
This art icle was downloaded by: [Louisiana State University] , [Yanqing Xu]

On: 19 December 2011, At : 10: 02

Publisher: Taylor & Francis

I nforma Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mort imer House,

37-41 Mort imer St reet , London W1T 3JH, UK

Annals of GIS
Publicat ion det ails, including inst ruct ions for aut hors and subscript ion informat ion:

ht t p: / / www. t andfonl ine.com/ loi/ t agi20

Estimating O–D travel time matrix by Google Maps API:

implementation, advantages, and implications
Fahui Wang

a
 & Yanqing Xu

a

a
 Depart ment of Geography & Ant hropology, Louisiana St at e Universit y, Bat on Rouge, LA,

USA

Available onl ine: 23 Nov 2011

To cite this article: Fahui Wang & Yanqing Xu (2011): Est imat ing O–D t ravel t ime mat rix by Google Maps API: implement at ion,

advant ages, and impl icat ions, Annals of GIS, 17:4, 199-209

To link to this article: ht t p: / / dx.doi.org/ 10.1080/ 19475683.2011.625977

PLEASE SCROLL DOWN FOR ARTI CLE

Full terms and condit ions of use: ht tp: / / www.tandfonline.com/ page/ terms-and-condit ions

This art icle may be used for research, teaching, and private study purposes. Any substant ial or systemat ic

reproduct ion, redist r ibut ion, reselling, loan, sub- licensing, systemat ic supply, or dist r ibut ion in any form to

anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representat ion that the contents

will be complete or accurate or up to date. The accuracy of any inst ruct ions, form ulae, and drug doses should

be independent ly verified with pr imary sources. The publisher shall not be liable for any loss, act ions, claims,

proceedings, demand, or costs or damages whatsoever or howsoever caused arising direct ly or indirect ly in

connect ion with or ar ising out of the use of this m aterial.

http://www.tandfonline.com/loi/tagi20
http://dx.doi.org/10.1080/19475683.2011.625977
http://www.tandfonline.com/page/terms-and-conditions

Annals of GIS

Vol. 17, No. 4, December 2011, 199–209

Estimating O–D travel time matrix by Google Maps API: implementation, advantages,

and implications

Fahui Wang* and Yanqing Xu

Department of Geography & Anthropology, Louisiana State University, Baton Rouge, LA, USA

(Received 19 August 2011; final version received 14 September 2011)

Many spatial analysis tasks call for the use of travel time between multiple origins and destinations, that is, O–D travel
time matrix. Commercial geographical information systems (GIS) software requires the input of a well-defined road network
dataset and significant efforts in implementing the task. However, road network data are often outdated, miss critical road
condition details, or are expensive to acquire; and skillful usage of related software is a major obstacle for researchers
without advanced training in GIS. This research develops a desktop tool for implementing the task by calling the Google
Maps Application Programming Interface (API). By doing so, we are able to tap into the dynamically updated transportation
network data and the routing rules maintained by Google and obtain a reliable estimate of O–D travel time matrix. The results
are compared with those computed by the ArcGIS Network Analyst module to demonstrate its advantages. A case study in
accessibility analysis is presented to illustrate the implications.

Keywords: O–D travel time matrix; Google Maps API; network analysis; spatial analysis

1. Introduction

Estimation of travel time between a set of origins and a

set of destinations (i.e., O–D travel time matrix) through a

transportation network is a common task in spatial analy-

sis. To list a few, spatial interaction modeling uses travel

time between any pair of interacting places (Fotheringham

and O’Kelly 1989); traffic demand forecasting relies on

an accurate estimation of travel time among locations in

various land uses (Black 2003); trade area analysis needs

the travel time between each store and each residential

area to define a store’s customer base (Huff 2003); and

accessibility measurement requires the travel time data

between supply and demand locations (Luo and Wang

2003). In the absence of data of a transportation network

or the computational power of geographical information

systems (GIS), one has to resort to simple distance mea-

sures such as Euclidean distance or Manhattan distance

(Wang 2006, pp. 19–20). These simple distance mea-

sures only need the input of geographic coordinates of

origins and destinations and use simple mathematical for-

mulas to calibrate, but are primitive indices of travel

impedance.

