
Estimating Pairwise Distances in Large Graphs

Maria Christoforaki

NYU Polytechnic School of Engineering

Brooklyn, NY

mc3563@nyu.edu

Torsten Suel

NYU Polytechnic School of Engineering

Brooklyn, NY

torsten.suel@nyu.edu

Abstract—Point-to-point distance estimation in large scale
graphs is a fundamental and well studied problem with ap-
plications in many areas such as Social Search. Previous work
has focused on selecting an appropriate subset of vertices as
landmarks, aiming to derive distance upper or lower bounds
that are as tight as possible. In order to compute a distance
bound between two vertices, the proposed methods apply triangle
inequalities on top of the precomputed distances between each of
these vertices and the landmarks, and then use the tightest one.

In this work we take a fresh look at this setting and approach
it as a learning problem. As features, we use structural attributes
of the vertices involved as well as the bounds described above, and
we learn a function that predicts the distance between a source
and a destination vertex. We conduct an extensive experimental
evaluation on a variety of real-world graphs and show that the
average relative prediction error of our proposed methods sig-
nificantly outperforms state-of-the-art landmark-based estimates.
Our method is particularily efficient when the available space is
very limited.

I. INTRODUCTION

The design of efficient graph algorithms has received a lot
of attention in computer science, and algorithms for computing
shortest paths have played a central role within this literature.
Shortest paths have important applications in many areas,
including social networks, where the point-to-point distance
between two nodes is of significant interest. Users with com-
mon interests are more likely to be connected with each other
in social networks, and thus the distance between two people
in a social graph is considered an important signal regarding
their similarity and the chance that they might know each other.
Similarly, in a collaboration network, the distance between two
participants can be a measure of how relevant one’s work is
to that of the other.

Given the importance of distances as strong signals of
similarity and relevance, a lot of recent work has looked
at how to use graph distances in various applications; see,
e.g., [1], [2], [3], [4] for a small sample. Many of these
applications, including content search on social networks, and
social question-answering, are instances of social search [3].
Social search personalizes its results by also considering the
social graph of the user who issued the query; thus, content
that has been generated or recommended by users that are
“closer” to the issuing user in the social graph receives higher
priority. Traditional web search can also benefit from similar
techniques, where the “context” within which a search query
is initiated can be used to refine the results. Thus, a context-
sensitive search engine could give higher priority to pages
that are closer, in the web graph, to the page that the user
is currently visiting [1].

One obstacle that all above scenarios face is that, given
a query involving a pair of nodes, the point-to-point distance
between them needs to be computed in milliseconds or even
less. One way to ensure a quick response is to store all
pairwise distances in main memory, but this results in a space
requirement that is quadratic in the number of nodes, which
is not feasible in many scenarios. On the other hand, running
Breadth First Search or Dijkstras algorithm during query time
is usually much too slow. A common approach is to pre-
process the graph and store a limited amount of encoded
information that can be accessed during query time to quickly
estimate the distance between two nodes.

Most previous work has followed this approach by focusing
on methods that return upper or lower bounds for the distance
between two nodes based on small sets of nodes called land-
marks [5], [6], [2], [7], [8]. In the pre-processing steps, these
methods choose an appropriate set of landmarks, and then
compute and store distances from every node to each (or some)
of these landmarks. Given a query consisting of two nodes
whose distance needs to be computed, the distances between
the two nodes and each landmark are retrieved. Applying the
triangle inequality yields upper bound and lower bounds for
the distance between the two nodes. Although these methods
often provide reasonably accurate estimates, there is still a lot
of room for improvement.

In this work we revisit the problem of estimating pair-
wise distances, and approach it as a learning problem. We
find that for small-world networks, structural properties of
nodes such as centrality metrics hold some information about
their “position” in the graph and can therefore be used as
strong signals for predicting pairwise distances. Moreover,
we propose to treat the bounds computed by landmarks as
informative signals rather than direct estimates for the actual
distance between two nodes. Our goal is to learn a function
that provides a better estimate of the pairwise distance than
the strict bounds obtained by previous work. Altogether, we
propose three methods for estimating distances that are simple,
easy to implement, and highly efficient: one based on landmark
bounds, one based centrality metrics, and one based on a
combination of these. We then perform a detailed evaluation
and show that our new approaches are superior to the existing
state-of-the-art, particularily when space is very limited.

