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Abstract—In this paper we present a novel approach for the estimation of
one-way delays from cyclic-path delay measurements that does not require
any kind of synchronization among the nodes of the network. Furthermore,
this approach is taking into account the asymmetric nature of the network,
and the fact that traffic flows are not necessarily the same in both direc-
tions. Our approach is based on cyclic-path delay measurements, each of
which is extracted using a single (source) clock and therefore is accurate.
The basic idea of the approach is to express the cyclic-path delays in terms
of one-way delay variables. If there were enough independent cyclic-path
delay measurements, then one could solve explicitly for the one-way delays.
We show that the maximal number of independent measurements that can
be taken is smaller, hence a procedure for estimating the one-way delay is
proposed.
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I. I NTRODUCTION

P
ROPER analysis of network-observed data and measure-
ments is essential for robust network performance and

management. Such real-data analysis plays a pivotal role in the
design of the network and in the control of its dynamic behav-
ior. One of the most important network performance quantities
is the delay. Commonly, the round-trip delay is observed and
measured. Yet, in recent years it became apparent that one-way
delay measurements are very important. The measurement of
one-way delay instead of round-trip delay is motivated by sev-
eral factors [1]. In many networks the path from a source to a
destination may be different than the path from the destination
back to the source (”asymmetric paths”). Therefore round-trip
measurements actually measure the performance of two distinct
paths together. Measuring each path independently highlights
the performance difference between the two paths which may
traverse radically different types of networks. Even when the
two paths are symmetric, they may have radically different per-
formance characteristics due to asymmetric queueing. Perfor-
mance of an application may depend mostly on the performance
in one direction. For example, a file transfer using TCP may de-
pend more on the performance in the direction that data flows,
rather than the direction in which acknowledgements travel. Fi-
nally, in quality-of-service (QoS) enabled networks, provision-
ing in one direction may be radically different than provision-
ing in the reverse direction, and thus the QoS guarantees dif-
fer. Measuring the paths independently allows the verification
of both guarantees.

Cyclic-path delay measurements in networks are relatively
simple. They can be done by keeping a time-stamp for a packet
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both upon its transmission and upon its return. Since the time-
stamps are taken at the same location, the same clock is used for
both. Hence, the difference between these time-stamps yields
an accurate measure for the cyclic-path delay (clock skews or
drifts are negligible during this interval of measurements). Note
that round-trip delay measurements are simple cyclic-path de-
lay measurements. One-way delay measurements, on the other
hand, are quite complex to measure as they require a perfect syn-
chronization among the clocks at the source and the destination
of the packet. Global Positioning Systems (GPS) afford one way
to achieve such synchronization, but GPS are still very scarce in
network environment. Ordinary applications of Network Time
Protocol (NTP) are designed to allow synchronization, but this
synchronization depends on the stability and symmetry of delay
properties among the NTP agents at the source and the destina-
tion, and this is exactly the delay that should be measured.

A common approach for estimating one-way delays is to
measure round-trip delays and halving them [6]. As explained
above, such an estimation is reasonable only when the network
is symmetric and the traffic load in both directions is the same.
Several recent papers presented novel methods for delay evalu-
ations that are based on end-to-end measurements ([2], [3], [4],
[5]). These methods are very attractive for round-trip delay eval-
uations, but their validity for one-way delay estimations depends
on perfect synchronization among all clocks in the network that
are involved in the end-to-end measurements - a task hard to
achieve.

In this paper we present a novel approach for the estimation of
one-way delays from cyclic-path delay measurements that does
not require any kind of synchronization among the nodes of the
network. Furthermore, this approach is taking into account the
asymmetric nature of the network, and the fact that traffic flows
are not necessarily the same in both directions. Our approach
is based on cyclic-path delay measurements, each of which is
extracted using a single (source) clock and therefore is accu-
rate. The basic idea of the approach is to express the cyclic-
path delays in terms of one-way delay variables. If there were
enough independent cyclic-path delay measurements, then one
could solve explicitly for the one-way delays. We show that
the maximal number of independent measurements that can be
taken is smaller, hence a procedure for estimating the one-way
delay is proposed.