Travel time estimation is based on a transportation net-

work. A transportation network consists of a set of nodes

(or vertices) and a set of arcs (or edges or links) that

connect the nodes. An arc may also be directed (e.g., one-

way street). Travel time estimation is usually performed to

*Corresponding author. Email: fwang@lsu.edu

find the shortest time from a specific origin to a specific

destination through a series of nodes and arcs connecting

them (route) on the network, often referred to as the short-

est route problem. Among various methods for solving

the problem (Papadias et al. 2007), the label-setting algo-

rithm (Dijkstra 1959) remains the most popular. Given the

speed on each arc, turning restrictions, and time penalty of

each turn, the algorithm seeks the route that minimizes the

total travel time. Therefore, data requirements for defining

a transportation network include many network elements

such as link impedances, turn impedances, one-way streets,

overpasses, and underpasses (Chang 2004, p. 351). Putting

together such a network dataset requires extensive data col-

lection and processing, which can be very expensive or

infeasible for some applications. For example, a road layer

extracted from the US Census Topologically Integrated

Geographic Encoding and Referencing (TIGER)/Line files

does not contain nodes on the roads, turning parameters, or

speed information. When such information is not available,

one has to make various assumptions to prepare the net-

work dataset. For example, Luo and Wang (2003) assigned

speeds to different roads according to the census feature

class codes (CFCC) and whether in urban, suburban, or

rural areas; and Wang (2003) used regression models to

adjust travel speeds by land use intensity (business and

residential densities) and other factors. All these attempts

are by approximation and compromise the accuracy and

ISSN 1947-5683 print/ISSN 1947-5691 online

© 2011 Taylor & Francis

http://dx.doi.org/10.1080/19475683.2011.625977

http://www.tandfonline.com

D
o
w

n
lo

ad
ed

 b
y
 [

L
o
u
is

ia
n
a

S
ta

te
 U

n
iv

er
si

ty
],

 [
Y

an
q
in

g
 X

u
]

at
 1

0
:0

2
 1

9
 D

ec
em

b
er

 2
0
1
1

mailto:fwang@lsu.edu
http://dx.doi.org/10.1080/19475683.2011.625977
http://www.tandfonline.com

200 F. Wang and Y. Xu

reliability of travel time estimation. Furthermore, learning

the related GIS software is no trivial task.

On the other hand, some online sources such as

Google Maps (maps.google.com), Map Quest (www.

mapquest.com), and Rand McNally (www.randmcnally.

com) provide a convenient stop for solving the shortest

route problem for the public. However, the task of common

users is to find the travel time (and directions) of one route

(perhaps several routes). The challenge for researchers,

as outlined above, is to obtain a travel time matrix from

many origins to many destinations, sometimes a sizeable

matrix of thousands of routes or more. The purpose of

this research is to develop a tool to automate the process.

Specifically, a desktop tool is developed to implement the

task by calling the Google Maps Application Programming

Interface (API). By doing so, we are able to utilize the

transportation network data as well the routing algorithm

by Google behind the scene and obtain a reliable estimate

of O–D travel time matrix with minimal data preparation

and GIS software knowledge.

Section 2 explains how the Google Maps API tool

is developed. Section 3 compares the results with those

by ArcGIS Network Analyst module to demonstrate its

advantages.Section 4 uses a case study on hospital accessi-

bility analysis to illustrate the implications of various travel

time estimates. A brief summary concludes this article and

discusses some limitations of the developed tool.

2. Using the Google Maps API to calibrate O–D

travel time matrix

Google Maps is a popular web-based mapping service

launched by Google in early 2005 to provide a highly

responsive visual interface using AJAX technologies.

Shortly after that, Google launched the Google Maps API,

a JavaScript API, to allow the customization of online maps

(Taylor 2005). The Google Maps API enables one to embed

the Google Maps site into an external website and overlay

specific data on to the site (Mercurio 2008). In the follow-

ing, we will discuss how to use the Google Maps API to

estimate the travel time between origins and destinations

without reloading the web page or displaying portions of

the map.

As shown in Figure 1, the process begins with data

preparation. As explained later in this section, the loca-

tion information as geographic coordinates is fed into the

Google Maps for geocoding. Therefore, both the origin

and destination layers need to be point features in a pro-

jection of geographic coordinates. The data are fed into

a tool in Python that automates the following process. In

each round, travel time is estimated between one origin and

one destination by calling the Google Directions API. The

iterations stop when the program reaches the last combina-

tion of origins and destinations. The result is saved in an

ASCII file listing each origin, each destination, and travel

time between them. The core of the process is the Python

program as discussed below.

The Python programming language is chosen here

since many GIS datasets are in ArcGIS format and ArcGIS

10 has adopted Python as its native scripting language

(ESRI 2010). Python is a free, open-source, and cross-

platform programming language with efficient high-level

data structures and a simple yet effective approach to

object-oriented programming. The Environment Systems

Research Institute (ESRI) has created the ArcPy mod-

ule for Python to provide access to geoprocessing envi-

ronment settings. The Python program traveltime.py,

shown in the Appendix, is written to implement the

tool.

