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ABSTRACT. Submarine melting at the ice–ocean interface is a significant term in the mass balance of

marine-terminating outlet glaciers. However, obtaining direct measurements of the submarine melt

rate, or the ocean heat transport towards the glacier that drives this melting, has been difficult due to

the scarcity of observations, as well as the complexity of oceanic flows. Here we present a method that

uses synoptic velocity and temperature profiles, but accounts for the dominant mode of velocity

variability, to obtain representative heat transport estimates. We apply this method to the Sermilik

Fjord–Helheim Glacier system in southeastern Greenland. Using lowered acoustic Doppler current

profiler (LADCP) and hydrographic data collected in summer 2009, we find a mean heat transport

towards the glacier of 29�109W, implying a submarine melt rate at the glacier face of 650ma–1. The

resulting adjusted velocity profile is indicative of a multilayer residual circulation, where the meltwater

mixture flows out of the fjord at the surface and at the stratification maximum.

INTRODUCTION

Surface mass-balance studies have shown recently that the
large ice sheets of Greenland and Antarctica are losing an
increasing amount of mass, which ultimately ends up as
fresh water, to the oceans (e.g. Rignot and others, 2011) and
contributes to global sea-level rise. In Greenland, a signifi-
cant fraction of the recent mass loss is attributed to the
widespread acceleration, thinning and attrition of the
glaciers over the past decade (Howat and others, 2007;
Stearns and Hamilton, 2007) and several hypotheses have
been proposed to explain it. Among these are rising air
temperatures, which via increased surface melt can lead to
increased lubrication at the bed and accelerated flow
(Zwally and others, 2002) or can destabilize the floating
tongue by feeding crevasses (Benn and others, 2007).

Alternatively, increasing basal runoff from surface melt
(Motyka and others, 2011) and/or changes in the ocean
circulation can lead to an increase in the heat transport at
the glacier–ocean interface. An increased heat transport
would have two potential impacts on the glacier. First, the
increased heat content of the fjord waters would lead to a
decrease in the ice melange typically located at the surface
of the fjord in front of the glacier. This ice melange is thought
to buttress the glacier, so any decrease in its volume or
structural strength could lead directly to a surge in the
glacier front (e.g. Amundson and others, 2010). Second, an
increased heat transport in the subsurface waters of the fjord
would lead to increased submarine melting at the glacier
face. The increased melting could potentially drive two
important feedbacks: (1) it would directly alter the shape and
hence stability of the glacier front, potentially leading to
calving events and acceleration of the glacier; and (2) it
would drive an increase in the volume of upwelled water
near the glacier front, which would drive an enhanced
estuarine circulation in the fjord, leading to a more rapid
flushing of fjord waters that potentially might result in
additional heat transport (e.g. Motyka and others, 2011).

The difficulty in assessing these different hypotheses lies in
the scarcity of observations inside Greenland’s fjords,
particularly the lack of any sustained direct measurements
of velocity. Instead, previous studies have either inferred the
circulation using hydrography and conservation of salt and
volume, or used snapshots of velocity to calculate estimates
of inflowing and outflowing waters. The latter method was
used at Leconte Glacier, Alaska, to estimate the amount of
heat available to melt the glacier face, but assumed an
estuarine circulation scheme (Motyka and others, 2003), as
did Rignot and others (2010) in their study on two small fjord
systems in West Greenland. However, as shown by Morten-
sen and others (2011) and Straneo and others (2011), the
circulation in Greenland’s glacial fjords is dominated by
strongly sheared currents that reverse on synoptic timescales
of the order of days, which effectively mask the slower net
circulation that transports heat to the glacier.

Here we remove the signal due to these modes by
inferring their structure and amplitude and then subtract
them from the velocity measured in the fjord. Explicitly, we
use direct velocity observations from a major outlet fjord in
southeastern Greenland, Sermilik Fjord (Fig. 1), to char-
acterize the dominant modes of velocity variability and
directly estimate heat transport to Helheim Glacier. We find
evidence for the multilayer residual circulation cells of
Straneo and others (2011) after accounting for the effects of
the strongly varying intermediate circulation that is driven by
changes at the fjord mouth (Klinck and others, 1981). Using
these adjusted velocity profiles, we then calculate heat
transport values driven by the residual circulation to infer
submarine melt rates for Helheim Glacier.

