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ABSTRACT
This study focuses on computations on large graphs (e.g.,
the web-graph) where the edges of the graph are presented
as a stream. The objective in the streaming model is to
use small amount of memory (preferably sub-linear in the
number of nodes n) and a few passes.

In the streaming model, we show how to perform sev-
eral graph computations including estimating the probabil-
ity distribution after a random walk of length l, mixing time,
and the conductance. We estimate the mixing time M of a

random walk in Õ(nα+Mα
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) space and Õ(
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passes. Furthermore, the relation between mixing time and
conductance gives us an estimate for the conductance of the
graph. By applying our algorithm for computing probability
distribution on the web-graph, we can estimate the PageR-

ank p of any node up to an additive error of
√
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space, for any α ∈ (0, 1]. In particular, for ε = M/n, by set-

ting α = M−
1
2 , we can compute the approximate PageRank

values in Õ(nM−
1
4 ) space and Õ(M

3
4 ) passes. In compari-

son, a standard implementation of the PageRank algorithm
will take O(n) space and O(M) passes.

Categories and Subject Descriptors
F.2.3 [Theory of Computation]: Analysis of algorithms
and problem complexityTradeoffs among Complexity Mea-
sures

General Terms
Algorithms, Theory, Performance
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1. INTRODUCTION
The scale of the Internet has greatly increased both our

ability to produce and the need to process extremely large
amounts of data. While most data can be stored in sec-
ondary storage, processing such large data is usually per-
formed using physical memory (RAM) which is a limited
resource. The streaming model admits an ideal approach to
processing the data. In this model, the data is presented
as a stream and any computation on the stream relies on
using a small amount of memory. Many streaming algo-
rithms exist for computing frequency moments (with match-
ing lower bounds), quantiles, and norms [1, 21, 7, 6, 25, 15,
16], and computations over graphs including counting trian-
gles, properties of degree sequences, and connectivity [4, 10,
11, 13, 24, 26]. In this study we compute the PageRank [8]
of a large graph presented as a stream of edges in no particu-
lar order; neither is it required that all the edges incident on
a vertex be grouped together in the stream. Real world net-
works such as the web and social networks can be modeled
as large graphs. Other instances of large graphs include click
graphs generated from search engine query logs, document-
term graphs computed from large collection of documents
etc. These graphs described above readily admit a stream-
ing model. Moreover, they also admit link-based ranking
algorithms like the PageRank algorithm to compute the rel-
ative importance of nodes in the graph.

While the basic requirements of streaming algorithms in-
clude small space and a small number of passes, these quan-
tities can vary significantly from algorithm to algorithm.
Demetrescu et. al. [11] give an excellent exposition on the
space-passes trade off in graph streaming problems. After
Henzinger et. al. [20] showed linear lower bounds on the
“space × passes”product for several problems including con-
nectivity and shortest path problems, there has been the
work of Demetrescu et. al. [11] that proposed streaming
graph algorithms using sublinear space and passes to com-
pute shortest paths on directed graphs. In this study we
propose algorithms that require sublinear space and passes
to compute the approximate PageRank values of nodes in a
large directed graph.

The graph is stored in secondary storage as its large size
makes it infeasible to store the entire graph in main memory.
Hence, it is only practical to process such graphs with a small
amount of memory even at the expense of using multiple
passes. Given a web-graph representing the web pages and
links between them, the PageRank algorithm computes the
probability distribution of a random surfer visiting a page on
the web. In general the PageRank of a page u is dependent



on the PageRank of all pages v that link to u as PR(u) =P
(v,u)∈E PR(v)/d(v) where d(.) represents the out-degree.

A standard implementation of the algorithm requires several
iterations, say M , before the values converge. Alternately,
this process can be viewed as a random walk requiring M
steps. The typical length is about 200. In fact, the random
walk is performed on a slightly modified graph that captures
a random reset step in the PageRank algorithm. This step
was introduced to model the random jump of a surfer from a
page with no out-links to another page on the web and it also
improves the convergence time of the algorithm. Typically,
in a PageRank computation, the nodes with large PageRank
are of interest.

Besides PageRank, other graph properties of interest in-
clude connectedness, conductance, mixing time, and the spars-
est cut. It is well known and was first shown by Jerrum and
Sinclair [23] that the mixing time M and conductance φ are
related as φ2/2 ≤ 1

M
≤ 2φ 1.

1.1 Contributions of this study
A random walk of length l can be modeled as a matrix-

vector computation v = Alu, where u is the initial distri-
bution on the nodes (typically uniform), A is the transition
matrix that corresponds to a single step in the random walk
on the underlying graph, and v is the final distribution after
performing the walk. The problem of computing a single
destination of a random walk of length l starting from a
node picked from the distribution u is same as sampling a
node from the distribution v. So by simply maintaining an
array of size n that represents the probability distribution,
we can compute v in l passes and O(n) space. Thus, a
standard implementation of the PageRank algorithm, that
computes the stationary distribution, will require M passes
and O(n) space, where M is the mixing time. In compar-

ison, our work requires Õ(
√
M) passes and o(n) space to

compute the PageRank of nodes with values greater than
M/n. This requires the knowledge of the mixing time. We
also provide an algorithm to estimate the mixing time. In
this paper we provide algorithms on a graph stream for the
following problems -

• Running a single random walk of length l in O(
√
l)

passes. In fact, we show how to perform n/l inde-
pendent random walks using space sublinear in n and
passes sublinear in l,

• Approximating the probability distribution (the PageR-
ank vector) of nodes after a random walk of length l.

• Approximating the mixing time, i.e., the time taken
before the random walk starting from an initial distri-
bution reaches within ε of the steady state distribution
under the L1-norm.

• Estimating the conductance of a graph.