The paper is organized as follows. In Section II we present
the underlying model used throughout the paper and introduce
the estimation problem. Section III contains the analysis of the
procedure. In particular, we compute the maximal number of
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independent cyclic-path delay measurements that can be taken.
We then propose in Section IV a distributed algorithm that yields
the necessary number of measurements. Finally, several exam-
ples of the approach are give in Section V.

II. T HE MODEL AND PRELIMINARIES

The goal of this paper is to introduce and analyze a novel
approach for estimating one-way delays between the nodes of a
network, based on cyclic-path delay measurements among these
nodes. We begin by introducing the network model that is used.

The network is composed of a set of nodes connected by some
links. The nodes of the network that are relevant to our study
are those nodes that are participating in the cyclic-path delay
measurements, i.e., the nodes that serve as origins (and hence
final destinations) for such measurements. LetN denote this
set of nodes and letN = jN j. In general, a path between any
two nodes inN is a mix of links and nodes, some nodes are
in N and some are not inN . We define a directedlogical link
between nodei and nodej inN as a directed path between these
nodes that does not contain any other node inN . Let E denote
the set of all logical links andE = jEj.

From now on we will concentrate on the underlying network
(N ; E) that is composed of the nodes inN and whose links are
the members of the setE . The link connecting nodei with node
j in the direction fromi to j is denoted byi!j. We assume that
if link i!j exists, so does linkj!i. Network delays are usually
dynamic. Yet, when looking at short intervals of time, we can
assume that they vary very slightly. Hence throughout this paper
we assume that the delay on each link is constant. Note however
that the delay of the link in the directioni!j is not necessarily
identical to the delay of the link in the directionj!i. The reason
is that the links of each direction may traverse different network
equipment (routers) in the actual network, or the load in each
direction may be different.

Our goal is to provide an estimation for the one-way delay for
each of the directed links. The estimation is based on cyclic-
path delay measurements. These measurements are done in
a straightforward manner. A source node is sending a probe
packet that is forwarded along several (non-repeated) nodes un-
til the packet returns to the source node (completes a cycle). To
control the sequence of nodes that the packet traverses, source
routing can be used for these probe packets. A better way for
sending the probe packets is to use the distributed algorithm that
is proposed in Section IV. Time is recorded by the source node
both when the message is sent and also when the message re-
turns. The difference between these two times is the cyclic-path
delay along the path that the probe packet traversed. We assume
that the time the packet spends at the intermediate nodes is either
part of the one-way delay, or can be computed and be subtracted
from the total cyclic-path time. Note that the cyclic-path delay
of each such path can be determined in a single measurement
due to our assumption of constant delay. Future work will ex-
tend our estimation procedure to determine delay distributions
based on several measurements.

For each source node, several cyclic-path delay measure-
ments can be taken, by sending probe packets along different
such paths. One of our goals in this paper is to propose the al-
gorithm for the source nodes to determine which probe packets

to send. After obtaining all the cyclic-path delays through var-
ious paths we are ready to estimate the one-way delay between
any two nodes based on these measured times. In principle, the
estimation will depend on the criteria used. We choose a least
square error criteria as explained below.

For each linki!j in E , letxi;j be the one-way delay fromi to
j on that link (these are the quantities we are after). Letx̂i;j be
the estimate ofxi;j . We formulate the estimation problem as a
constrained optimization problem. The variables are~x= fxi;jg

(similarly, the estimates are~̂x = fx̂i;jg) and the constraints are
the cyclic-path delays measured and the non-negativity of the
variables~x. To formally define these constraints, assume that
L measurements are taken. Recall that each measurement is
cyclic-path. Letal;fi;jg = 1 if link fi; jg appears along the path
of the l-th measurement andal;fi;jg = 0 otherwise. Let�l be
the measured cyclic-path delay in thel-th measurement. Then
the measurement constraints are given byA � ~x = ~� whereA
is aLxE matrix whose elements arefal;fi;jgg and~� is a vector
whose elements aref�lg.