PHYSICAL CHARACTERISTICS OF SERMILIK FJORD

Sermilik Fjord connects the continental shelf waters of the
western Irminger Sea to Helheim Glacier, one of southeast
Greenland’s largest outlet glaciers (Fig. 1). The fjord runs
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consisted of a Nortek deep-water Aquadopp current meter
that recorded velocity in hourly intervals at a mean depth of
298m and a Seabird MicroCAT(+P) SBE37-SM instrument
that measured salinity (S), temperature (T) and depth data in
15min increments at a mean depth of 291m. Inside the fjord,
there was a shallow mooring that consisted of a Nortek deep-
water Aquadopp current meter at 140m and a Seabird
MicroCAT(+P) SBE37-SM instrument that measured salinity,
temperature and depth data in 15min increments at a mean
depth of 118m. A second mooring recorded data at depth,
with the current meter at 615m and the MicroCAT at 601m.
The moored temperature and salinity data were checkedwith
CTD casts taken during deployment and recovery for
calibration. The mooring data will be used here primarily
for context.

HYDROGRAPHIC OBSERVATIONS

The fjord hydrography observed in summer 2009 has been
described elsewhere (Straneo and others, 2011). Here we
focus on the general structure of the water masses in the
vertical. Figure 2 shows typical profiles of S, T and
stratification N, calculated from the buoyancy frequency

N2 ¼ ð�g=�0Þ@�=@z:

The summertime T–S structure midway up Sermilik Fjord
shows the three main water masses present. Warm (T�3–
48C) and salty (S�35) AW occupies the deep layer,
stretching from the subsurface stratification maximum at
150m to the bottom (Fig. 2). Above the interface lies the
colder (T�18C) and fresher (S�32–33) PW. In a thin �10m
thick layer above the PW, a fresh warm water mass shows the
influence of seasonal sea ice and runoff with salinities
reaching S<20, as well as thermal heating. This thin upper
layer creates a seasonal surface maximum in stratification
and is referred to here as surface water (SW). These

measurements are consistent with the two-layer structure
seen in studies of the EGCC on the southeast Greenland shelf,
which flows inshore of the shelf-break EGC/Irminger Current
system near Sermilik Fjord (Sutherland and Pickart, 2008).

VELOCITY OBSERVATIONS

The LADCP data show pronounced variability relative to the
hydrography, with highly sheared flows that changed
dramatically by reversing sign or vertical structure in the
6 days of sampling. Figure 4a illustrates this with example
casts from sections 3–7 that were occupied over a span of
2 days (Fig. 3a), yet had significant changes in shear and
vertical structure. The vertical integral of the along-fjord
velocity changes sign over the span of the cruise (Fig. 3b).
This variability has been noted previously (Straneo and
others, 2011), so here we try to condense and characterize
the LADCP observations in a systematic way.

First, we choose to analyze deep casts where the fjord
depth h is >400m in order to fully capture the entire water
column. In practice this meant keeping those stations
towards the middle of the fjord. Then we excluded the
mouth section, which was heavily influenced by shelf
processes and the onset of the barrier wind event, which
can alter the coastal current structure on the shelf (Sutherland
and Pickart, 2008). This results in 17 usable casts (Fig. 1).