For all these results, the main goal is to use as few passes
over the stream as possible, while using space sub-linear in
the number of nodes in the graph. Notice that for a dense
graph (number of edges Ω(n2)), the space used by our algo-
rithms are asymptotically less than square-root of the length

1Note that mixing time is well-defined only for aperiodic
graphs. Bipartite graphs, for example, are not aperiodic. On
the other hand, the bipartiteness of a graph can be checked
in a single pass, see e.g., [13]

of the stream. To compute the probability distribution over
nodes after a random walk of length l, a naive algorithm
uses l passes and O(n) space by performing l matrix-vector
multiplications. We show how to approximate the same dis-
tribution; For any node with probability p in the distribu-

tion, we can approximate p within p±√εp in Õ(
q

l
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and Õ(min(nα+ 1
ε
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)) space. Note

that approximating p within p ± √εp can also be viewed

as a 1 ±
p
ε/p approximation ratio which is close to 1 for

p much larger than ε. This means we can estimate the
probability value with high accuracy for nodes with large
probability. Note that in the context of PageRank com-
putation, we set l to the mixing time M of the random
walk. For concreteness, this means we can estimate the

PageRank p of a node within p ± √εp in Õ(nM−
1
4 ) space

and Õ(M
3
4 ) passes for ε = M/n. We also show how to

find what we call the ε-near mixing time, i.e. the time
taken for the probability distribution to reach within ε of
the steady state distribution under the L1-norm. This algo-

rithm takes Õ(nα + poly(ε−1)(Mα
√
n +

q
Mn
α

)) space and

Õ(
q

M
α

) passes on undirected graphs, where M is the actual

mixing time of the graph. This automatically gives a result
for estimating the conductance of the graph.

1.2 Related Work
Data streaming algorithms became popular since the fa-

mous result of Alon et. al. [1] on approximating frequency
moments. Since then, there has been a surge of papers look-
ing at various problems in the data streams setting. In par-
ticular, there has been significant attention to computing
various frequency moments as they provide important statis-
tics about the data stream. Tight results are known for
computing some of them, while others remain open [7, 21].
Recent streaming results include estimating earth-movers
distance [22], communication problems [14, 30], counting
triangles in graphs [4, 24, 9], quantile estimation [16, 19],
sampling and entropy information [18, 17], and graph match-
ings [26].

This is by no means a comprehensive summary of all the
results on data streams. There are many more studies on
streaming problems including filtering irrelevant data from
the stream, low rank approximation and fast multiplication
of matrices, characterizing sketchable distances, scheduling
problems, work on dynamic geometric problems, generating
histograms, and finding long increasing subsequences in data
streams.

In comparison to the work on aggregating statistics of a
data stream, the work on graphs as data streams is limited.
Demetrescu et.al. [11] show space-pass trade-offs for shortest
path problems in graph streams. In general, it seems hard to
approximate many properties on graphs while maintaining
sub-linear space in the number of vertices in the graph, by
performing only a constant passes over the stream.

A very interesting piece of work is due to Sarlos et al [28]
who give approaches to finding summaries for hyperlink anal-
ysis and personalized PageRank computation. Their study
is not under the data streams setting; rather, they use sketch-
ing techniques and construct simple deterministic summaries
that are later used by the algorithms for computing the
PageRank vectors. They give lower bounds to prove that



the space required by their algorithms is optimal, under
their setting. Given an additive error of ε and the prob-
ability δ of an incorrect result, their disk usage bound is
O(n log (1/δ)/ε).

There has also been work on s, t connectivity [12, 3] not
under the streams setting; however it is not clear that ex-
tending to the streaming model is possible. Recent work
by Wicks, Greenwald [29] shows an interesting approach to
parallelizing the computation of PageRank. McSherry [27]
exploits the link structure of the web graph within and across
domains to accelerate the computation of PageRank. An-
dersen et. al. [2] computes local cuts near a specified vertex
using personalized PageRank vectors

The main ingredient in all our algorithms is to perform
random walks efficiently. We begin by presenting the algo-
rithm for running one random walk of length l in a small
number of passes, in Section 2. The main idea in this algo-
rithm is to sample each of the n nodes independently with
probability α and perform short (length w) random walks
from each of the sampled nodes, in w passes. We then try
to merge these walks to form longer random walks from the
source. The main idea in estimating the probability distri-
bution or mixing time is running several such random walks.
However, running several random walks requires some ad-
ditional ideas to ensure small space. We describe how to
efficiently run a large number of random walks in Section 3.
This also gives an algorithm for approximating the proba-
bility distribution after a random walk. The algorithm for
approximating the mixing time uses these ideas and is de-
scribed in Sections 4. Section 5 provides an alternate algo-
rithm for estimating the probability distribution with higher
accuracy more efficiently for certain values of ε.

2. SINGLE RANDOM WALK
We first present an algorithm to perform a single random

walk over a graph stream efficiently. The naive approach
is to do this in O(1) space and l passes by performing one
step of the random walk with every pass over the stream.
In a randomized edge stream (as opposed to an arbitrary
edge stream), one can do slightly more than one step with
every pass, in expectation. However, this still requires O(l)
passes over the stream for a random walk of length l. At the
other extreme, one can perform a random walk of length l
in 1 pass and O(nl) space by sampling l edges out of each
of the n nodes in one pass. Subsequently, with these nl
edges stored, it is possible to perform a random walk of
length l without any more passes, as with l edges out of
each node, the random walk cannot get stuck at a node
before completing a walk of length l. In this section, we
show the following result.

Theorem 2.1. One can perform a random walk of length

l in O(
q

l
α

) passes and O(nα +
q

l
α

) space, for any choice

of α with 0 < α ≤ 1.

Setting α = 1, we get the following corollary.

Corollary 2.2. One can perform a random walk of length
l in O(

√
l) passes and O(n) space.