Let the set
 define all the values of~x with xi;j > 0 that
comply with these constraints. Clearly, this set is convex. Our
goal is to determine~̂x that yields the least square error, or

min

�Z



j~x� ~̂xj2d~x

�

under the constraints:


 = f~x j xi;j > 0 ; A � ~x = ~�g

Note that if any further information is available upon thexi;j , it
can be incorporated as additional constraints in the definition of

.

It is important to note that our estimation is based only on
cyclic-path delay measurements. Hence both the ”send” time
and the ”receive” time are measured at the same clock. There-
fore clock synchronization of any kind between any two nodes
in the system is not required.

III. A NALYSIS

Our estimation of the one-way delays is based on measur-
ing cyclic-path delays. How many such measurements can and
should be taken? At first glance it appears that the more mea-
surements are taken, the better. Yet, trying to measure all possi-
ble cyclic-path delays is rather tedious, and definitely not scal-
able. For example, in anN -node fully connected network (a net-
work where every two nodes are connected via a bi-directional
link), the number of cyclic-paths that start at a specific node and
pass through only one node isN � 1. The number of such paths
that start at the same node and pass through two intermediate
nodes is(N � 1) � (N � 2), and so on. The total number of
cyclic-paths that start at a specific node and pass through each
intermediate node once is:

N�1X
i=2

(N � 1)!

(N � i)!
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and the total number of cyclic-paths starting at any node is there-
fore:

N �
N�1X
i=2

(N � 1)!

(N � i)!
> N � (N � 1)! 8N > 2

Consequently, measuring all the possible cyclic-paths will result
in much more thanN � (N�1) constraints (or equations). How-
ever, the number of variables (delays on each link) isN �(N�1)
in a fully connected network. There are many more equations
than there are variables (number of cyclic-paths> number of
links), which means that there is a redundancy in the equation
set. The question is how many independent cyclic-paths exist
that yield independent constraints. If there wereN � (N � 1)
independent cyclic-paths then the set of constraints (equations)
could have been solved and the ”actual” one-way delays of each
link could have been obtained.

In theorem 1 we prove that in anN -node connected network,
the maximal number of independent equations obtained by mea-
suring cyclic-path delays is smaller than the number of links by
(N � 1).

Theorem 1: The maximal number of independent equations
obtained by measuring cyclic-path delays in anN -node con-
nected network falls behind the number of variables (links) by
(N � 1), i.e., the maximal number of independent equations is
E � (N � 1).

In order to prove theorem 1 we need the following:
Lemma 2: Adding a node to an(N � 1)-node connected net-

work, the number of links that are added exceeds by one the
maximal number of independent cyclic-paths traversing the ad-
ditional node that can be constructed.

Proof: Assume that theN -th node that is added is con-
nected tom nodes in the network (1 � m � N � 1). Let the
added links be denoted byN!1; 1!N; : : : ; N!m;m!N cor-
responding to the paths from nodeN to node1, node1 to node
N , etc., respectively (note that there are2m additional links).
To prove the Lemma we need to show that there are(2m � 1)
new independent cyclic-paths traversing through nodeN .

As the 2m � 1 equations, we choose the delays of them
cyclic-paths which start at nodeN traversing over a single link
to one ofN ’s neighbors and return to nodeN (all the paths of
the formN!k!N k = 1; 2; : : : ;m wherek is one of the
nodes connected toN via a link). SinceN is connected to the
network viam such links there arem such paths. In addition
we choosem � 1 paths, each of which starts at nodeN , passes
through a specific neighboring node, let us call it node1 without
any loss of generality, via linkN!1, continues to an arbitrary
nodek (k = 2; : : : ;m) via one or more links (zero or more in-
termediate nodes), and returns toN via the link k!N . Since
the network ofN � 1 nodes (prior to adding theN -th node) is
connected, there must be at least one path between the nodes1
andk. If there is more than one path between such nodes we
choose only one.

The rest of the proof of the Lemma consists of two parts. In
the first part we show that knowing the delays of the2m � 1
chosen cyclic-paths is sufficient to compute the delays of all the
cyclic paths containing nodeN . Hence, the maximal number
of independent paths traversing the additional node is2m � 1.

In the second part we show that the2m � 1 paths are indepen-
dent (we cannot compute the delay of neither one of them as a
combination of the others).