The program begins by calling the ArcPy module. It

then calls the urllib module that provides a high-level inter-

face for fetching data across the World Wide Web. The

urllib module enables us to access the Google server and

use its Directions API. The program also calls for the

time module in order to define time.sleep. In our case, we

set it to 3 seconds as the time to pause the computation

True True

Data preparation Define origins

and destinations

Point feature layers

in geographic coordinates

Python processing
ArcPy and Urlib

modules

Origin is not

empty

Destination is

not empty
Calling Google

Maps API Server

Result ASCII File

Figure 1. Travel time estimation process by Google Maps API.

D
o
w

n
lo

ad
ed

 b
y
 [

L
o
u
is

ia
n
a

S
ta

te
 U

n
iv

er
si

ty
],

 [
Y

an
q
in

g
 X

u
]

at
 1

0
:0

2
 1

9
 D

ec
em

b
er

 2
0
1
1

http://www.mapquest.com
http://www.mapquest.com
http://www.randmcnally.com
http://www.randmcnally.com

Annals of GIS 201

process after each request (i.e., completing one route com-

putation). Google also has its internal limit for ‘sleep

time’ (unknown to users) so that the server would not

be accessed too frequently in a short time. The 3-second

setting is a rule of thumb that helps pace the requests

and reduces the chances of receiving the error message

‘OVER_QUERY_LIMIT’. On rare occasions, if the user

does get the error message, the program skips the request,

flags the record with ‘NA’ in the result table, and moves

on to complete the rest of the requests. The user can revisit

the problem record(s) later, complete the missed request(s),

and update the final travel time table. This is likely caused

by the limitation of Google, particularly when the O–D

matrix gets large, for users without a paid license to Google

Maps API Premier. ‘Use of the Google Geocoding API

is subject to a query limit of 2,500 geolocation requests

per day’ to prevent abuse (http://code.google.com/

apis/maps/documentation/geocoding/). A licensed Prem-

ier user may perform up to 100,000 requests per

day (http://code.google.com/apis/maps/documentation/

distancematrix/).

The program then defines two input files (fromFile and

toFile) and one output file (ResultFile). The From param-

eter means the origins and the To parameter means the

destinations, both of which are point feature layers. Both

input features need to be in a projection of geographic

coordinates. The Result parameter means the output file

of travel time matrix as a text file. The program uses the

function SearchCursor to move from one request of route

computation to next and control the iteration. The function

SearchCursor establishes a read-only cursor on a feature

class or table and extracts the information such as id and

coordinates from the input files. The function continues to

read the information of origins and destinations through

row objects and completes the task until it reaches the end

of the files.

The major component of the program is to use the

Google Directions API to calculate the best route between

two locations by a hypertext transfer protocol (HTTP)

request. Directions specify origins and destinations as

latitude/longitude coordinates or text strings. Our program

uses geographic coordinates that are simple, accurate, and

fast for geocoding. As long as the input features are in

geographic coordinates, there is no need to have the coordi-

nates physically residing in their attribute tables. The ArcPy

module automatically extracts the location information

from the input features. In the uniform resource locators

(URLs) of the request, three parameters are required: ori-

gin, destination, and sensor. The parameters origin and

destination are, respectively, the trip origins and destina-

tions defined by latitude/longitude values. The parameter

sensor indicates whether the direction request comes from

a device with a location sensor and takes a value ‘true’ or

‘false’. In our case and for the purpose of most research, its

value is set to ‘false’.

The tool is added to ArcToolbox in ArcGIS. A user

interface is shown in Figure 2. A user only needs to define

two point features in geographic coordinates (‘From’ and

‘To’) as inputs and name the resulting text file under

‘Result’ and click ‘OK’ to execute it. The total computa-

tion time depends on the size of O–D travel time matrix,

the preset pause time between requests, and the Internet

connection speed. In our test with 2314 records, the total

computation time was less than 15 minutes.

3. Advantages of travel time estimation by Google

Maps API

The ArcGIS Network Analyst, in particular its OD Cost

Matrix function, is often used by researchers to calibrate

the O–D travel time matrix (http://www.esri.com/

software/arcgis/extensions/networkanalyst/). Figure 3

Figure 2. The Google Maps API tool user interface.

