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Estimating Origin-Destination flows using
opportunistically collected mobile phone location

data from one million users in Boston Metropolitan
Area

Francesco Calabrese, Member, IEEE, Giusy Di Lorenzo, Liang Liu, Carlo Ratti

Abstract

In this paper, we present an algorithm for the analysis of opportunistically collected mobile phone location
data to estimate a population’s travel demand in terms of origins and destinations of individual trips. Aggregating
the trips from millions individual mobile phone users in the Boston Metropolitan area, we show that the estimated
Origin-Destination flows correlate well with the US Census estimates at both the county and census tract levels.
Moreover, compared to traditional census survey data, our estimations allow capturing weekday and weekend
patterns as well as seasonal variations. These features could make methods for Origin-Destination flow estimation
based on opportunistically collected mobile phone location data a critical component for transportation management
and emergency response.

I. INTRODUCTION

Origin Destination (OD) matrices represent one of the most important sources of information used for
strategic planning and management of transportation networks. A precise calculation of OD matrices is
an essential component for enabling administrative authorities to optimize the use of their transportation
networks, not only for the benefit of users on their daily journeys but also with a view to the investments
required to adapt these infrastructures to envisaged future needs. Traditionally, urban planning and trans-
portation engineering rely on household questionnaires or census and road surveys conducted every 5-10
years and develop methodologies for OD matrices estimation. This approach has two main drawbacks:

• the process involved in the calculation of an OD matrix, from the initial data-gathering to the
exploitation of the first results, is lengthy and may take years to only get a snapshot of the travel
demand;

• the collected data has shortcomings both in terms of spatial and temporal scale.
Sensor-based OD estimation methods have also been developed in the past few years, making use of street
sensors such as loop detectors and video cameras together with traffic assignment models. Analogous
methods have been developed using probe vehicles, where vehicles traces are used as data sources [1],
[2]. Those methods are, however, limited by the fact that models are often underdetermined because the
number of parameters to be estimated is typically larger than the number of monitored network links [3].

On the other hand, the wide deployment of pervasive computing devices (e.g. mobile phone, smart cards,
GPS devices and digital cameras) provide unprecedented digital footprints, telling where people are and
when they are there. In former projects, different methodologies for detecting the presence and movement
of crowds through their digital footprint (flickr photo, mobile phone logs, smart card record and taxi/bus
GPS traces) were developed, see for instance [4]–[6]. This fine grained analysis can potentially make a
big leap in terms of understanding the use of space and daily commuting flows for the purposes of urban
mobility planning and management. Thus, it is no surprise that the idea of using mobile phones to monitor
traffic conditions is not new. A fair number of studies relating to this matter have been published in recent
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years. Bolla et al. [7] presented a model for estimating traffic by means of an algorithm that calculates
traffic parameters on the basis of mobile phone location data. A case study was developed in Rome for real
time urban monitoring using aggregated mobile phone data to monitor traffic and movement of vehicles
and pedestrians [8]. Cayford et al. analyzed the main parameters to be taken into account, namely precision,
metering frequency and the number of localizations necessary to achieve accurate traffic descriptions [9].
Several companies worldwide, including ITIS Holdings (Britain), Delcan (Canada), CellInt (Israel), as
well as AirSage and IntelliOne (USA), have begun developing commercial applications of mobile phone
based traffic monitoring.

With the specific goal of measuring origin-destination flows, different mobile phone signaling datasets
have been considered and simulated to evaluate the feasibility of estimating trips. Initial work was done
by [10] using billing data, consisting of cell phone tower information every time a phone received or made
a call. In [11] the authors used mobile phone positions every two hours to infer trips. In [12] the authors
studied the use of location updates to infer mobile phone movement. In [13] the authors used cell phone
tower handover information acquired every time, during a call, a phone switches a tower it is connected
to. In the latest effort, [14] estimated the daily OD demand using simulated cellular probe trajectory
information (extracted from location updates, handover, and transition of Timing Advance values) and
tested the methodology via the VISSIM simulation.