We start proving the first part by showing that by using the
2m� 1 path delays we chose, we can compute the delay of any
cyclic-path that passes through nodeN . Let us look at the delay
of the cyclic-path:fN!i �i!j j!Ng where�i!j represents
a path that starts at nodei and ends at nodej (at least one path
�i!j exists which does not pass through nodeN , since the net-
work was connected before adding nodeN ).

DelayfN!i �i!j j!Ng =

DelayfN!i �i!1 1!Ng| {z }
i

+DelayfN!1 �1!j j!Ng| {z }
ii

+Delayf�1!i �i!j �j!1g| {z }
iii

�Delayf�1!i �i!1g| {z }
iv

�Delayf�1!j �j!1g| {z }
v

�DelayfN!1!Ng| {z }
vi
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Fig. 1. Illustration of the proof

The various paths are depicted in Figure 1. Parts (ii) and (vi)
are two out of the2m � 1 chosen cyclic-paths. Parts (iii), (iv)
and (v) are cyclic-paths which do not include nodeN , hence
their delays are known. Part (i) is known since if we know the
delay of a path in one direction and the round-trip delays on
each link comprising the path, we can compute the delay of the
other path direction simply by subtracting the round-trip delays
on each link from the delay of the path:

Delayfk!j! � � �!2!1g =

Delayf1!2! � � �!j!kg

�Delayf1!2!1g � � � � �Delayfj!k!jg

We showed that we can compute the delay of any cyclic-path
that starts (and terminates) at nodeN . It is obvious that the
delay of any cyclic-path that starts at some nodez and passes
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through nodeN is the same as the matching cyclic-path starting
at N , since in both cases the same links are traversed in the
same direction exactly once. This completes the first part of the
lemma proof.

Next we show that the2m � 1 paths are independent. The
proof follows by contradiction. Suppose that one cyclic-path
can be eliminated and yet the delay of the eliminated path can
be computed as a combination of the rest of the set of cho-
sen paths. If the eliminated path is of the formN!k!N , it
means that none of the remaining cyclic-paths pass through the
link N!k (for k = 1 there is no path passing through the link
1!N ). Hence the variablexN;k = DelayfN!kg does not
appear in any of the equations and hence is impossible to com-
pute. If the eliminated path is of the formN!1!�1!j!k!N
we will have that the two variablesxN;k = DelayfN!kg and
xk;N = Delayfk!Ng appear only together and hence cannot
be separated which makes it impossible to compute any cyclic-
path including only one of them.

This concludes the proof. The set of(2m� 1) cyclic-paths is
independent, and there is no redundant path.

We now turn to prove Theorem 1.
Proof: The proof of the theorem follows by induction.

We start by constructing a network of two nodes connected via
a bi-directional link, meaning that we start with two links and
one round-trip path (one degree of freedom). In each step we
add one node that is connected to the previous step sub-network
by at least one bi-directional link. We add the node and all the
links connected to the previous step sub-network. According
to lemma 2, in each step we add one degree of freedom. So
if in step i we added nodei and theei links which connect it
to the step(i � 1) sub-network consisting of nodes1 : : : i� 1,
we added onlyjeij � 1 independent paths. The construction of
the network(N ; E) will last N � 1 steps, hence the degree of
freedom isN � 1.

Theorem 1 implies directly that in anN -nodeconnected net-
work (N ; E), using a correct choice of(N � 1) links and
E � (N � 1) cyclic-paths whose delays are measured, we can
represent the one-way delays of all theE links. We also showed
one particular set of(N�1) links andE� (N�1) cyclic-paths
that describe the rest of the links.

The next theorem states that instead of minimizing the func-
tion

P
all links(xi � x̂i)

2 over all links, we can minimize a
similar function only upon specifically chosen(N � 1) links
of an N -node connected network. To state the theorem, de-
note byw1; w2; : : : ; wN�1 the variables that correspond to the
one-way delays of theN � 1 chosen links. Similarly, let
ŵ1; ŵ2; : : : ; ŵN�1 be their respective estimates.