D
o
w

n
lo

ad
ed

 b
y
 [

L
o
u
is

ia
n
a

S
ta

te
 U

n
iv

er
si

ty
],

 [
Y

an
q
in

g
 X

u
]

at
 1

0
:0

2
 1

9
 D

ec
em

b
er

 2
0
1
1

http://code.google.com/apis/maps/documentation/geocoding
http://code.google.com/apis/maps/documentation/geocoding
http://code.google.com/apis/maps/documentation/distancematrix
http://code.google.com/apis/maps/documentation/distancematrix
http://www.esri.com/software/arcgis/extensions/networkanalyst
http://www.esri.com/software/arcgis/extensions/networkanalyst

202 F. Wang and Y. Xu

Open Network
Analyst window

Build the network dataset in
ArcCatalog

Check Network
Analyst in ArcMap

Load network
dataset

Click New OD
Cost Matrix

Define the parameters for
the network analysis

Define the origins
and destinations

Compute the O–D
travel time matrix

Figure 3. Travel time estimation process by ArcGIS Network Analyst.

illustrates the process for implementing the task in

ArcGIS. The process begins with building the network

dataset in ArcCatalog, where a user chooses the settings for

connectivity, modeling turns, and others and specifies the

network attributes such as length, travel time, and others.

Then, in ArcMap, the user activates the Network Analyst

extension and its OD Cost Matrix function. After loading

the predefined network dataset to the active project, various

network parameters (impedance, distance unit, etc.) need

to be defined. In the Network Analyst window, one can use

the origins feature to define ‘Facilities’ and the destinations

feature to define ‘Incidents’ and then choose the OD Cost

Matrix tool to solve the problem and save the result.

As in most applications, ‘modeling is as good as the

data get’. The key to quality travel time estimation is the

network data. The following uses a study area in East

Baton Rouge Parish of Louisiana (Figure 4) to examine

how the results by ArcGIS and Google Maps API differ.

Parish is the county unit in Louisiana. The study area is

simply referred to as Baton Rouge hereafter. The network

data used by ArcGIS are extracted from the data DVDs

that came with the ArcGIS 10.0 release, more specifi-

cally, StreetMap North America. The road network data

are based on the TomTom (TeleAtlas) 2005 version 7.2 data

(according to personal communication with James Shimota

of ESRI on 28 June 2011). On the other side, data used

in the Google Maps are fairly updated. Most of this study

was conducted in the summer of 2011. In the case study

reported here, we used the data generated by the Google

Maps API tool on 8 June 2011.

In comparison to the ArcGIS Network Analyst

approach, at least four advantages are identified in using

the Google Maps API. Note that our discussion below

is limited to our experiment of using the aforementioned

dataset in ArcGIS 10.0. It does not apply to one with access

to more recent and extensive datasets such as those from

TeleAtlas (www.teleatlas.com) that contain data of ‘speed

profiles’ to capture congestion effects.

(1) The Google Maps API approach does not need the

preparation of a network dataset.

An important step in modeling the OD cost matrix

in ArcGIS is to prepare the network dataset includ-

ing the extraction of data for the study area and

defining network settings and attributes. In addition

to the time investment, this requires the users to

be knowledgeable about the transportation network

analysis and familiar with the road network data

structure. The API approach taps into the network

data residing in a Google server.

(2) The Google Maps API approach uses more updated

road data.

As explained above, the road network dataset that

came with ArcGIS 10 was based on the data in

2005. Google updates its data more frequently,

usually twice a month (www.gearthblog.com/

blog/archives/2010/10/how_often_does_google_

update_the_im.html). Figure 5(a) and (b) show

an example where the Ben Hur Road near

the Louisiana State University (LSU) Fireman

Training Center in the study area changed recently.

The road was straight on the ArcGIS StreetMap

(Figure 5(a)), but a recent development project led

to the curved road, captured by the Google Maps

(Figure 5(b)).

(3) The Google Maps API approach accounts for road

congestion.

The road network data used in ArcGIS 10 con-

tain the speed limit for each road segment, which

is assumed to be the travel speed by the Network

Analyst module. For illustration, we choose the

route from the GSRI Avenue (at geographic

D
o
w

n
lo

ad
ed

 b
y
 [

L
o
u
is

ia
n
a

S
ta

te
 U

n
iv

er
si

ty
],

 [
Y

an
q
in

g
 X

u
]

at
 1

0
:0

2
 1

9
 D

ec
em

b
er

 2
0
1
1

http://www.teleatlas.com
http://www.gearthblog.com/blog/archives/2010/10/how_often_does_google_update_the_im.html
http://www.gearthblog.com/blog/archives/2010/10/how_often_does_google_update_the_im.html
http://www.gearthblog.com/blog/archives/2010/10/how_often_does_google_update_the_im.html

Annals of GIS 203

27–318

N

Population density (per km2)

319–721

722–1172

1173–1733

1734–2491

Hospital

Tract centroid

Center
0 2 4 8 12 16

km

Figure 4. Population density in census tracts and hospitals in Baton Rouge.

coordinates 30.363512, −91.150997) to the Earl

K. Long Medical Center (at geographic coordi-

nates 30.5783, −90.9942) as an example. Figure

6(a) shows the path by ArcGIS on the StreetMap,

and Figure 6(b) shows the path on the Google

Maps. The two routes are similar. However, the

travel time is 30 minutes by ArcGIS, but 40 min-

utes by Google. The difference is significant. A

close examination of travel speed on each road seg-

ment shows that the travel speeds on roads around

the LSU and the downtown area were much slower

than the posted speed limits.