At each of these locations, we normalized the depth by
the observed stratification. This was done by finding the
depth of the first stratification maximum below the surface
layer in each cast, zmaxN2, then applying a depth trans-
formation to a new normalized depth coordinate system, z’,
where z’=0 at the surface, 0.5 at zmaxN2 and 1 at h. Figure 4
shows examples of this depth transformation. The effect of
this normalization is to make the AW and PW layers
the same thickness at each station, since the depth of
the interface between them varies in time and position

Fig. 2. (a) Two typical salinity versus depth profiles from Sermilik Fjord taken during summer 2009 at section 3 near mid-fjord. (b) As in (a)
but for temperature showing approximate depth boundaries of the three main water masses: polar water (PW), Atlantic water (AW) and
surface water (SW). (c) As in (a) but showing the buoyancy frequency N in cycles per hour. Note that N has been smoothed with a 10m
running average filter. (d) Ur,ADJ profile transformed into depth space for Sermilik Fjord section 3, with arrows indicating in- or out-fjord flow.
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For the purposes of this study, the precise mechanism does
not matter explicitly, except that it exhibits a first-mode baro-
clinic structure that we try to remove. To identify the internal
seiche process in the data would require more stations
spatially and longer time series of casts at each station.

However, since internal seiches are commonly observed
in lakes and other fjord systems (e.g. Arneborg and
Liljebladh, 2001), we speculate that they might explain the
variability observed in Sermilik Fjord. The internal seiche
interpretation is supported by the fact that the EOF analysis
was calculated using LADCP profiles located along the
whole length of each fjord. This suggests the modal structures
shown in the EOF analysis, and consistent with the normal-
mode breakdown, have spatial coherence over the entire
fjord, although more stations are needed to verify this claim.

One can calculate phase speeds based on the normal
modes, which are physically akin to internal wave speeds,
cn= (gHe,n)

1=2, where He,n is the equivalent depth of the nth
mode (Gill, 1982). Then the natural periods of oscillation for
mode 1 can be found assuming the internal seiche operates
as a quarter-wave oscillator at the mouth, Tn=4L/cn, where
Tn is the period and L is the length of the basin (Miles, 1974).
Assuming L� 70 km for Sermilik Fjord and c1=1.1m s–1,
then Tn=71hours for the fundamental mode 1 structure.
Other formulae exist for estimating internal seiche periods,
such as Merian’s formula (Miles, 1974), but previous studies
have found these estimates to be accurate to within only
�20% so we do not report them here. Higher-mode seiches
would have shorter periods as more waves would fit inside
the basin.

MULTILAYER RESIDUAL CIRCULATION

Over a long time average, one might expect the mean
velocity profile in the fjords to approach that of an estuarine
circulation potentially divided into several stacked cells as
argued by Straneo and others (2011), in that there must be a
net outflow of water to balance the surface runoff and
subglacial meltwater added. On shorter timescales, such as
over the length of our fieldwork, we expect the circulation to
be dominated by more highly sheared oscillatory flows
forced by the intermediate circulation at the mouth, internal
seiches and a strong internal wave field (Klinck and others,
1981; Straneo and others, 2010, 2011). Note that the
magnitudes of the flows recorded by individual LADCP
profiles (Fig. 4) are much larger than the mean flows in
Sermilik Fjord recorded by the current meters over a year.
Another complicating feature is the presence of stratification
that might allow for multilayered residual flows to be set up.
Evidence for these multiple cells was observed from
hydrography in Sermilik Fjord (Straneo and others, 2011)
and makes the use of a simple estuarine circulation scheme
difficult and possibly invalid.

If we assume that the intermediate circulation variability
and the dominant part of the internal wave field are mostly
accounted for in the mode 1 EOF (Fig. 5b), then we can
subtract out the mode 1 structure from each Ur profile. To do
this, we fit the mode 1 EOF structure to each observed Ur

profile separately and then take the mean of all the Ur –
UEOF,fit profiles. Figure 3c shows the variance of the fit to the
mode 1 EOF, UEOF,fit, for each station. Along with Figure 3d,
which shows the ratio of the residual variance to the original
variance of Ur , var(Ur –UEOF,fit) / var(Ur), this gives an idea of
how well the method either removes the mode 1 signal from

Ur or if a mode 1 signal is present at all. The residual
variance is reduced by >40% at 13 of the 17 stations
(Fig. 3d). The method performs well at each section except
section 4, where three of the stations did not show a
dominant baroclinic structure that could be removed.