Theorem 3: The target functionX
all links

(xij � x̂ij)
2

can be presented as a function of the(N �1) one-way delays of
the chosen links as follows:

N�1X
k=1

N�1X
l=1

Dk;l � (wk � ŵk)(wl � ŵl) (1)

whereDk;l are constants.

Proof: According to theorem 1, in theN -node connected
network (N ; E), there areE links (their delays are our vari-
ables), and onlyE � (N � 1) independent cyclic-paths (which
are the set of independent equations). Clearly, each one-way
link delayxi;j can be presented as a linear combination of the
chosen(N � 1) independent one-way link delays:

xi;j = 
i;j +

N�1X
k=1

b
(k)
i;j wk

whereb(k)i;j are integers and
i;j are constants. We take our esti-
mateŝxi;j to have the same form, i.e.,

x̂i;j = 
i;j +

N�1X
k=1

b
(k)
i;j ŵk

Now let us concentrate on one element in the sum of the target
function, namely let us develop(xi;j � x̂i;j)

2:

(xi;j � x̂i;j)
2 =

 

i;j +

N�1X
k=1

a
(k)
i;j wk

� 
i;j �
N�1X
k=1

a
(k)
i;j ŵk

!2

=

 
N�1X
k=1

a
(k)
i;j (wk � ŵk)

!2

=

N�1X
k=1

N�1X
l=1

a
(k)
i;j a

(l)
i;j(wk � ŵk)(wl � ŵl)

Using the last result and summing over all links will result in
Eq. (1). From this derivation it is also clear thatDk;l = Dl;k for
all l; k.

An example of theorem 3 is the target function of the fully
connected network for whichDk;k = 2(N � 1) 8k andDk;l =
2 8k 6= l.

In order to complete the analysis, we still have to find

min

�Z



j~x� ~̂xj2d~x

�
which according to theorem 3 is of the form:

min

(Z



N�1X
k=1

N�1X
l=1

Dk;l � (wk � ŵk)(wl � ŵl)d~w

)

Let us partially differentiate the above with respect to each vari-
ableŵp, and equate it to zero.

@

@ŵp

(Z



 
N�1X
k=1

N�1X
l=1

Dk;l � (wk � ŵk)(wl � ŵl)

!
d~w

)
= 0

Using the fact thatDk;l = Dl;k we obtain:

Z



 
Dp;l �

N�1X
l=1

(wl � ŵl)

!
d~w = 0
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or

ŵl =

Z



1R

 d~w

wld~w 1 � l � N � 1 (2)

Note that this solution is unique due to the convexity of
. It
is interesting to see that the best estimateŵl is some kind of
averaging ofwl over
.

From the derivation in this section it is clear that one can apply
the estimation procedure even if the number of cyclic-path delay
measurements that are taken is smaller than the maximal number
(E�(N�1)). The solution would be exactly as in Eq. (2), with
the modified set
. In the extreme case where only round-trip
delay measurements among neighboring nodes will be taken, the
result of the estimation above for the one-way delay would be
halving the round-trip delay.

IV. A D ISTRIBUTED ALGORITHM

In this section we present a distributed network algorithm that
conducts the measurement of the cyclic-path delays inE�(N�
1) independent paths that yield the constraints necessary for the
estimation procedure. Designing a centralized algorithm that
performs the same measurements is trivial, since we suggested
in theorem 1 a particular set ofE� (N�1) independent cyclic-
paths.

We consider a connected network(N ; E) and assume that
each node has a unique identity. Also, each node knows its ad-
jacent links, and the identity of its immediate neighbors.
The algorithm uses the following messages:
MSGS

l (�; d)- message initiated at nodeS, received from
neighborl and� is the list of nodes that the message visited;d
serves as a flag which indicates whetherMSGS is going down-
stream or upstream.
msgk -message initiated at nodek. Relates to the part of the
algorithm which measures round-trip delay on a single link.
The algorithm uses the following variables:
Gi - set of neighbors of nodei
mS

i - indicates whetheri has already entered the algorithm (val-
ues 0,1)
pSi - neighbor from which the firstMSGS is received
�i - sublist of� including all nodes that appear after nodei in
the list.
Ti(start)- time firstMSGS is received
Ti(stop)- current time
The algorithm
Initialization
if i receives aMSGS

