SNRs of �3 and 0 dB are assessed. The SNR

of �6 dB is not used to ensure that the processed signals are

intelligible to listeners.

The listening study consists of three phases: practice,

training, and evaluation. In the practice phase the subject

FIG. 3. (Color online) Example spec-

trograms of different signals at �3 dB
with babble noise. (a) Clean utterance.

(b) Noisy utterance. (c) Speech sepa-

rated by soft masking and NMF recon-

struction. (d) Speech separated by ratio

masking and NMF reconstruction. (e)

Speech separated by N-FHMM. (f)

Speech separated using supervised

NMF. (g) Speech separated by the pro-

posed system.

TABLE II. Average PESQ scores for different systems across the noise

types. Bold indicates best result.

PESQ

Babble Factory SSN Vehicle

Noisy speech 1.728 1.631 1.669 2.247

SM/NMF 2.081 2.063 2.115 2.199

IRM/NMF 2.085 2.106 2.107 2.208

N-FHMM 1.823 1.803 1.880 2.438

NMF 1.961 1.872 1.951 2.661

Proposed 2.492 2.496 2.420 2.827

TABLE III. Average STOI scores for different systems across the noise

types. Bold indicates best result.

STOI

Babble Factory SSN Vehicle

Noisy speech 0.570 0.588 0.605 0.805

SM/NMF 0.667 0.642 0.686 0.746

IRM/NMF 0.672 0.658 0.692 0.749

N-FHMM 0.576 0.583 0.605 0.780

NMF 0.647 0.635 0.646 0.844

Proposed 0.808 0.789 0.797 0.866
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listens to example sound excerpts to illustrate the whole

range of qualities. Two groups of signals are presented,

where each group contains a clean speech, proposed, noisy

speech, N-FHMM, and estimated IRM signal. The noisy

conditions (SNR and noise) for each group are different,

where the first group is generated using factory noise at

�3 dB SNR and the second group uses military vehicle noise

at �3 dB. Ten signals in total are presented.

The training session allows the subject to become fa-

miliar with the graphical interface. The user performs three

sets of evaluations, where each evaluation involves the

comparisons of two pairs of signals. The following signals

are compared for each evaluation set in the following order:

(1) estimated IRM-processed speech to proposed-processed

speech and (2) proposed-processed speech to N-FHMM

processed speech. Three IEEE testing sentences that are not

used during the evaluation phase or practice session are ran-

domly chosen and used for each training set. For the three

sets, the test signals are combined with SSN, factory, or

military vehicle noise at a 0 dB SNR. For each pair of sig-

nals, the subject listens to each signal at least once. The test

cases are presented to the listener through a MATLAB graphi-

cal user interface (GUI), where the GUI will display a sin-

gle comparison at a time and a total of 6 comparisons are

presented.

Upon completion of the practice and training sessions,

the subject begins the formal evaluation phase of the listen-

ing study. The user performs 60 total comparisons. Five sets

of each combination of SNR (�3 and 0 dB) and noise (SSN,

factory, and military vehicle) are evaluated, resulting in 30

total combinations. Each combination requires two compari-

sons: (1) estimated IRM-processed speech to proposed-

processed speech and (2) proposed-processed speech to N-

FHMM processed speech. The utterance and order of presen-

tation of the comparisons are randomly selected from the

test signals, which have not been used in the practice or

training sessions. The listener has no prior knowledge on the

algorithm used to produce a signal. The presentation order of

the different conditions is randomly generated by the GUI

for each listening subject.

The signals are presented diotically over Sennheiser HD

265 Linear headphones using a personal computer, where

each signal is normalized to have the same sound level. The

subjects are seated in a sound proof room. The participants

are instructed to play a sound as often as possible to aid in

making a quality determination.

Ten subjects (six female and four male), between the

ages of 21 and 33, each with self-reported normal hearing

participated in the study. All the subjects are native English

speakers. These were students recruited from The Ohio State

University and they received a monetary incentive for

participating.

B. Results and discussions

The sound quality preference scores averaged across the

subjects are displayed in Fig. 5. The upper panels display the

FIG. 4. (Color online) Screenshot of the graphical interface for the listening

study.

FIG. 5. Group mean sound quality preference scores for our proposed approach when evaluated against an estimated ideal ratio mask (IRM) and non-negative

factorial hidden Markov model (N-FHMM) for IEEE sentences following algorithm processing.
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scores averaged by signal-to-noise ratio and the overall

mean sound quality preference scores. The lower panels

show data for sentences in factory, speech-shaped noise, and

military vehicle noise, respectively. Each panel contains the

percentage that the user prefers signals produced by our pro-

posed algorithm (i.e., preferred), the percentage that the

users prefer the comparison signal (i.e., not preferred), and

the percentage that the users believe that the sound quality

between the two signals is equal (i.e., equal). The subjects

preferences are indicated by the size of each block (i.e., pre-

ferred, not preferred, and equal) within each panel. It is clear

from Fig. 5 that subjects prefer the proposed approach over

comparison approaches.