Next we extend the shear in the upper part of the water
column (z’<0.1) to the surface and make the bottom
boundary layer constant to the bottom (z’=1). The first
assumption is based on the notion that the thin SW waters
will be flowing out-fjord and on visual observations
during the 2009 fieldwork. Assuming a constant bottom
layer velocity is the simplest assumption and is justified by
the small variations in the deep water column. Interpolating
the bottom velocity to zero has no significant effect on the
results. In the surface layer, however, making a constant
upper layer equal to the topmost measurement slightly
decreased the heat transport magnitudes discussed below.
Finally, we adjust the velocity profile so that there is no net
transport, by subtracting a barotropic velocity of ubaro=
0.014m s–1.

The adjusted velocity profile Ur,ADJ (Fig. 5a) has a
maximum velocity of 0.06m s–1 in the surface layer
(0 < z’<0.1), with a compensating inflow that has a mean
of 0.01 m s–1 below, down to the interface depth
(0.1 < z’<0.5). Just below the level of maximum stratifica-
tion (i.e. below the PW/AW interface) another layer of
outflow is found with peak velocities of 0.01m s–1

(0.5 < z’<0.6) and another compensating inflow layer below
(0.6 < z’<0.8).

We interpret the Ur,ADJ profile as evidence for the
multiple cell residual circulation inferred from hydro-
graphic data taken along Sermilik Fjord (Straneo and
others, 2011). We hypothesize that the upper cell is driven
by surface runoff, sea-ice melt and a portion of the
subglacial meltwater discharged from the glacier face,
while the lower cell is induced by the remaining portion of
subglacial meltwater that does not penetrate past the PW/
AW interface.

Transforming the Ur,ADJ profile back into real depth space
for a typical Sermilik Fjord station provides a striking
illustration of these residual circulation cells. Figure 2d
shows the Ur,ADJ profiles for Sermilik section 3. In the surface
outflow layer (z<20m), the waters have warmed and
freshened considerably, most likely due to surface heating
and the addition of fresh water (e.g. ice melt or runoff).
Below this lies the relatively colder and fresh PW layer that
is flowing into the fjord. Between the PW and AW layers
near 150m depth, the T and S structures are dominated by
intrusions, with strong layering and evidence for mixing
apparent in the profiles. This interleaving occurs at the top of
the interface outflow, implying that shear-driven mixing is
important to setting the T and S structure at this depth. The
warmest and saltiest waters observed are in the lower inflow
layer, corresponding to the AW coming into the fjord.

Thus it appears that the circulation in Sermilik Fjord,
though heavily modulated by synoptic variability, does have
an estuarine-like structure when one accounts for the
dominant mode of variability. The presence of stratification
and deep subglacial discharge complicate the estuarine
flow, however, creating multiple residual circulation cells.
Longer time series and more stations are necessary to test the
realism of this circulation schematic.

We interpret the velocity profile as quasi-instantaneous,
i.e. representative of those few days we sampled without the
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noise of the intermediate circulation. However, it reflects the
current state of freshwater input into the fjord due to surface
runoff and subglacial discharge, which can be highly
variable in time itself (Andersen and others, 2010).

HEAT TRANSPORT AND SUBMARINE MELT RATE

Using the Ur,ADJ velocity profiles and cross-fjord sections of
temperature, we can estimate the heat transport inferred
from this multilayered circulation. Since the heat transport
calculation is sensitive to any net volume transport, we first
construct velocity fields assuming the Ur,ADJ profile is
constant across the fjord. Since the depth varies across each
section, we adjust the velocity section with a new barotropic
velocity to make the integrated transport equal to zero. At
each section, we calculate the heat transport Q,

Q ¼ Cp�0

ZZ
U�

r , ADJ T � Tfð Þ dx dz

where Cp is the specific heat capacity of sea water
(3980 J kg–1K–1), �0 is a reference density (1027 kgm–3), T
is temperature (K), Tf is the freezing point temperature that is
a function of S and pressure, U�

r, ADJ is the zero net transport

velocity profile and the integrals are taken across fjord (x)
and in the vertical (z). Changing the horizontal resolution of
the cross-fjord depth profile (dx) results in slightly different
values of Q, which are reported below.