We first describe the overall approach of our algorithm.
Perform short random walks out of sampled nodes - The

main idea in our algorithm is to sample each node with prob-
ability α independently and perform short random walks of

length w from each sampled node; this is done in w passes
over the stream. The algorithm tries to extend the walk from
the source by merging these short walks to form a longer ran-
dom walk. It may get stuck in one of two ways. First, the
walk may end up at a node that has not been sampled. Sec-
ond, the walk may end up at one of the sampled nodes for a
second time; notice that its stored w length walk cannot be
used more than once in order to preserve the randomness of
the walk. Note that sampling each node with probability α
can be done by using a pseudo-random hash function on the
node id.

Handling stuck nodes - While constructing the walk if it
gets stuck at a node, from which no unused w-length walk
is available, we will refer to such a node as a stuck node.
We handle stuck nodes as follows. We keep track of the
set S of sampled nodes whose w length walks have already
been used in extending the random walk so far. We sample
s edges out of the stuck node and each node in S in one
pass. We then extend the walk as far as possible using these
newly sampled edges. If the new end-point is a sampled
node whose w-length walk has not been used (i.e., it is not
in S), then we continue merging as before. Otherwise, if the
new end-point is a new stuck node, we repeat the process
of sampling s edges out of S and all the stuck nodes visited
since the last w-length walk was used. Finally, if the new
end-point is not a stuck node, we continue appending w
length walks as before.

We need to argue that whenever the algorithm hits a stuck
node, it makes sufficient progress with each pass. Note that
after each round of sampling s edges out of the stuck nodes
and the nodes in S, either we reach a node that is not stuck
and hence make w progress, or we make a progress of s
steps and find no new stuck node or we find a new stuck
node. The point is that the we cannot keep finding new
stuck nodes repeatedly for too long as each new node is a
sampled node with probability α. So, it is unlikely we will
visit more than O(1/α) new stuck nodes in a sequence before
becoming unstuck.

The notation in the algorithm SingleRandomWalk uses
T to denote the sampled nodes obtained by sampling each
node with probability α independently. The table W in-
dexed by a sampled node (say t) stores the end point of the
w length walks starting at t as W [t]. Note that this table
can be populated in w passes while using O(αn) space. The
set S keeps track of all nodes in T whose w length walks get
used up. The algorithm continues extending the walk using
the w length walks implicitly stored in the table W until it
finds a stuck node. The module HandleStuckNode pro-
ceeds by sampling s edges out of S ∪ R where R is the set
of stuck nodes visited in the current invocation.

Remark 2.3. The length of the walk produced by algoritm
SingleRandomWalk could exceed l slightly (by at most w).
To prevent this we can run the algorithm till we get a walk
of length at least l−w and then extend this walk to length l
in at most w additional passes.

Remark 2.4. Note that since we only store the end-points
of w length walks in W , the internal nodes are not available
in Lu at the end of the algorithm SingleRandomWalk.These
w-length walks can be reconstructed by making pseudo-random
choices while creating the w length random walks in Step 3
of SingleRandomWalk, and reusing the coin tosses to re-
construct them at the end. A single pseudo-random hash



Algorithm 1 SingleRandomWalk(u, l)

1: Input: Starting node u, and desired walk length l.
2: Output: Lu the random walk from u of length l.
3: T ← set of nodes obtained by sampling each node inde-

pendently with probability α (in one pass).
4: In w passes, perform walks of length w from every node

in T . Let W [t] ← the end point of the walk of length
w from t ∈ T (the nodes in T whose w length walks get
used towards Lu will get included in S).

5: S ← {}(we will refer to the nodes in S as centers).
6: Initialize Lu to a zero length walk starting at u. Let
x← u.

7: while |Lu| < l do
1. if (x ∈ T and x /∈ S) extend Lu by appending

the walk (implicit in) W [x]. S ← S ∪ {x}. x←
W [x], the new end point of Lu. {this means we
have a w length walk starting at x that has not
been used so far in Lu}

2. if (x /∈ T or x ∈ S) HandleStuckNode(x, T ,
S, Lu, l). {this means that either x was not in
the initial set of sampled nodes, or x’s w-length
walk has already been used up}

8: end while

function can be used to generate all the coin tosses.

We begin the analysis with a lemma that follows immedi-
ately from the algorithm.

Lemma 2.5. |S| ≤ l
w

.

Proof. A node is added to the set S only after we use a
w length walk from one of the sampled nodes. If we perform
a walk of length l, we will end up using at most l

w
walks of

length w.

We now state and prove the main claim that is required in
bounding the number of passes required by algorithm Sin-
gleRandomWalk in performing a random walk of length
l.

Claim 2.6. With every additional pass over the edge stream
(after the first w passes), the length of the random walk Lu
increases by at least O(min{s, αw}) in amortization.

Proof. We only need to examine the algorithm Han-
dleStuckNode. An additional pass over the stream is
made when s edges are sampled from every node in S ∪ R.
This happens when the algorithm gets stuck at a new stuck
node in R. After a pass over the stream, either the algo-
rithm makes s progress, or a new node is visited. In the
latter case, with probability α, the new node is in T (since
T contains each node with probability α), and with prob-
ability 1 − α, it is a new stuck node. If the new node is
not a stuck node, w progress is made. Since the proba-
bility of not seeing a new node in T is 1 − α with every
additional pass, the probability that more than O(1/α) new
stuck nodes are seen before a new node in T is seen is small,
by Chernoff Bounds. So w.h.p., |R| is less than O(1/α)
in each invocation of HandleStuckNode. Therefore the
number of passes in which s progress is not made, is no more
than O(1/α), at the end of which w progress is made giving

w
O(1/α)

average progress per pass. By this amortized argu-

ment, the walk makes O(min{s, αw}) progress with every

Algorithm 2 HandleStuckNode(x, T , S, Lu, l)
1: R← x.
2: while |Lu| < l do
3: E ← sample s edges (with repetition) out of each node

in S ∪R.
4: Extend Lu as far as possible by walking along the

sampled edges in E (on visiting a node in S ∪ R for
the k-th time, use the k-th edge of the s sampled edges
from that node).