(4) The Google Maps API approach considers the

difference between peak hours and off-peak hours.

It is known that Google now enables one to

estimate travel time in rush-hour traffic in a

limited set of metropolitan areas (http://google-lat

long.blogspot.com/2007/08/how-long-will-it-take-

at-rush-hour.html). Google also attempts to predict

traffic conditions on a certain day and time based

on the live traffic data collected on a daily basis

(Schwartz 2010). Our experiments in the study

area indicated that travel time reported by Google

Maps differed according to the time of the day

when the computation requests were issued.

Figure 7 shows the traffic condition along a route

in Baton Rouge.

To further highlight the differences of travel time estimated

by the two methods, we have computed the travel time from

each census tract centroid to the city center (commonly

recognized as the State Capitol Building) (see Figure 4).

Figure 8 shows that travel time by the Google Maps API

approach is consistently longer than that by the ArcGIS

Network Analyst approach. The estimated travel time by

either method correlates well with the (Euclidean) distance

from the city center (with a R2= 0.91 for both methods).

However, the regression model of travel time against corre-

sponding distances by Google has a significant intercept of

4.68 minutes (vs. a negligible 0.79-minute intercept in the

model of travel time by ArcGIS). The 4.68-minute inter-

cept by Google probably reflects the elements of starting

D
o
w

n
lo

ad
ed

 b
y
 [

L
o
u
is

ia
n
a

S
ta

te
 U

n
iv

er
si

ty
],

 [
Y

an
q
in

g
 X

u
]

at
 1

0
:0

2
 1

9
 D

ec
em

b
er

 2
0
1
1

http://google-latlong.blogspot.com/2007/08/how-long-will-it-take-at-rush-hour.html
http://google-latlong.blogspot.com/2007/08/how-long-will-it-take-at-rush-hour.html
http://google-latlong.blogspot.com/2007/08/how-long-will-it-take-at-rush-hour.html
http://google-latlong.blogspot.com/2007/08/how-long-will-it-take-at-rush-hour.html

204 F. Wang and Y. Xu

(a) (b)

Figure 5. Road network near LSU: (a) ArcGIS StreetMap and (b) Google Maps.

(a) (b)

Figure 6. A O–D route on (a) ArcGIS StreetMap and (b) Google Maps.

D
o
w

n
lo

ad
ed

 b
y
 [

L
o
u
is

ia
n
a

S
ta

te
 U

n
iv

er
si

ty
],

 [
Y

an
q
in

g
 X

u
]

at
 1

0
:0

2
 1

9
 D

ec
em

b
er

 2
0
1
1

Annals of GIS 205

Figure 7. Traffic condition in Baton Rouge.

0

T
ra

ve
l
ti
m

e
 f

ro
m

 c
it
y
 c

e
n

te
r

(m
in

)

0

5

10

15

20

25

30

35

40

45

5 10 15 20 25 30

Distance from center (km)

ArcGIS

y = 0.96x + 0.79

R2 = 0.91

y = 1.06x + 1.68

R2 = 0.91

Google

Linear (ArcGIS)

Linear (Google)

Figure 8. Estimated travel time from the city center by ArcGIS and Google.

and ending time on a trip (getting on and off a street on the

road network). This is consistent with our daily travel expe-

rience and also empirical data. According to Wang (2003,

p. 258), this ‘inertia’ time (also considered as ‘intrazonal

travel time’) was reported as high as 11 minutes based on

the Census Transportation Planning Package (CTPP) data

in urban areas. The regression model for the travel time

by Google also has a slightly steeper slope (1.06) than the

slope in the model for the travel time by ArcGIS (0.96),

but this difference is minor. Figure 9 displays how the dif-

ference, measured as [(travel time by Google – travel time

by ArcGIS)/travel time by ArcGIS] in percentage, varies

with distance from the city center. Clearly, the difference

declines exponentially with distance from the city center.

D
o
w

n
lo

ad
ed

 b
y
 [

L
o
u
is

ia
n
a

S
ta

te
 U

n
iv

er
si

ty
],

 [
Y

an
q
in

g
 X

u
]

at
 1

0
:0

2
 1

9
 D

ec
em

b
er

 2
0
1
1

206 F. Wang and Y. Xu

0

0

50

100

150

200

250

5 10 15 20 25

y = 110.90e–0.07x

R2 = 0.57

Distance from center (km)

D
iffe

re
n

c
e

 %

30 35

Figure 9. Spatial pattern of differences in estimated travel time by ArcGIS and Google.