Table 1 shows the resulting heat transports at several
sections along the fjord (Fig. 1). The heat transport is directed
into the fjord towards the glacier with a mean of 29�109W,
ranging from 11 to 64� 109W. Note that instantaneous heat
transports, calculated using the original Ur,mean profile
before accounting for the intermediate circulation, have
magnitudes 10–50 times greater as well as reversals in sign,
i.e. Q<0 (Straneo and others, 2011). The range for each
section comes from calculating Q using different assump-
tions for extrapolating Ur,ADJ to the surface and bottom

(constant instead of extending the shear), by using different
horizontal resolutions (dx=0.5 and 1.0 km) in the cross-fjord
direction, as well as changing the interface depths to reflect
the ambiguity in picking z’=0.5 (e.g. Fig. 4).

To convert the heat transports into submarine melt rates,
Qm, at the glacier face, we estimate that 1 TW (1012W) will
melt �95 km3 a–1, assuming a latent heat of fusion of
334 500 J kg–1, a density of ice of 930 kgm–3, an initial
ice temperature of –108C and a specific heat of ice of
2100 J kg–1K–1. Corresponding melt rates for each section are
listed in Table 1 and are not sensitive to the chosen parameter
values. The meanQm for Sermilik Fjord is 2.7 km3 a–1, with a
range of 1.0–6.1 km3 a–1, based on the five sections listed.

Next, we estimate the melt rate for Helheim Glacier
based on a glacier face area of 4.2 km2, assuming a glacier
depth of 700m and a width of 6 km. The resulting melt rates,
M, are reported in ma–1 for comparison to other systems
below. The mean M is 650ma–1, with a range of 250–
1400ma–1, again with the maximum at section 4, although
the ranges over all the sections overlap.

To give a sense of the magnitude of these estimates, we
can compare the melt rates with independent estimates of the
freshwater input into Sermilik Fjord via surface runoff and
subglacial discharge, as well as through calving ice. Mernild
and others (2010) ran a hydrological model of the major
glacier catchment areas surrounding Sermilik Fjord and
found annual mean values of the combined surface runoff
and precipitation of Qs=6 km3 a–1. Andersen and others
(2010) argue that most of this surface runoff would emerge at
depth along the glacier face, i.e. the majority ofQs enters the
fjord subglacially. Mernild and others (2010) calculated a
separate subglacial runoff value of Qg=0.5 km3 a–1. Com-
bined with Qs, the total liquid freshwater discharge, QFW,
into the fjord is QFW=6.5 km3 a–1. On the other hand,
Andersen and others (2010) found Qg=5.1 km3 a–1 for the
summer months of 2007–08 using a surface energy model
validated with in situ observations. Thus, the melt-rate
estimates from this study are approximately half the
magnitude of the best estimates of QFW.

Compared to the solid freshwater flux, in the form of ice
discharge due to calving at the glacier front, the submarine
melt is small. Helheim Glacier produces about 27 km3 a–1 of
calved ice (Howat and others, 2007; Mernild and others,
2010). During the rapid-acceleration years 2004–06, Hel-
heim peaked at �60 km3 a–1 of ice discharge (Howat and
others, 2007; Stearns and Hamilton, 2007).

The range of melt rates calculated here is similar to those
found in West Greenland fjords listed in Table 1 (Rignot and
others, 2010). Melt rates on ice shelves, such as Petermann
Glacier or typical Antarctic systems, are usually much
smaller (Johnson and others, 2011). In an Alaskan glacier
system, Motyka and others (2003) found unusually high
melt rates of 2400–4000ma–1, although these were most
likely valid only over a short seasonal timescale. We
reiterate a similar concern over the melt rates reported here:
they should be thought of as quasi-instantaneous estimates
of the submarine melt rates for the Sermilik Fjord–Helheim
Glacier system. However, they represent a step forward in
direct measurements of heat transport and corresponding
melt rates from in situ observations. Previous studies did
not account for the highly variable circulation found in
these systems.