5: x← new end point of Lu after the extenstion. One of
the following cases arise.
1. if (x ∈ S ∪ R) continue {no new node is seen,

at least s progress has been made.}
2. if (x ∈ T and x /∈ S ∪ R) return {this means

that x is a node that has not been seen in the
walk so far, and x was among the set of nodes
sampled initially; therefore, the w-length walk
from x has not been used}

3. if (x /∈ T and x /∈ S ∪ R) R ← R ∪ {x}. {this
means that x is a new node that has not been
visited in this invocation, and x is not in the
initial set sampled nodes T}

6: end while

pass over the edge stream. Furthermore, w.h.p., in r passes,
the algorithm SingleRandomWalk makes a progress of at
least O(r ·min{s, αw}) (for r ≥ Ω(1/α)).

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Correctness: We first argue
that the walk of length l from source u generated by our al-
gorithm is indeed a random walk. Notice that the algorithm
uses each w-length walk only once in the walk Lu. Since
the algorithm never reuses any randomly sampled edges or
walks, and whenever we sample s edges, we pick the ith
sampled edge, when visiting the node for the ith time, ran-
domness is maintained. It is important to note that while
sampling s edges, we (correctly) allow the same edge to be
sampled multiple times; in particular, this would definitely
happen for a vertex with degree less than s.

Space: We need space O(αn) for storing the sampled nodes
and the end point of their w length walks. Using Lemma 2.5,
sampling s edges from every node in S requires O(s l

w
) space,

while sampling s edges from the nodes not in R takes up
an additional O(s 1

α
) space as |R| = O(1/α). It follows,

the total space used in algorithm SingleRandomWalk is
O(nα+ s( l

w
+ 1

α
)).

Passes: The most crucial observation in analyzing the
number of passes required by the algorithm SingleRan-
domWalk is Claim 2.6. This claim states that, in r passes
over the stream (after the first w passes), for r > Ω(1/α),
with high probability, the random walk Lu makes a progress
of at least r ·O(min{s, wα}).

Additionally, w passes are used for generating the w length
walks from each of the sampled O(αn) nodes. Therefore, for
completing the walk of length l, the number of passes re-
quired, apart from the first w+1 passes (for sampling nodes
and generating w length walks from them) is O( l

min{s,αw} ) =

O( l
s

+ l
αw

). It follows, the total number of passes used in

the algorithm is O(w + l
s

+ l
wα

).



Setting s =
√
lα and w =

q
l
α

completes the proof.

Note that SingleRandomWalk takes sublinear space and
passes even for performing very long (O(n) length) random

walks. Setting l = O(n) and choosing α = n−
1
3 in Theo-

rem 2.1 gives the following corollary.

Corollary 2.7. One can perform a random walk of length
O(n) in O(n2/3) passes and O(n2/3) space.

The above algorithm can easily be extended to the case
when the starting node of the random walk comes from a
distribution, rather than a specific node. In this case, one
can sample a node from the initial distribution and use this
as the source node for the random walk.

Notice that if we wanted to perform a larger number
of independent random walks using this algorithm directly,
the space required would increase linearly in the number
of walks, while the passes would remain unchanged. The
bottle-neck in the space requirement would arise due to two
reasons. First, the algorithm would need to store multiple
w-length walks from each sampled node, one for each ran-
dom walk. Second, many of these random walks could get
stuck at the same time, and the algorithm may be required
to sample s edges out of the centers of many walks. In the
following section, we reduce the space requirements arising
in both these scenarios by trying to identify the appropriate
number of w-length walks required for each sampled node.

3. ESTIMATING PROBABILITY DISTRIBU-
TION BY PERFORMING A LARGE NUM-
BER OF RANDOM WALKS

We now show how to estimate the probability distribution
of the destination node after performing a random walk.
We achieve this by performing several random walks. The
source node may either be fixed or chosen from a certain
initial distribution. A naive method that uses algorithm
SingleRandomWalk to perform K random walks would

require O(K(nα +
q

l
α

)) space. In this section, we show

how algorithm SingleRandomWalk can be extended to
perform n/l random walks without significant increase in the
space-pass complexity. Specifically, we show the following
result.

Theorem 3.1. One can perform K random walks of length

l in Õ(
q

l
α

) passes and Õ(nα+K
q

l
α

+Klα) space for any

choice of α with 0 < α ≤ 1.

In particular, if K = n
l
, then for α ≥ l−1/3, the space re-

quirement is O(nα) which is as good as the space complex-
ity of SingleRandomWalk. We first describe how Theo-
rem 3.1 can be used to estimate the probability distribution
after a random walk of length l.

By performing a large number of random walks and com-
puting the fraction of walks that end at a given node gives
us an estimate of the probability that a random walk ends
at this node. If the actual probability of ending at a node is
p, then by setting K = logn

ε
, we get an estimate for p with

accuracy p ± √εp. By Chernoff bounds, due to the logn
factor, this estimate is valid w.h.p. for all nodes.

Corollary 3.2. For any node with probability p in the
probability distribution after a walk of length l, one can ap-
proximate its probability up to an accuracy of p ± √pε in

Õ(
q

l
α

) passes and Õ(nα+ 1
ε

q
l
α

+ 1
ε
lα) space for any choice

of α with 0 < α ≤ 1. This is a (1±
q

ε
p
)-factor approxima-

tion for a node with probability p in the distribution.

Notice that for p � ε, this is a constant factor approxi-
mation close to 1.

By applying this algorithm on the web-graph, we can esti-
mate the PageRank vector up to an accuracy of p±√pε for
any node with probability p in the stationary distribution,

in Õ(
q

M
α

) passes and Õ(nα+ 1
ε

q
M
α

+ 1
ε
Mα) space, where

M is the mixing time of the graph. We will show later in
Section 4 how to estimate the mixing time M of any graph.
Note that our algorithm is also able to handle the random
resets in the standard definition of PageRank by handling
these transitions implicitly; that is the transition edges cor-
responding to the random resets can be included into the
graph implicitly.