Though these results show great potential for using cellular probe trajectory information as a means
to estimating travel demand, all methods have several shortcomings before they can be put into practice.
Indeed, as mentioned in [14], field tests are needed for the following reasons:

• real coverage areas of cellphone towers are very different from the simulated ones, and vary from
urban to rural areas;

• validations of methods to determine origin and destination of trips should be performed using real
individual mobility data;

• real mobility and calling patterns should be included in the analysis, as they crucially influence the
performance of the methods;

• existing OD matrices should be used as ground truth to verify the correctness of the estimated results.
In this paper, we design a methodology that makes use of opportunistically collected mobile phone

location data to estimate dynamic OD matrices. We address all above concerns using a real mobility
and calling dataset from 1 million mobile phone users. We use the Boston Metropolitan area as a case
study and validate our methodology using census survey data for both county and census tract levels [15].
Both the methodology developed and the data precision and amount are thus far novel and unique to our
knowledge.

The paper is structured as follows. Section II describes the mobile phone dataset considered. Section III
describes the OD estimation method. Section IV shows the application of the method to a real case study
in the Boston Metropolitan area, and comparison of the estimated OD matrices with Census commuting
flows. Section V shows some new potentials for dynamically updated OD matrices. Finally, discussion
and conclusion are given.

II. MOBILE PHONE DATASET

The considered dataset consists of anonymous location measurements generated each time a device
connects to the cellular network, including:

• when a call is placed or received (both at the beginning and end of a call);
• when a short message is sent or received;
• when the user connects to the internet (e.g. to browse the web, or through email programs that

periodically check the mail server).
In the remainder of the paper we will call these events network connections. These events represent a
superset of the ones contained in the Call Details Records, previously considered in [10], [16]. In this
research we have been able to analyze 829 million mobile location data for 1 million device collected
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by AirSage1. Not only the id of the cell tower the mobile phone is connected to was available, but also
an estimation of its position within the cell is generated through triangulation by means of AirSage’s
Wireless Signal Extraction technology. Each location measurement mi ∈ M is characterized by a position
pmi expressed in latitude and longitude and a timestamp tmi .

In order to infer trips from these measurements, we first characterized the individual calling activity
and verified whether that is frequent enough to allow monitoring the user’s movement over time with a
fine enough resolution. For each user we measured the interevent time i.e. the time interval between two
consecutive network connections (similar to what was measured in [16]). The average interevent time
measured for all the whole population was 260 minutes, much lower than the one found in [16] (500
minutes) as we are also considering mobile internet connections. Since the distribution of interevent times
for an user spans over several temporal scales, we further characterized each calling activity distribution
by its first and third quantile and the median. Fig. 1 shows the distribution of the first and third quantile
and the median for all users available into the dataset. The arithmetic average of the medians is 84 minutes
(the geometric average of the medians is 10.3 minutes) with results small enough to detect changes of
location where the user stops as low as 1.5 hours.
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Fig. 1. Characterization of individual calling activity for the whole population. Median (solid line), first quantile (dash-dotted line) and
third quantile (dashed line) of individual interevent time.

Mobile phone-derived location data has lower resolution than GPS data: internal and independent testing
suggests an average uncertainty radius of 320 meters, and a median of 220 meters. Moreover, at some
peak usage periods additional locational error may be introduced when users are automatically transferred
by the network from the closest cellular tower to one which is further away but less heavily-loaded.

III. ORIGIN-DESTINATION ESTIMATION METHOD

The procedure for estimating dynamic OD matrices is composed of two steps: trips determination and
origin-destination estimation.

To alleviate the effects of localization errors and event-driven location measurements on the determina-
tion of individual trips, we propose the following method: we apply a low-pass filter with a resampling rate
of 10 minutes to the raw data, this follows an approach tested with data from Rome, Italy [8]. In addition,
since lesser localization errors might still generate fictitious trips, we adapt a pre-processing step employed
in the analysis of gps traces, which uses clustering to identify minor oscillations around a common location.
In more detail, the approach employed to handle locational errors and identify meaningful locations in a
user’s travel history can be understood as follows:

1http : //www.airsage.com/
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• We begin with a measurement series Ms = {mq,mq+1, . . . ,mz} ∈ M z−q−1, q > z, derived from a
series of network connections over a certain time interval ∆T = tmz − tmq > 0.