Though we attempted to account for the intermediate
circulation by subtracting out the baroclinic flow observed

Table 1.Heat transports,Q, based onUr,ADJ and T data at sections in
Sermilik Fjord (SF). Values given are means, with ranges in
parentheses, calculated using various assumptions (see text). Inferred
submarine melt rates Qm are calculated from Q as described in the
text. Ice melt rates M are based on a glacier area of �4.2 km2

Fjord (section) Q Qm M

109W km3 a–1 ma–1

SF-2 22 (11–28) 2.1 (1.0–2.7) 500 (250–630)
SF-3 27 (21–34) 2.6 (2.0–3.2) 610 (480–770)
SF-4 51 (39–64) 4.8 (3.7–6.1) 1100 (880–1400)
SF-5w 21 (15–26) 2.0 (1.4–2.5) 480 (340–590)
SF-7 24 (11–42) 2.2 (1.0–4.0) 540 (250–950)
Petermann* 310 29.5 26
Avangnardleq{ 86�14 8.2�1.3 1400� 290
Kangilerngata{ 6.3�0.9 0.60�0.09 950� 180
Eqip Sermia{ 1.7�0.3 0.16�0.03 250� 70
LeConte{ 6.9�2.8 0.40–0.65 2400–4500

*Johnson and others (2011). Stated ranges were �50%. To calculate M,
glacier area of 70 km long by 16 km wide was used. Petermann Glacier
advances on average �1100ma–1.
{Rignot and others (2010).
{Motyka and others (2003). Stated range for Q was �40% and given for Qm

and M.
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in Sermilik Fjord, the effects of the intermediate circulation
play an important role in modulating heat transport. Internal
seiches forced by the wind can generate internal waves,
which drive vertical mixing and alter the ambient stratifica-
tion of the fjord waters (e.g. Arneborg and Liljebladh, 2001).
In addition, they have horizontal excursion length scales of
tens of km, so they most likely alter the horizontal density
gradient through mixing processes as well. This effect could
feed back on the estuarine circulation that is driven
primarily through buoyancy forcing and the along-fjord
density gradient. Seasonal variability in the strength of the
intermediate circulation, which is driven by seasonally
varying winds, might impart a seasonal modulation to the
heat transport values calculated above. In addition, surface
runoff essentially shuts down in the winter (Straneo and
others, 2011), so the multilayer residual circulation will look
quite different during certain times of year. Future work
should focus on extending the time period of these LADCP
observations to see if the method holds over the entire year.
Coupling these observations with full water column bottom-
mounted ADCP records and temperature profiles would also
help in reducing uncertainties in the heat transport calcula-
tions. In addition, the seasonality of the forcing suggests that
a similar seasonality may exist in the fjord circulation and
the resulting heat transport. Preliminary analysis of LADCP
data in Kangerdlugssuaq Fjord supports this notion and will
be presented in future work.

SUMMARY

Velocity data collected in summer 2009 support the notion
that the circulation in Sermilik Fjord is complex, with the
dominant structure akin to a first-mode baroclinic flow that
changes on timescales of days. By accounting for this
variability, heat transport estimates were made that were not
contaminated by these strong flows. In Sermilik Fjord, the
mean heat transport was 29�109W, implying a submarine
melt rate at Helheim Glacier of 650ma–1.

The adjusted velocity profile implies a residual circulation
that has two main pathways, with a surface outflow and a
subsurface outflow, compensated by inflows in between.
The subsurface outflow was located at the stratification
maximum near the PW/AW interface that characterizes fjord
waters in southeastern Greenland. The method should be
applicable to other Greenland fjords with similar circulation
characteristics, i.e. strong baroclinic flow, no sill and strong
stratification.
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