Our technique for performing a large number of walks uses
algorithm SingleRandomWalk as a subroutine. The key
idea in our approach is to estimate the probability pi that
the w length walk of node i is used in SingleRandomWalk.
We then use the pi’s to store the appropriate number of
w length walks from each sampled node for K executions
of SingleRandomWalk. Estimating pi however again re-
quires performing random walks. For this purpose, we start
by performing one random walk, then two, then four and so
on. Doubling the number of random walks in every phase,
we get more and more accurate estimates of pi for the sam-
pled nodes.

Let us first define pi for every node i assuming a given set
of sampled nodes in Algorithm SingleRandomWalk.

Definition 3.3. For any sampled node i, define pi to be
the probability that on running the algorithm SingleRan-
domWalk, the w length walk of node i is used (and hence
i gets included in the set of centers S in the performed walk
of length l).

Lemma 2.5 states that |S| ≤ l/w. Notice that a node is
included in S if and only if its w length random walk is used
towards the random walk Lu. By our definition of pi, we
have that

P
i pi is equal to the expected size of |S|. From

these two statements, we get the following observation.

Observation.
P
i pi ≤

l
w

.

We now describe the algorithm for performing a large
number of random walks. Whenever we say sample x walks
of length w from i, we mean take the end-points of x inde-
pendent random walks of length w starting at i.

This algorithm runs in phases. To obtain K walks of
length l, algorithm MultipleRandomWalk is run for j =
logK phases. In phase j + 1 we run O(2j logn) parallel ex-
ecutions of SingleRandomWalk and use these to estimate
the pi to an additive error of

p
pi/2j . This estimate is then

used in the next phase to store the appropriate number of
w length walks from each i. Note that, all the executions of
SingleRandomWalk share the same set of sampled nodes.



Algorithm 3 MultipleRandomWalk(I, l, K)

1: Input: Distribution of the source nodes, I, and length
of the walk, l

2: T ← set of nodes obtained by sampling each node inde-
pendently with probability α.

3: Perform phases 1 through logK as follows -
4: Phase 1:

1. Perform O(logn) walks of length w from each of
the sampled nodes, in w passes. This are sufficient
to simulate the Step 1 of O(logn) parallel execu-
tions of SingleRandomWalk.

2. Spawn K1 = O(logn) instances of SingleRan-
domWalk to obtain K1 walks. All these instances
use only the w-length walks in the previous step.

3. For each sampled node i ∈ T , estimate pi = ni/K1

where ni is the number of walks produced in the
previous step that use i as a center. w.h.p., this
estimate is accurate for nodes with actual pi ≥ 1

2
,

by Chernoff bounds.
5: Phase (j + 1): {The value of pi is known up to an

additive error of
p
pi/2j}.

1. In w passes, sample O(2jpi logn + logn) random
walks of length w for all nodes in T . This are suf-
ficient to simulate the Step 1 of 2jO(logn) parallel
executions of SingleRandomWalk.

2. Run Kj+1 = 2jO(logn) independent instances of
SingleRandomWalk using the w- length random
walks sampled in the previous step. Notice that we
have sufficient number of w-length walks from each
node, w.h.p.

3. Estimate the pi = ni/Kj+1 where ni is the number
of walks that use i as a center. This estimate is
accurate up to an additive error of

p
p
2j whp (by

Chernoff Bound), for a node with probability p in
the actual probability distribution.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Correctness: No w length walk
or sampled edge, is ever reused throughout the execution.
Also, the number of w length walks we store from the sam-
pled nodes in step 1 of each phase j + 1 in MultipleRan-
domWalk is sufficient for Kj+1 executions of SingleRan-
domWalk. That is, any time one of Kj+1 walks hits a
sampled node for the first time, there is an unused w length
walk for that node, to extend it. This follows from the accu-
racy of our estimate for pi obtained from the previous phase
j. Each pi is accurate up to an additive error of

p
pi/2j

(this follows from Chernoff bounds since pi is estimated by
using Kj = 2j−1O(logn) trials). The number of walks in
phase j + 1 that use this node as a center is w.h.p. at most
O(Kj+1(pi +

p
pi/2j) + logn) ≤ O(2jpj logn+ logn). This

is exactly the number of w-length walks we sample in phase
j + 1..

Space: The main idea why MultipleRandomWalk does
not require too much space is because we only sample as
many w-length walks from each center as required in the
next phase.

Suppose we do t phases such that 2t = K. Total space
required would include O(nα) space to store the sampled
nodes; to store the w length walks in phase t, we need
O(

P
i∈T (2tpi logn + logn)) = Õ(K( l

w
) + nα) space; and

finally, the space for sampling s edges in each execution of
HandleStuckNode amounts to Õ(K l

w
s + K 1

α
s). There-

fore, the algorithm MultipleRandomWalk uses a total
space of Õ(K l

w
s+K 1

α
s+ αn).

Passes: The number of passes required in algorithm Mul-
tipleRandomWalk in any given phase is the same as in
SingleRandomWalk, no matter how many walks are be-
ing run in that phase. So the total passes required for a
given phase is O(w+ l

s
+ l

wα
). The number of phases run is

logK. It follows that the total number of passes in Multi-

pleRandomWalk is Õ(w+ l
s

+ l
wα

). Setting w =
q

l
α

and

s =
√
lα, the theorem follows.

We now show how MultipleRandomWalk algorithm
can be used for estimating the mixing time.

4. APPROXIMATING MIXING TIME
We now present an algorithm to estimate the mixing time

of a graph. However, instead of computing the exact mixing
time, we compute the time required for approximate mixing
of a random walk. That is, we compute a length l such that
running a random walk for l steps from an initial distribution
ends at a node with a probability distribution that is close to
the stationary distribution. The following definition makes
this precise for undirected graphs.