l , then
- just before receiving the firstMSGS(�), mS

i = 0; pSi = nil
- after receiving the firstMSGS , node i can receive only
MSGS ’s sent in the present protocol
Algorithm for node i 6= S
ForMSGS

l (�; d)
if mS

i = 0, then:
Ti(start) Time
mS

i  1; pSi  l; add ID(i) to�;
sendMSGS(�) to all neighbors exceptpSi
sendmsgi to all neighbors withID(l) > ID(i) l 2 Gi

else if((ID(l) < ID(i)) or (d == 1))
if i 2 �
Ti(stop) Time

Delayfi! ��i ! ig = Ti(start) � Ti(stop)
else ifi =2 �
add ID(i) to end of list� = f�; ID(i)g;
sendMSGS(�; d = 1) to pSi

Formsgl

if ID(l) > ID(i) (Response message to a message initiated
by i), then:

Ti(stop) Time
Delayfi! l! ig = Ti(start) � Ti(stop)

elseID(l) < ID(i)
sendmsgi to neighborl

Algorithm for node S
For START

mS  1;
TS(start)  Time;
sendMSGS(� = fSg; d = 0) to one neighbor.
sendmsgS to all neighbors withID(l) > ID(i) l 2 GS

ForMSGS
l (�; d)

TS(stop) Time
DelayfS ! �� ! Sg = TS(start)� TS(stop)

Formsgl

if ID(l) > ID(S) then:
TS(stop) Time
DelayfS ! l! Sg = TS(start)� TS(stop)

else
sendmsgS to neighborl

V. NUMERICAL SOLUTION METHOD

The solution of Eq. (2) might become complicated, mainly
due to the constraints. In this section we develop a numerical
procedure that is based on approximating the integral by a sum.
We have to sum over all vectors which are in the region
. In
other words we have to sum over all the vectors~x such that
xi;j � 0, and solve the equationA � ~x = ~�. The resolution
can be as fine as desired trading off running time. In order to
find the vectors we add to the equation setN � 1 independent
equations which relate to theN�1 independent variables. Let us
label them as(w1; w2; : : : ; wN�1) (note that thew’s are actually
part of our variablesxi;j ). TheN � 1 equations we add are:
w1 = �1; w2 = �2; : : : ; wN�1 = �N�1.

We have now a set ofE equations withE variables. In matrix
form we can write it asB � ~x = ~� where theExE matrixB and
the vector~� are:

B =

0
BBBBBBBB@

A
1 0 0 � � � 0 0 � � � 0
0 1 0 � � � 0 0 � � � 0
0 0 1 � � � 0 0 � � � 0

...
0 0 0 � � � 1 0 � � � 0

1
CCCCCCCCA
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~�=

0
BBBBBBBB@

�1
...

�N�1
�1
...

�N�1

1
CCCCCCCCA

SinceB is a non-singular matrix (all equations are inde-
pendent), we can find the inverse matrixB�1, and solve the
equation~x = B

�1 � ~�. Now all we have to do is choose
(�1; �2; � � � ; �N�1), construct the vector~�, multiply it from the
left with B�1, and check if all the elements of the derived~xare
non-negative(xi;j � 0; 8xi;j) then~x2 
. Of course we do not
have to check over all~� = (�1; �2; � � � ; �N�1). Sincexi;j � 0

we should check only~� where all elements are non-negative. In
addition, thew’s are part of thexi;j hence each of them obey an
equation of the formwi+Delayf�g = �l for somel. Therefore,
we can restrict~� only to ~� where�i � �l. We can go further
and narrow the region of possible~� (for example�i should be
no bigger than the delay of any path passing through the link
wi). Notice that the matrixB�1 should be computed only once.

Now after we know all the points~x 2 
, we can computê~x
according to Eq.(2):

~̂x=
1

m

X
~xr2


~xr

wherem is the number of points in
.