It is possibly attributable to a combination of two effects:

the extra ‘inertia’ time discussed above and slower speeds

in the downtown area, both captured by the Google Maps

API approach.

4. Case study in applying estimated travel time in

assessment of hospital accessibility

This section presents a case study illustrating the applica-

tion of estimating O–D travel time matrix in accessibility

analysis. Accessibility refers to the relative ease by which

the locations of activities, such as work, school, shopping,

recreation, and health care, can be reached from a given

location. It is a classic issue in geography. For the pur-

pose of emphasizing the impact of travel time estimation,

this case study does not consider issues such as the match

ratio between supply and demand or the distance decay

effect in spatial interaction. Readers who are interested in

more advanced models of accessibility may refer to some

recent work such as McGrail and Humphreys (2009) and

Dai and Wang (2011). When the capacity of supply (i.e.,

hospital sizes in terms of numbers of beds or physicians) is

unknown or of less concern, the main concern of accessi-

bility is the travel time from residents to hospitals (Brabyn

and Gower 2003). Here, accessibility is measured as the

average travel time by automobile between a residential

location and all hospitals in the study area, that is, Baton

Rouge.

The study area has 89 census tracts with total

population close to a half million and 26 hospitals.

Locations of the census tracts are represented by their

population-weighted centroids (based on the block-level

population), and the hospitals are geocoded according to

their addresses (see Figure 4). The 89 census tract cen-

troids serve as origins, and the 26 hospitals are destinations.

Therefore, the number of O–D trips is 89 × 26 = 2314.

We used both the Google Maps API and the ArcGIS

Network Analyst methods to estimate the O–D matrix,

as discussed in the previous two sections. One techni-

cal issue merits some discussion. In executing the Google

Maps API tool, we noticed that the Google server skipped

a couple of requests due to the system error discussed

in Section 2. The problem persisted in numerous exper-

iments, and the skipped requests varied each time. Even

though our number of requests (i.e., 2314) is less than

the daily cap of 2500 requests set by Google, we suspect

that this is a common problem for users without a paid

premier license to Google Maps API. Our strategy was

to divide the requests into several blocks, implement the

tool piece by piece, and eventually integrate the results

together.

Similar to the results discussed in Section 3, the results

by the two methods are overall consistent with each other,

and most (2269 out of 2314) travel time results estimated

by the Google Maps API are larger than those by the

ArcGIS Network Analyst. The average travel time between

census tract centroids and hospitals is 17.9 minutes by

Google and 13.3 minutes by ArcGIS. However, such a dis-

crepancy is not uniform or proportional across the study

area. The following examines the impact on the spatial

pattern of accessibility.

As stated earlier, accessibility in this case is simply

the average time between a census tract centroid and all

26 hospitals. Since the time by Google is systematically

D
o
w

n
lo

ad
ed

 b
y
 [

L
o
u
is

ia
n
a

S
ta

te
 U

n
iv

er
si

ty
],

 [
Y

an
q
in

g
 X

u
]

at
 1

0
:0

2
 1

9
 D

ec
em

b
er

 2
0
1
1

Annals of GIS 207

longer than the time by ArcGIS, the comparison based on

the time itself is less meaningful. Accessibility is to mea-

sure relative ease of reaching an activity or opportunity.

Therefore, each series of average travel time to hospitals

needs to be standardized (with a zero mean and standard

deviation of 1) to be comparable. The resulting (standard-

ized) Z value reflects the relative accessibility. A higher Z

value corresponds to more travel time to hospitals and thus

a poorer accessibility.

Figure 10(a) and (b) shows the accessibility Z scores by

the ArcGIS and Google methods, respectively. Darker col-

ors correspond to lower and negative Z scores, that is, aver-

age travel time to hospitals below the areawide mean, and

better accessibility. The accessibility is the highest around

the Essen medical campus with several hospitals (southeast

of the city center) and declines outwards. The patterns are

generally consistent on the two maps. However, there are

differences, particularly in the middle-range-distance areas

from the city center. Figure 11 maps the difference (i.e., Z

score by Google – Z score by ArcGIS). Cold colors corre-

spond to negative values (lower Z scores by Google than

by ArcGIS) and indicate that the accessibility in the area

based on the Google time is better than that suggested by

the ArcGIS time. Warm colors indicate otherwise. From

Figure 10, most areas toward northeast are in cold colors

and thus indicate that Google time tends to suggest better

accessibility than ArcGIS time does. The opposite can be

said on the southwest corner.

In summary, the travel time estimated by different

methods may lead to somehow different assessments of

accessibility patterns.