• We define an area with radius ∆S – in this case, 1km to take into account the localization errors
estimated by AirSage – such that

max distance(pmi , pmj) < ∆S ∀ q ≤ i, j ≤ z

• All the consecutive points pj ∈ Ms for which this condition holds can be fused together such that
the centroid becomes a ‘virtual location’ (ps = (z − q)−1

�i=z
i=q pmi , the centroid of the points) that

is the origin or destination of a trip.
• Once the virtual locations are detected, we can evaluate the stops (virtual locations) and trips as paths

between users’ positions at consecutive virtual locations. Each trip trip(u, o, d, t) is characterized by
user id u, origin location o, destination location d and starting time t.

Section IV presents some statistics on the trips estimated using the proposed method comparing it with
reference statistics, showing how the method performs well in estimating trips in our case study.

Once trips are extracted, the procedure to derive Origin-Destination flows is the following:
1) The geographical area under analysis is divided into regions: regioni, i = 1, . . . , n.
2) Origin and destination regions, together with starting time are extracted for each trip of each user

trip(u, o, d, t).
3) Trips with the same origin and destination regions are grouped together at different temporal windows

tw e.g. weekly, daily, hourly:

m(i, j, tw) =
�

o∈regioni, d∈regionj , t∈tw

trip(u, o, d, t).

The result is a three-dimensional matrix M ∈ �3 whose element m(i, j, tw) represents the number of
trips from origin region i to destination region j starting within the time window tw. The potentials of
using adaptive time windows will be shown in Section V-A.

IV. CASE STUDY IN THE BOSTON REGION AND COMPARISON WITH CENSUS COMMUTING FLOWS

In this section we study the effectiveness of the methodology in a real case study in the Boston region.
Based on the area covered by the mobile phone locations dataset, we analyzed the movements among areas
in 8 counties in east Massachusetts (Middlesex, Suffolk, Essex, Worcester, Norfolk, Bristol, Plymouth,
Barnstable) with an approximate population of 5.5 million people. To simplify the analysis, we extracted
traces for 25% randomly selected users among the available ones.

A. Characterization of trips

As a first analysis we studied the trip length distribution (see Figure 2(a)), showing that trips range
from 1 to 300 Km. We determined the trip length x by calculating the Euclidean distances among trip’s
origin and destination. The distribution is well approximated by P (x) = (x+14.6)−0.78exp(−x/60) with
R2 = 0.98, which confirms what was found in [16]. The slightly different coefficients found in this case
could be attributed to the different built environment in Europe and US, see [17]. To check the plausibility
of our segmentation of the trajectory in trips, we compute same statistics computed on the number of
individual trips per day. The distribution over the whole population is shown in Figure 2(b), separating
weekday and weekend trips. We obtain an average of 5 trips per day during the weekday, and 4.5 during
the weekend. This number is reasonable when compared to the US National Household Travel Survey2

which evaluated this number to be between 4.18 during weekdays and 3.86 during weekends3.
2http://nhts.ornl.gov/
3The sources of differences can be associated to several reasons, including the several years of difference between when the two datasets

have been collected, and the fact that NHTS is based on a sample over all US population, so not focused on the behavior of people in the
Boston Metropolitan area.
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(a) Trip length distribution. Curve interpolated with P (x) = (x+
14.6)−0.78exp(−x/60) with R2 = 0.98.
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Fig. 2. Statistics on the detected trips.

To evaluate whether we have sampling biases in our data, we computed the home locations distribution
estimated from the mobile phone data, and compared it with data from the US 2000 Census. To detect
the home location, we first group together geographic regions that are close in space, creating a grid in
space where the side of every cell is 500 meters. For each cell we evaluate the number of nights the user
connects to the network in the night time interval while in that cell, and select as a home location the
cell with the greatest value4.

To validate the home location distribution, we then compared it with population data from the US 2000
Census, at the level of the census tract [18]. In the selected 8 counties, we have 1171 distinct census
tracts, with populations ranging from 70 to 12 thousand people (on average 4705), and an area ranging
from 0.08 to 203 km2 (on average 10.8 km2). The census tract population estimated using mobile phone
users’ home locations scales linearly with the Census population, as shown in Figure 3(b), corresponding
to an average 4.3% of the population being monitored.

B. Characterization of OD flows

To validate the accuracy of the OD matrices produced using the mobile phone traces, we used the most
recent Tract-Tract Worker Flows dataset from Census Transportation Planning Package [15]. CTPP is a
special tabulation of responses from households completing the Census long form. It is the only Census
product that summarizes data by place of work and tabulates the flow of workers between home and work.