Example 1
Consider the following simple example of a fully connected

3-node network.
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]x1;2
x2;1

x2;3

x3;2

x3;1
x1;3

The following cyclic-path delays were measured:

x1;2 + x2;1 = 50

x2;3 + x3;2 = 230

x3;1 + x1;3 = 50

x1;2 + x2;3 + x3;1 = 30

We have a set ofE � (N � 1) = 6 � 2 = 4 equations with
N � (N � 1) = 6 variables. The matrixA and the vector~� are
respectively:

A =

0
BB@

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
1 0 1 0 1 0

1
CCA

~� =

0
BB@

50
230
50
30

1
CCA

We add the followingN � 1 = 2 equations:

w1 = x1;2 = �1
w2 = x2;3 = �2

B and~� are:

B =

0
BBBBBB@

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
1 0 1 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0

1
CCCCCCA

~�=

0
BBBBBB@

50
230
50
30
�1
�2

1
CCCCCCA

B is non singular, henceB�1 can be found:

B
�1 =

0
BBBBBB@

0 0 0 0 1 0
1 0 0 0 �1 0
0 0 0 0 0 1
0 1 0 0 0 �1
0 0 0 1 �1 �1
0 0 1 �1 1 1

1
CCCCCCA

Now we can solve the equation~x= B
�1~� for each�1 and�2.

Search for all~x such that all elements are non-negative(xi;j �
0) to find all ~x 2 
. Sincex1;2 + x2;3 + x3;1 = 30 ) �1 +
�2 + x3;1 = 30 ) 0 � �1 � 30 ; 0 � �2 � 30, we can
limit the search only to�i in the range above. After we find all
~x2 
 according to the resolution on which we decided to check
�1 and�2, we can compute

~̂x=
1

m

X
~xr2


~xr

which results in:

x̂1;2 = 10 ; x̂2;1 = 40 ; x̂2;3 = 10

x̂3;2 = 220 ; x̂3;1 = 10 ; x̂1;3 = 40

Note that based only on single link round-trip delays, and halv-
ing the measured round-trip delays on each link, will result in:

x̂1;2 = 25 ; x̂2;1 = 25 ; x̂2;3 = 115

x̂3;2 = 115 ; x̂3;1 = 25 ; x̂1;3 = 25

which is definitely not the correct one-way delays.
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Example 2
Consider the following example of a 10-node(N = 10) con-

nected network withE = 24 links.
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Fig. 2. Network for example 2

The following cyclic-path delays were measured:

x1;2 + x2;1 = 5 x2;3 + x3;2 = 5
x3;5 + x5;3 = 5 x5;6 + x6;5 = 5
x2;4 + x4;2 = 5 x4;7 + x7;4 = 5
x6;8 + x8;6 = 5 x8;9 + x9;8 = 5
x7;9 + x9;7 = 5 x9;10 + x10;9 = 5
x6;1 + x1;6 = 5 x10;1 + x1;10 = 5

x1;2 + x2;4 + x4;7 + x7;9 + x9;10 + x10;1 = 24
x1;2 + x2;3 + x3;5 + x5;6 + x6;1 = 18
x1;6 + x6;8 + x8;9 + x9;10 + x10;1 = 19

Note that the maximal independent cyclic-path delay measure-
ments that can be taken isE � (N � 1) = 15 in this example.

Applying our estimation procedure for this example we ob-
tain:

x̂1;2 = 4:35 x̂2;1 = 0:65 x̂2;3 = 3:74 x̂3;2 = 1:26
x̂3;5 = 3:74 x̂5;3 = 1:26 x̂5;6 = 3:74 x̂6;5 = 1:26
x̂2;4 = 3:63 x̂4;2 = 1:37 x̂4;7 = 3:63 x̂7;4 = 1:37
x̂6;8 = 3:83 x̂8;6 = 1:17 x̂8;9 = 3:83 x̂9;8 = 1:17
x̂7;9 = 3:63 x̂9;7 = 1:37 x̂9;10 = 4:38 x̂10;9 = 0:62
x̂6;1 = 2:43 x̂1;6 = 2:57 x̂10;1 = 4:38 x̂1;10 = 0:62

As with the previous example we observe that halving round-trip
measurements would result in a one-way delay of 2.5, which is
incorrect.
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