In the remainder of the paper, we first review previous
research on pairwise distance computation in graphs. In Sec-
tion III, we provide some notations and definitions. Section IV
describes our new methods for distance estimation, while our
experimental evaluation is presented in Section V. Finally, we
provide some discussion and concluding remarks.

II. BACKGROUND AND RELATED WORK

A. Exact Pairwise Distance Computation

The most commonly used algorithm for computing all the
shortest paths from a single source is Breadth First Search
(BFS). This algorithm is applicable to unweighted graphs
G = (V,E) and has O(|E| + |V |) time complexity. For
weighted graphs Dijkstra’s algorithm [9] is used instead and
its time complexity is O(|E|+ |V | log |V |) when implemented
with a Fibonacci heap. Bidirectional Dijkstra runs two simul-
taneous searches, from the source and the target vertices, and
stops when the two meet. This decreases the search space
significantly in many cases and therefore is often a more
efficient solution for point-to-point shortest path (PPSP) length
computation.

For PPSP length computation, the state-of-the-art solu-
tions are the ALT algorithms [10], [11], [12] which combine
bidirectional Dijkstra with A∗ search. ALT algorithms prune
graph paths during run-time and reduce the search space of
point-to-point distance queries, leading to improved efficiency
compared to Dijkstra’s algorithm. Most of the literature [10],
[11], [12], [13], [14] related to ALT algorithms has fo-
cused on spatial networks, such as road networks. In fact,
these algorithms can compute the exact values of pairwise
distances relatively fast when the underlying graph satisfies
certain useful structural properties, such as near planarity,
low degree, and the presence of hierarchy, which holds for
road networks. However, the running time of these algorithms
increases dramatically when these properties are not satisfied,
and thus they are not practical when it comes to interesting
graph structures such as social networks, web graphs, and co-
authorship networks, which do not exhibit such properties.

Another exact distance computation for method directed
graphs was proposed by Cohen et al. [15]. It is a 2-hop labeling
method where each vertex v stores a list of “intermediate”
vertices OUT (v) that it can reach, along with their distances.
It also stores a corresponding IN(v) list for the vertices that
can be reached by v. During query time the distance of a pair of
vertices (u, v) is computed by simply retrieving the OUT (u)
and IN(v) lists and returning the minimum distance d(u, l)+
d(l, v) for all vertices l in the intersection of the two lists.
The authors of this work also primarily utilize the highway
structure of networks to speed up online search, which makes it
usuitable for networks with a different structure such as social
networks. Besides that, the minimum storage requirements are
conjectured to be O(nm1/2) for directed graphs, which is close
to quadractic in the number of vertices and is prohibitive for
large graphs. Jin et al. [16] propose a similar approach called
Highway Centric Labeling to compute pairwise distances in
sparse graphs. They show a significant reduction in query time
compared to Cohen et al. [15]. However, their results show that
the average degree significantly affects the performance. On a
graph of 5K vertices, increasing the average degree from 1.2
to 2 causes a ten times slower query processing time (from
115.2 milliseconds to 9.5 seconds). These results render this
approach inappropriate for graphs like social networks that
have average degrees ranging from about 10 to more than 100.

Fu et al. [17] propose IS-LABLE, which also considers
a vertex hierarchy to compute exact distances. However, the
results show that for graphs of 100K and 200K vertices the

index size reaches 7 and 8 GB, respectively, and the corre-
sponding query processing times are 6 and 28 milliseconds.
We are studying settings where the available space is very
constrained and and the query processing time has to be in the
order of microseconds even for graphs of millions of vertices.