The Tract-Tract Worker Flows data shows the number of workers in each tract of work by tract of
residence. Workers are defined as people age 16 years old and over who were employed and at work,
full time or part time, during the Census reference week (generally the last week of March). The data
contains the number of workers in the flow who were allocated to tract, place, and county of work.

Given the two levels of granularity (tract and county) available in the CTPP dataset, we computed our
OD estimates at two levels of aggregation. Since commuting flow generally accounts for two trips (home
to work and work to home), we considered undirected flows between two locations to compare our OD

4The considered night time interval is 6pm-8am and has been defined considering the statistics available in the American Time Use Survey,
http://www.bls.gov/tus/charts/work.htm
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(a) Census tract population density derived from Cellphone users’ estimated home locations
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the standard error.

Fig. 3. Census tract population density derived from US 2000 Census compared to Cellphone users’ estimated home locations density

estimations. For each granularity, we computed the average daily number of trips:

mAll(i, j) =
KAll

#days

�

tw=day

(m(i, j, tw) +m(j, i, tw)),

i = 1, . . . , n, j = 1, . . . , i− 1,

where KAll is a scaling factor we use to compare them with the Census estimations.
Moreover, since according to the definition, the census dataset includes only commuting trips, we

evaluated the average daily number of trips made only on weekdays mornings (6-10am) from the estimated
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home to estimated work location5:

mWM(i, j) =
KWM

#weekdays

�

tw=wm

(m(i, j, tw) +m(j, i, tw)),

i = 1, . . . , n, j = 1, . . . , i− 1,

where KWM is a scaling factor. Finally, we also considered the well known and widely used gravity
model [19] to compare our predictions with:

mGravity(i, j) = KG
Pi · Pj

di,j
2 , i = 1, . . . , n, j = 1, . . . , i− 1,

where KG is a scaling factor, and di,j is the Euclidean distance (in kilometers) between the centroids of
the regions. The results at the county level are shown in Figures 4(a). The plots correspond to models
which minimize the least square errors, using: KAll = 16.9 for the prediction made with the average
number of trips in a day mAll; KWM = 71.4 for the prediction made with the average number of trips
on weekday mornings mWM . and KG = 58.4 for the gravity model mGravity.

Correlations show very encouraging results, with R2 = 0.59 for the gravity model, R2 = 0.73 for
the prediction made with all trips, and the best result R2 = 0.76 for predictions made considering only
weekday morning trips. The resulting high correlation shows that the estimated OD matrices are able to
resemble very well OD matrices generated using completely different information.

Using the best model mWM , we compared our results with the tract level census data. At this level, noise
is more evident (see Figure 4(b)), but still we can see on average a very good linear relationship between
census estimation and our estimation. R2 = 0.36 in this case, which is however very high compared to the
R2 = 0.10 of the gravity model6. The relatively low value of R2 compared to the county level analysis is
partially due to the fact that the relationship seems less linear for cases when the census estimates less
than 10 trips from tract to tract. This might be explained by the fact that census flows are estimated from a
subsample, that might result in very small numbers for particular pairs of census tracts. Moreover, census
estimates were not available for the same year as the mobile phone data, and origins and destinations of
trips might have slightly changed (at this high level of spatial detail) between the two monitored periods.

We note that the scaling factor KWM used for the last model mWM corresponds to a share of monitored
trips which is about 1.4% compared to the census estimations. This factor can be explained by the
percentage of mobile phones selected (about 4.3%) and by the calling activity which is not very high in
the morning. Other elements such as the fact that we are monitoring not only commuting flows might
explain the remaining difference. Estimating KWM allows to extrapolate the ODs computed using the
mobile phone data to the whole population.

V. NEW POTENTIALS

Origin-destination flows data estimated through census surveys have the following limitations (see [15]):
• The decennial census monitors ”usual” days to avoid local or regional anomalies such as transit strike

or severe weather, on a single sampling day. However, this tends to hide the less common uses, such
as telecommuting once every two weeks or carpooling once a week due to the ever-changing life
and work patterns.

• According to the definition, the census dataset does not include non-work trips, and modelers have
to develop relationships between work and non-work trips.

• The census data is based on a fixed point ”snapshot” approach, and so transportation planners can
only interpret data over geographic space, rather than over time.