5. Concluding remarks

Estimation of travel time between a set of origins and a

set of destinations through a transportation network is a

common task in spatial analysis. Calibrating the O–D travel

time matrix in a commercial GIS package requires exten-

sive data collection and processing to prepare the road

network and also adequate knowledge of the software to

implement related tools. Both are no trivial efforts. This

research has developed a desktop tool to complete the

task by calling the Google Maps API. The Python pro-

gram automates the process by reading the layers of origins

and destinations in geographic coordinates, executing a

HTTP request to access the Google Maps and calibrate the

(a)

Access_ArcGIS Access_Google
z

< = –0.75

–0.74 – –0.25

–0.24 – 0.25

0.26 – 0.75

> 0.75

z

< = –0.75

–0.74 – –0.25

–0.24 – 0.25

0.26 – 0.75

> 0.75

Hospital

Tract centroid

Center

Hospital

Tract centroid

Center
0 2 4 8 12 16

km
0 2 4 8 12 16

km

N N

(b)

Figure 10. Accessibility standardized Z score (a) by ArcGIS and (b) by Google Maps API.

D
o
w

n
lo

ad
ed

 b
y
 [

L
o
u
is

ia
n
a

S
ta

te
 U

n
iv

er
si

ty
],

 [
Y

an
q
in

g
 X

u
]

at
 1

0
:0

2
 1

9
 D

ec
em

b
er

 2
0
1
1

208 F. Wang and Y. Xu

< –0.3

N

Average time
Difference in Z

–0.3 – –0.1

–0.1 – 0.1

0.2 – 0.3

> 0.3

Hospital

Tract centroid

Center
0 2 4 8 12 16

km

Figure 11. Difference in accessibility scores.

travel time between each O–D pair, and saving the results

in an external ASCII file. By comparing the approach

with the commonly used ArcGIS Network Analyst mod-

ule, several advantages are identified: no need of preparing

a road network, using a more updated road network, and

accounting for congestion in high-traffic areas and peak

hours. Our case study in accessibility analysis indicates that

an accurate estimate of travel time is essential in spatial

analysis.

The Google Maps API approach is not free of concerns.

Our experiments have revealed some limitations. First of

all, an ordinary user without a paid license to Google Maps

API Premier is subject to a daily query limit of 2500 geolo-

cation requests and is likely to experience some ‘hiccups’

in executing the tool. We welcome feedbacks from users

with a Google Maps API Premier license. Second, all data

used in the computation are maintained by Google, and

thus a user has neither control over its quality nor any

editing rights. While the Google’s road network has a repu-

tation of good quality, no data are completely free of errors.

Most users may not care about any modification rights of

network data, but the lack of data transparency is neverthe-

less a drawback for many advanced researchers in spatial

analysis. Furthermore, the tool can only generate the con-

temporary travel time by accessing the most updated road

network data in Google. In some cases, researchers need

the travel time in the past. Such a task is only feasible by

using a historical road network. Finally, the tool is currently

implemented in a desktop GIS environment. It is our plan

to develop an online version in the near future.

Acknowledgements

The support by the National Natural Science Foundation of China
to Wang (No. 40928001) and a research grant to Xu by the South
Central Arc User Group (SCAUG) are gratefully acknowledged.
Comments by two anonymous reviewers and the editor helped us
prepare the final version of this article.

References

Black, W.R., 2003. Transportation: a geographical analysis. New
York: Guilford.

D
o
w

n
lo

ad
ed

 b
y
 [

L
o
u
is

ia
n
a

S
ta

te
 U

n
iv

er
si

ty
],

 [
Y

an
q
in

g
 X

u
]

at
 1

0
:0

2
 1

9
 D

ec
em

b
er

 2
0
1
1

Annals of GIS 209

Brabyn, L. and Gower, P., 2003. Mapping accessibility to gen-
eral practitioners. In: K., Omar and S, Riceds. Geographic
information systems and health applications. Hershey, PA:
Idea Group Publishing, 289–307.

Chang, K.T., 2004. Introduction to geographic information sys-
tems. 2nd ed. New York: McGraw-Hill.

Dai, D. and Wang, F., 2011. Geographic disparities in spa-
tial accessibility to food stores in southwest Mississippi.
Environment and Planning, B38, 659–677.

Dijkstra, E.W., 1959. A note on two problems in connection with
graphs. Numerische Mathematik, 1, 269–271.

Environment Systems Research Institute, Inc. (ESRI), 2010.
Getting started with python in ArcGIS 10 [online]. Available
from: http://www.esri.com/library/fliers/pdfs/python-in-arcg
is10.pdf [accessed 7 October 2011].