Definition 4.1. We say that l is the ε-near mixing time
of an undirected graph if the L1-distance between the steady
state distribution and the distribution obtained after a ran-
dom walk of length l is at most ε. Further, l must be the
shortest such length that satisfies this condition.

For directed graphs, we have a weaker definition of ε-near
mixing time.

Definition 4.2. We say that l is the ε-near mixing time
of a directed graph if the L1-distance between the distribution
obtained after a random walk of length l from any initial
distribution, and the distribution obtained after a random
walk of length l + poly(1/ε), is at most ε.

Remark 4.3. The ε-near mixing time satisfies monotonic-
ity property, i.e., if a walk of length l is ε-near mixing, so is
a walk of length greater than l. The monotonicity property
follows from the fact that ||Ax||1 ≤ ||x||1 for any transition
probability matrix A. This implies that if l is ε-near mix-
ing, then ||Alu − π||1 ≤ ε. By multiplying with A, we have
||Al+1u− π||1 ≤ ε, as Aπ = π, since π is stationary.

In this section, specifically, we show the following result.

Theorem 4.4. One can find the ε-near mixing time for

undirected graphs in Õ(nα + poly(ε−1)(
q

Mn
α

+ Mα
√
n))

space and Õ(
q

M
α

) passes over the stream, where M is the

actual mixing time of the graph. For directed graphs, the

space required is Õ(nα+ poly(ε−1)(n2/3
q

M
α

+Mαn2/3)).

The naive approach to compute the mixing time requires
O(n) space and O(M) passes over the input stream, where
M is the mixing time. This computes AMv exactly where v
is the initial vector of size n and A the matrix representation



of the graph. It takes n space to maintain this vector, and
M passes to multiply by A once in every pass.

The main idea in estimating the mixing time is to run
many random walks of length l using the approach described
in the previous section, and use these to compute the dis-
tribution after l-length random walk. We then compare the
distribution at different l, with the stationary distribution,
to check if the two distributions are ε-near. We need to
address the following issues. First, we do not know what
value(s) of l to try. Second, we need to compare these
distributions with the steady state distribution; while the
steady state distribution is easy to compute for an undi-
rected graph, it is hard to compute for directed graphs.

To compare two distributions, we use the technique of
Batu et. al. [5] to determine if the distributions are ε-near.
Their result is summarized in the following theorem.

Theorem 4.5 ([5]). Given Õ(n1/2poly(ε−1)) samples of
a distribution X over [n], one can test if X is ε-near in the
L1 norm to a specific distribution Y .

We are now ready to prove Theorem 4.4.

Proof of Theorem 4.4. For undirected graphs, the sta-
tionary distribution of the random walk is well-known to be
deg(i)
2m

for node i with degree deg(i), where m is the number

of edges in the graph. We only need Õ(n1/2poly(ε−1)) sam-
ples from a distribution to compare it to the stationary dis-
tribution. This can be achived by running MultipleRan-
domWalk to obtain K = Õ(n1/2poly(ε−1)) random walks.
To find the approximate mixing time, we try out increas-
ing values of l that are powers of 2. Once we find the right
consecutive powers of 2, the monotonicity property admits a
binary search to determine the exact value of ε-near mixing
time. Note that we can apply binary search as ε-near mixing
time is a monotonic property.

The result in [5] also provides an approach to determine
if two unknown distributions X and Y over [n] are ε-close in

L1 norm; however, this requires Õ(n2/3poly(ε−1)) samples
from each distribution.

This completes the proof.

Theorem 4.4 gives some interesting consequences for spe-
cific values of α and M . We state some below. In the ex-
treme cases of α = 1 and α = 1

M
, we can calculate the

ε-near mixing time with either of the trade-offs presented in
the following corollary.

Corollary 4.6. One can find the ε-near mixing time in
either Õ(n)+poly(ε−1)(M

√
n) space and Õ(

√
M) passes, or

Õ( n
M

+M
√
npoly(ε−1)) space and Õ(M) passes.

Given a mixing time M , we can compute a square-root ap-
proximation to the conductance Φ of the graph as Θ(1/M) ≤
Φ ≤ Θ(1/

√
M) as shown in [23]. The conductance of a graph

G with m edges is defined as φ(G) = minS
E(S,V (G)S).m
E(S).E(V (G)S)

where E(S, V (G)
S) is the weight of the edges spanning the cut, and E(S)
and E(V (G)
S) are the weights of the edges on the two sides of the cut.
Assuming that the ε-near mixing time is close to the actual
mixing time, we get the following corollary.

Corollary 4.7. Assuming the ε-near mixing time is close
to M , the conductance of undirected graphs can be approxi-
mated to a quadratic factor in

Õ(nα+poly(ε−1)(
q

Mn
α

+Mα
√
n)) space and Õ(

q
M
α

) passes

over the stream, where M is the actual mixing time of the
graph.

5. ESTIMATING DISTRIBUTIONS WITH BET-
TER ACCURACY

In this section, we present an algorithm that has a better
space complexity when the accuracy parameter ε ≤

√
l/n.

Specifically, if we require a very high accuracy in calculating
the PageRank vector, the algorithm presented in this section
can be used.

The main idea is to replace the estimation of pi’s in Mul-
tipleRandomWalks by a quantity that provides more in-
formation. We start with the modification of SingleRan-
domWalk, where we assume that there are infinitely many
w length walks out of each sampled node, that can be ac-
cessed as an oracle. We then look at the expected number
of w length walks that will be used for i. Subsequently, in
ModifiedMultipleRandomWalk, we maintain the appro-
priate number of w length walks from all sampled nodes, in
any given phase, using the previous phase to estimate the
required number.

In effect, some space is saved during the walks, as s edges
need not be sampled from the set of centers S in any walk.
However, some space is lost as estimating the number of w
length walks to be stored from each i requires more space
than estimating just the probability that a w length walk
will be used.