5The work location has been estimated as the most frequent stop area on weekday morning 8-10am.
6We have also evaluated more sophisticated gravity-like models by optimizing the d exponent and substituting the populations with the

total estimated number of trips outgoing or incoming an area, but have still obtained R2 < 0.3.
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Fig. 4. Comparison between mobile phone and census OD estimates. Error bars are showing one standard deviation from the average.

Compared with traditional census data, our methodology to detect OD matrices from mobile phone
traces has several advantages:

• It can capture the weekday and weekend patterns as well as seasonal variations.
• It can capture work trips and non-work trips, which is essential for trip chaining and activity based

modeling.
For these reasons, they could then be used to complement traditionally generated OD matrices providing
a very fine grain spatialtemporal patterns of mobility.

In the following subsections, examples of these potentials are shown.

A. Temporal analysis

While the census gives only a static information about origin-destination flows, the OD matrices derived
from mobile phone data allows us to appreciate the differences in travel demand over time. Figure 5(a)
shows the total daily travel demand for 3 different weeks in October 2009. A weekly pattern clearly
appears in the travel demand, with the minimum over weekends (especially sundays) and a maximum
over fridays. Moreover, Figure 5(a) shows a particular change in travel demand in the second monday
(day number 9 in figure), corresponding to Columbus Day. For a better look at this pattern, we plot the
hourly travel demand for Columbus Day compared to the other mondays (see Figure 5(b)). We clearly
see a higher travel demand in the first 2 hours of the day, followed by lower demand from 4 to 9, and
from 12 to 20, due to the holiday.

B. Spatiotemporal analysis

Our methodology can capture very fine grain OD matrices in both spatial and temporal scale, essential
data for understanding transport demand and transport modeling especially during special events. For
example, Figure 6 compares the incoming flows toward the Boston Baseball stadium Fenway Park. We
compare two different days: Sunday October 11th where the local baseball team the Red Sox played
against the Angels in a postseason game, and an average sunday without events. As it can be seen from
the figures, we are able to capture the increasing incoming flow due to the special event, both in terms
of new origins of trips, and in volumes of flow. Further studies with the same dataset have also shown
regular spatial patterns of attendee origins based on the type of event, information that would be very
valuable for event management [5].
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(a) Normal Sunday. (b) Day of the Red Sox game.

Fig. 6. Incoming trips in the Fenway Park area. Flow volume is represented by the thickness of the line.

VI. DISCUSSION AND CONCLUSION

As shown in this study, pervasive datasets such as mobile phone traces provide rich information
to support transportation planning and operation. Meanwhile, some related limitations should also be
addressed when applying these datasets in mobility analysis. A crucial parameter to take into account is
the localization error, which limits the minimum size of the regions that can be considered. Other elements
that can affect the statistical results include: 1) the market share of the mobile phone operator from which
the dataset is obtained, 2) the potential non-randomness of the mobile phone users (e.g. teenagers), 3)
calling plans which can limit the number of samples acquired at each hour or day, 4) number of devices
that each person carries. Moreover, due to the fact that the considered dataset is event-driven (location
measurements available only when the device makes network connections) the connection patterns of
users can affect the possibility to capture more or less trips. This last limitation could be solved by
continuous location readings from GPS devices, which would however require the users consent. An hybrid
approach could be envisioned, integrating both event-driven and continuous location measurements, as the
current method can be easily generalized to different datasets with different spatio-temporal resolutions.
Nonetheless, the analysis performed on the inter-event time, the spatial distribution of mobile phone users,
and comparisons with census estimations confirm that the mobile phone data represent a reasonable proxy
for human mobility.
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Apart from reproducing data derived by means of expensive census surveys, our methodology to detect
OD matrices from mobile phone traces has several advantages: 1) It can capture the weekday and weekend
patterns as well as seasonal variations. 2) It can capture work and non work trips. 3) It can produce real
time, continuous OD matrices which can capture the very fine grain spatialtemporal patterns of urban
mobility.

Future work will involve reproducing the analysis for other cities, in order to understand which
parameters influence the scaling factors to be used to extrapolate the ODs computed using the mobile
phone data to the whole population. The research output will give transport planners an automatic and
systematic way to understand the dynamics of daily mobility in a real complex metropolitan area.
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