Fotheringham, A.S. and O’Kelly, M.E., 1989. Spatial interac-
tion models: formulations and applications. London: Kluwer
Academic.

Huff, D.L., 2003. Parameter estimation in the Huff model.
ArcUser, October–December, 34–36.

Luo, W. and Wang, F., 2003. Measures of spatial accessibility
to health care in a GIS environment synthesis and a case
study in the Chicago region. Environment and Planning, B30,
865–884.

McGrail, M.R. and Humphreys, J.S., 2009. A new index of access
to primary care services in rural areas. Australian and New
Zealand Journal of Public Health, 33, 418–423.

Mercurio, R., 2008. Improving operation, marketing and
customer service with Google maps. Malaya business
insight [online]. Available from: http://www.malaya.com.ph/
june08/info1.html [accessed 7 October 2011].

Papadias, D., Zhang, D., and Kollios, G., (eds.), 2007. Advances
in Spatial and Temporal Databases, Proceedings of 10th
International Symposium, SSTD, 16–18 July, Boston, MA,
Lecture Notes in Computer Science 4605. Berlin: Springer-
Verlag, 460–477.

Schwartz, B., 2010. How does Google’s predictive traffic maps
work? [online]. Available from: http://www.seroundtable.
com/archives/023155.html [accessed 7 October 2011].

Taylor, B., 2005. The world is your JavaScript-enabled oyster.
The official Google blog [online]. Available from: http://
googleblog.blogspot.com/2005/06/world-is-your-javascript-
enabled_29.html [accessed 7 October 2011].

Wang, F., 2003. Job proximity and accessibility for workers of
various wage groups. Urban Geography, 24, 253–271.

Wang, F., 2006. Quantitative methods and applications in GIS.
Boca Raton, FL: CRC Press.

Appendix. Program traveltime.py for calibrating O–D

travel time matrix by Google Maps API

import arcpy

import urllib

import time

from xml.etree.ElementTree import XML,

fromstring, tostring

fromFile = arcpy.GetParameter(0)

toFile = arcpy.GetParameter(1)

Resultfile = arcpy.GetParameterAsText(2)

Result = open(Resultfile,”w”)

Result.write(“FromFID,toFID,TravelTime”)

Result.write(“\n”)

fromCursor = arcpy.SearchCursor(fromFile)

toCursor = arcpy.SearchCursor(toFile)

fromRow = fromCursor.reset()

fromRow = fromCursor.next()

while (fromRow!=None):

fromX = fromRow.shape.centroid.X

fromY = fromRow.shape.centroid.Y

fromFID = fromRow.FID

arcpy.AddMessage(str(fromFID))

toCursor = arcpy.SearchCursor(toFile)

toRow = toCursor.reset()

toRow = toCursor.next()

while (toRow!=None):

toX = toRow.shape.centroid.X

toY = toRow.shape.centroid.Y

toFID = toRow.FID

arcpy.AddMessage(str(toFID))

googletext = “http://maps.googleapis.com/

maps/api/directions/

xml?origin=(“ + str(fromY) + “,” +

str(fromX) + “) &destination=(“ + str(toY)

+ “,” + str(toX) + “) &sensor=false”

time.sleep(3)

xmlfile = urllib.urlopen(googletext)

xml = xmlfile.read()

value = “NA”

dom = fromstring(xml)

nodelist = dom.getchildren()

if (nodelist[0].text == “OK”):

arcpy.AddMessage(nodelist[0].text)

route=nodelist[1]

leg=route.getchildren()[1]

duration = leg.find(“duration”)

value = duration.getchildren()[0].text

else:

arcpy.AddError(nodelist[0].text)

Result.write(str(fromFID))

Result.write(“,”)

Result.write(str(toFID))

Result.write(“,”)

Result.write(value)

Result.write(“|n”)

toRow = toCursor.next()

fromRow = fromCursor.next()

Result.close()

del fromCursor

del toCursor

D
o
w

n
lo

ad
ed

 b
y
 [

L
o
u
is

ia
n
a

S
ta

te
 U

n
iv

er
si

ty
],

 [
Y

an
q
in

g
 X

u
]

at
 1

0
:0

2
 1

9
 D

ec
em

b
er

 2
0
1
1

http://www.esri.com/library/fliers/pdfs/python-in-arcg
http://www.malaya.com.ph
http://www.seroundtable
http://googleblog.blogspot.com/2005/06/world-is-your-javascript-enabled_29.html
http://googleblog.blogspot.com/2005/06/world-is-your-javascript-enabled_29.html
http://googleblog.blogspot.com/2005/06/world-is-your-javascript-enabled_29.html
http://googleblog.blogspot.com/2005/06/world-is-your-javascript-enabled_29.html
http://maps.googleapis.com