As seen in the overall panel (top-right), subjects prefer

the proposed approach over the estimated IRM approxi-

mately 48% of the time, they prefer the estimated IRM 25%,

and they feel that the sound quality of the estimated IRM

and the proposed approach are equal roughly at a rate of

27%. Thus, the sound quality of the proposed approach is

equal to or better than the estimated IRM 75% of the time,

indicating that the DNN-NMF helps sound quality. When

compared to N-FHMM, participants almost always prefer

our method (i.e., in 98% of the time).

The upper panel also displays the sound quality prefer-

ence percentages for signals with �3 and 0 dB SNR. The

preferred score is approximately 98% for our algorithm

when compared to N-FHMM at �3 and 0 dB separately. At

�3 and 0 dB, the preferred scores are around 55% and 40%,

respectively, as compared to the estimated IRM, where the

qualities of the signals are equal with a rate of 27%. The

decrease in quality preference when the SNR increases from

�3 to 0 dB is due in large part to the IRM-DNNs ability to

estimate the ideal ratio mask. At lower SNRs, the quality of

ratio masking is lower due to an increase in noise energy and

estimation errors (Wang et al., 2014), so improvements by

the DNN-NMF are more pronounced.

The preference scores for our method when compared to

the estimated IRM are approximately 51%, 57%, and 29%

for factory, speech shaped, and military vehicle noise,

respectively, as indicated by the lower panel in Fig. 5.

Participants prefer estimated IRM at 14%, 22%, and 41%

rates for the corresponding noises. The average equality

scores for this same comparison are 35%, 21%, and 30%,

respectively. For each noise type, the preference score for

our algorithm when compared against N-FHMM is approxi-

mately 98%.

A one-way analysis of variance (ANOVA) test is per-

formed to determine whether the preference results dis-

played in Fig. 5 are statistically significant. The test is

run for each panel displayed in the figure and the p-value

for each category is shown in Table IV. The p-values for

each comparison and category are zero, except for the

comparison between the proposed system and estimated

IRM at 0 dB SNR and military vehicle noise, indicating

that all results except these two cases are statistically

significant.

The mean improvement scores for the different signals

are shown in Fig. 6. Recall that the listener provides

improvement scores for the signal that they believe is better

in quality, where the score indicates the amount of quality

improvement (see Sec. IVA). The average improvement

score of the proposed system over the estimated IRM is

approximately 1.2, indicating a slight but noticeable quality

improvement. A quality improvement of roughly 3 is given

for the proposed system over the N-FHMM, indicating that

the quality is largely better. When the estimated IRM is pre-

ferred (only 25% rate), its quality improvement is approxi-

mately 1.3, indicating that it is slightly better than our

proposed system. A quality improvement score of 1 is given

for N-FHMM over our system, but this occurs at a rate less

than 1%.

V. CONCLUDING REMARKS

We have proposed to use deep neural networks to esti-

mate the NMF activation matrices of clean speech. The first

DNN estimates the ideal ratio mask and is part of the feature

extraction stage for the second DNN. The second DNN esti-

mates the NMF activation weights from ratio-masked

speech. The DNN used for IRM estimation helps ensure that

the NMF activations only approximate the speech compo-

nent of the mixture, while the second DNN ensures that

clean speech is estimated.

Our system is compared against similar two-stage

approaches that combine masking with NMF reconstruc-

tion. The performance of these systems is limited since the

NMF reconstruction stage uses speech models to approxi-

mate masked speech, while our system approximates clean

speech. Traditional model-based approaches (i.e., super-

vised NMF and semi-supervised N-FHMM) are also com-

pared to our method. The results presented in this paper

show that our system improves perceptual quality at low

TABLE IV. p-value scores for one-way ANOVA test for preference results

when the proposed system is compared to estimated IRM and N-FHMM.

Overall �3 dB 0 dB Factory SSN Vehicle

Estimated IRM 0.000 0.000 0.137 0.000 0.000 0.043

N-FHMM 0.000 0.000 0.000 0.000 0.000 0.000

FIG. 6. Sound quality improvement scores when each signal is preferred.

“Prop. to Est. IRM” indicates the quality improvement score when the sub-

ject indicates that the proposed signal has better quality than the signal pro-

duced with an estimated IRM.
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signal-to-noise ratios and it generally outperforms these

comparison methods both objectively and in a listening

evaluation.
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