We begin by describing the modification to the SingleRan-
domWalk. The notation in the algorithm below uses T to
denote the source node (sampled from an initial distribution)
and the sampled nodes obtained by sampling each node with
probability α independently. The tableW indexed by a sam-
pled node t and count stores the end point of the count’th
w length walk starting at t as W [t, count], for count ≥ 1 an
integer. Note that this table can be populated in t passes,
however the space requirement depends on the maximum
count[t] for every t. Right now we assume that the table
W is infinite and we can obtain a w length walk for any
count[t]. Unlike in SingleRandomWalk where we defined
the set S to keep track of all nodes in T whose w length walks
get used up, in ModifiedSingleRandomWalk, we do not
need S. The algorithm continues extending the walk using
the w length walks implicitly stored in the table W until
it finds a stuck node. The module ModifiedHandleStuc-
kNode proceeds by sampling s edges out of R where R is
the set of stuck nodes visited in the current invocation. In
this case, only non-sampled nodes can be a stuck node.

With the algorithm in place, we now need to define qi, that
we use instead of pi, in ModifiedMultipleRandomWalk.
Assume a given set of sampled nodes T .

Definition 5.1. For any sampled node i, define qi to be
the expected value of count[i] at the end of the execution of l-
length random walk using ModifiedSingleRandomWalk.

Notice that the main difference in ModifiedSingleRan-
domWalk as compared to SingleRandomWalk is that
there is no set S to store the centers whose w length walk
has been used up. Every node in the initial sampled set T
has the sufficient number of w length walks. So whenever
this walk gets, stuck, it is stuck at a non-sampled node. In



Algorithm 4 ModifiedSingleRandomWalk(u, l)

1: Input: Starting node u, and desired walk length l.
2: Output: Lu the random walk from u of length l.
3: T ← set of nodes obtained by sampling each node inde-

pendently with probability α.
4: Let W [t, count]← the end point of the count-th walk of

length w from t ∈ T . Let count[t] denote the next index
for w length walk of t we will use. Initialize count[t] = 1
for all t.

5: Initialize Lu to a zero length walk starting at u. Let
x← u, the source node.

6: while |Lu| < l do
1. if (x ∈ T ) extend Lu by appending

W [x, count[x]]. count[x] ← count[x] + 1. x ←
new end point of Lu. {we increment count[x] so
that the next time the walk ends at x, we will
use the next w length walk from x stored in the
table W .}

2. if (x /∈ T ) HandleStuckNode(x, T , Lu, l).
{this means that x was not in the initial set of
sampled nodes}

7: end while

this case, s edges are sampled out of all the new nodes vis-
ited since the last time a w length walk was used; as before
this set is denoted by R.

As we shall see in ModifiedMultipleRandomWalk, ex-
tra space goes in estimating the qi values and ensuring that
we have sufficient number of w length walks stored from
each sampled node for the subsequent phase. Since we have
extra information in qi as compared to pi, space is saved in
sampling s edges only out of R, instead of S ∪ R. Hence
we get a trade-off between the algorithm presented in this
section and that in Section 3.

Estimating qi using SingleRandomWalk - We now show
how to estimate qi. In the first phase, we use SingleRan-
domWalk to perform O(logn) walks. To estimate the qi’s,
the entire walks of length l need to be reconstructed. This
can be done using the pseudo-random coin tosses as de-
scribed in Remark 2.4 which adds Õ(l) to the space require-
ments. Once the walks of length l are reconstructed, for
any walk, start walking from the source node; each time a
sampled node (say t) is seen, increment count[t] and skip
w steps, and continue walking, till the end. Set qi to be
the average of count[i] over the O(logn), by this estimation,
the average taken over the O(logn) walks. In phase j + 1,
we run Kj+1 = 2jO(logn) walks and use this to obtain an
improved estimate qi for the next phase.

Notice that after phase j + 1, we can estimate qi up to

accuracy qi±
q

( qi
2j+1 ) l

w
. This can be seen by dividing qi by

l/w which puts them in the range [0, 1] and then applying
Chernoff Bounds.By definition of qi,

P
qi ≤ l

w
.

The main theorem is as follows.

Theorem 5.2. ModifiedMultipleRandomWalk can be
used to perform K random walks of length l in Õ(

p
(l/α))

passes and Õ(αn
√
lα+K

q
l
α

+ l) space.

Comparing this with Theorem 3.1, we see that in the space
requirement, the term Klα is no longer there; however, the

Algorithm 5 ModifiedHandleStuckNode(x, T , Lu, l)
1: R← x.
2: while |Lu| < l do
3: E ← sample s edges (with repetition) out of each node

in R.
4: Extend Lu as far as possible by walking along the

sampled edges in E (on visiting a node in R for the
k-th time, use the k-th edge of the s sampled edges
from that node).

5: x← new end point of Lu after the extenstion. One of
the following cases arise.
1. if (x ∈ R) continue {no new node is seen}
2. if (x ∈ T ) return {this means that x is a sam-

pled initially; therefore, we can use the next w-
length walk from x by accessing the table W}

3. if (x /∈ T and x /∈ R) R← R∪ {x}. {this means
that x is a new node that has not been visited
in this invocation, and x was not in the initial
set sampled nodes T}

6: end while

space of O(nα) in Theorem 3.1 has increased to O(αn
√
lα);

additionally, for the first phase where we needed to recon-
struct the walks, we incurred an additional space require-
ment of O(l). Depending on the values and bounds required,
one of these theorems is a better than the other. This gives
the following corollary similar to Corollary 3.2.

Corollary 5.3. For any node with probability p in the
probability distribution after a walk of length l, one can ap-
proximate its probability up to an accuracy of p ± √pε for

any ε > 0 in Õ(
p
l/α) passes and Õ(αn

√
lα + 1

ε

q
l
α

+ l)

space. This also implies a (1±
q

ε
p
)-approximation ratio for

any node with value p in the probability distribution.

Notice that this is a constant (close to 1) factor approxi-
mation for any node with p� ε.

Proof. Correctness: The first point to observe is that
the number of w length walks we store from various sampled
nodes in each phase in ModifiedMultipleRandomWalk
is sufficient for the Kj executions of ModifiedSingleRan-
domWalk. That is, any time one of Kj walks hits a sampled
node for the first time, there is an unused w length walk for
that node, to extend it. This follows from the accuracy of
our estimate for qi from the previous phase; since each qi is

accurate up to an additive error of
q

qi
2j

l
w

(this follows from

Chernoff bounds since qi is estimated by using 2jO(logn)
trials), the number of walks in phase j+1 that use this node

as a center is w.h.p. at most O(Kj+1(qi+
q

qi
2j

l
w

)+ l
w

logn)

which is at most Õ(2jqj +
q

2jqj
l
w

+ l
w

) = Õ(2jqj + l
w

).

This is exactly the number of w-lenth walks we sample in
each phase of the algorithm.
Space: Suppose we do t phases such that 2t = K. Total
space required would include O(nα) space to store the sam-
pled nodes; to store the w length walks in the phase (t− 1),

we need Õ(
P
i∈T (2tqi + l

w
)) = Õ(K

P
i∈T qi + nα l

w
) =

Õ(K( l
w

) + nα l
w

) space; and finally, the space for sampling
s edges in each execution of ModifiedHandleStuckNode



Algorithm 6 ModifiedMultipleRandomWalk(I, l, K)

1: Input: Distribution of the source nodes, I, and length
of the walk, l

2: T ← set of nodes obtained by sampling each node inde-
pendently with probability α.

3: Perform phases 1 through logK as follows -
4: Phase 1: Perform O(logn) walks of length l using Sin-

gleRandomWalk. Using Chernoff bound and tech-
nique described above for reconstructing the walks and
estimating count[t] for all sampled t, we get an estimate

all qi up to an accuracy of qi ±
p
qi · l/w.

5: Phase (j + 1): {spawn Kj+1 walks and estimate qi up

to accuracy qi ±
q

( qi
2j )( l

w
)}

• In w passes, sample Kj+1 = Õ(2jqi + l
w

) walks
from all i. These are sufficient to simulate
2jO(logn) executions of ModifiedSingleRan-
domWalk(these walks serve the purpose of the
walks stored in the table W ).
• Perform 2jO(logn) random walks using Modi-

fiedSingleRandomWalk and again re-estimate
qi’s obtaining a better accuracy. This estimate is
obtained by taking the average value of count[i]
over the Kj+1 executions. Notice that, w.h.p., we
stored sufficient number of walks for each sampled
node. Hence, after the first phase, we never need
to reconstruct the walks.

amounts to Õ(K 1
α
s). Observe that in ModifiedHandled-

StuckNode, we only sample s edges out of R instead of
S ∪ R as in HandleStuckNode. Also, as shown before,
|R| ≤ Õ(1/α) since each new node is likely to be a sampled
node with probability α. So, the space required for the exe-
cutions of ModifiedhandleStuckNode is Õ(K 1

α
s). Also

the first phase required Õ(l) space to reconstruct the walks
obtained from SingleRandomWalk. Therefore, the total
space required for this algorithm is Õ(K l

w
s+K 1

α
s+αn l

w
+

l).
Passes: The number of passes required is same as in Mult-
pleRandomWalk. So the total passes required for this
walk is still Õ(w + l

s
+ l

wα
).

Setting s =
√
lα and w =

√
lα gives completes the proof.

Setting the threshold ε to 1/n gives the following corollary.

Corollary 5.4. One can estimate every node’s probabil-
ity distribution after a random walk of length l up to an ad-
ditive error of

p
p
n

for a node with value p in the probability

distribution, in Õ(n
√
l) space and Õ(

√
l) passes.

6. CONCLUSIONS
We presented the following results for graphs presented as

edge streams:

1. Algorithm SingleRandomWalk to perform a random
walk of length l in O(

p
l/α) passes and O(nα+

p
l/α)

space.

2. Algorithm MultipleRandomWalk and algorithm Mod-
ifiedMultipleRandomWalk can perform K random
walks of length l in Õ(

p
l/α) passes and Õ(nα+K

p
l/α+

Klα) space or Õ(nα
√
lα + K(

p
l/α)) space respec-

tively. These algorithms also provide an approach to
approximating the probability distribution after a ran-
dom walk of length l. It follows that every node with
probability p in the probability distribution after a ran-
dom walk of length l can be approximated to an addi-
tive error of

√
pε using Õ(

p
l/α) passes and min{Õ(nα+

1
ε

p
l/α + 1

ε
lα), Õ(nα

√
lα + (1/ε)(

p
l/α))} space. In

particular, the latter algorithm performs better for
thresholds ε ≤

√
l/n.

3. We use this technique and present an approach to de-

termine the ε-near mixing time, in Õ(
q

M
α

) passes and

Õ(nα + poly(ε−1)(
q

Mn
α

+ Mα
√
n)) space on undi-

rected graphs. The space required to determine the
ε-near mixing time on directed graphs is

Õ(nα+ poly(ε−1)(n2/3
q

M
α

+Mαn2/3)).

Some open questions that arises are:

1. Can we estimate the distribution of nodes with accu-
racy ε = 1/n using O(n) space?

2. Can one prove any space-pass trade-off bounds? The
trivial algorithm to calculate the exact distribution af-
ter a random walk of length l requires O(nl) in the
space×passes product. Our result stated in Corol-
lary 5.4, for a threshold of ε = 1/n, also has the same
space-pass trade-off.

3. Are there any lower bounds for space or passes? In
particular, are there any strong results for constant
passes over the stream?
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