To the best of our knowledge, Akiba et al. [18] is currently
the fastest method for computing exact distances for complex
graphs like social networks. They propose a 2-hop labeling
approach. In particular, they suggest a preprocessing step
which results in a landmark set S(v) for every vertex v, such
that for every pair of vertices (u, v) in the graph there is at
least one vertex w ∈ S(u)

⋂
S(v) that lies on the shortest path

between u and v. Their results show very fast query times
compared to previously proposed methods (15µs for complex
graphs of one million vertices) but require extremely large
index structures (12GB for complex graphs of just one million
vertices).

B. Pairwise Distance Estimation

A significant amount of work, reviewed next, has focused
on designing efficient solutions that compute estimates for
pairwise distances.

Theoretical Results for Pairwise Distance Estimation.
Thorup and Zwick [19] propose a multilevel sampling ap-
proach followed by a per-vertex landmark selection process.
Given an integer k ≥ 1, and a graph G = (V,E), the proposed
solution generates a sequence of k + 1 samples starting from
V , and then iteratively removes each vertex of that sample

with probability 1 − n− 1

k . After each iteration, this process
yields a sample which is a subset of the sample that the
iteration started with. For each of these subsets, every vertex
in the graph chooses the one closest to it and stores its id
along with its distance to it. Given a point-to-point distance
query, the algorithm tests whether the two endpoints have a
common landmark, starting from the closest ones, and returns
the distance estimate based on the first match. Thorup and
Zwick prove that any graph can produce a node sketch of
size O(kn1+(1/k)) for any constant k ≥ 1, that using these
sketches any point-to-point query can be answered in O(k)
time, and that the estimate is a 2k − 1 approximation of the
real distance. Setting k = 1 gives the exact distances for every
point-to-point query, but requires O(n2) space consumption.

Increasing k to 2 requires O(2n
3

2) space, which is prohibitive
for large graphs. This gives a 3-approximation of the distance
which is too large especially for applications where the graphs
have a small diameter.

Another line of work has proposed use of embedding
methods [20], [21], [22], [23], [24], [25]. These methods
first map high-dimensional objects (nodes in a graph) to
lower dimensions, and define an appropriate and efficiently
computable distance function in this lower-dimensional space;
then this function is shown to provide distance estimates
that are provably close to the actual distance. Another line
of work makes use of sparse subgraphs of the initial graph
called spanner graphs [26], [27], [19]. Both these approaches
provide theoretical bounds for the space requirements of the
proposed solutions and the extent to which the actual distances
are approximated. However, most of the solutions in this
literature are rather complicated in terms of implementation,

and no empirical evaluation is provided. In this work, our
heuristics also map each vertex to a lower-dimensional space
and derive a distance function in this space. Our methods do
not have theoretical guarantees, but are simple to implement,
and we show that they work well in practice in terms of both
approximation error and space consumption.

Heuristics for Pairwise Distance Estimation.
In tandem with this theoretical work, several studies have also
approached this problem from an empirical perspective [5],
[6], [2], [7], [8]. The solutions proposed by these studies
choose a subset of the graph nodes, called landmarks, and
pre-compute the shortest-path lengths between all the graph
nodes and some or all of these landmarks. Then, given a query,
these pre-computed distances are combined using the triangle
inequality in order to compute upper bounds for the exact
distance. These results can be divided into two main categories,
based on the use of these landmarks. The global landmark
approaches [5], [6], [2] pre-compute and store the distances
of every vertex to every landmark. Several different global
landmark selection strategies have been proposed: Vieira et
al. [5], to the best of our knowledge, is the first paper to
study distance estimation in social networks. The authors study
the effects of random global landmark selection. Potamias
et al. [2] suggest a number of more sophisticated landmark
selection techniques based on centrality properties of the
nodes; intuitively, their goal is to select a set of landmarks
that are likely to be found on many shortest paths between
nodes. They show that their landmark selection strategy can
significantly reduce the estimation errors compared to random
selection, given the same storage constraints.

Qiao et al. [6] point out that, although centrality metrics
are good signals for the “appropriateness” of a vertex as a
landmark, when greedily selecting the landmarks using such
metrics, the marginal contribution of each new landmark is
often small. They suggest an alternative greedy algorithm
measuring the graph’s “coverage” by the chosen landmarks,
as well as an algorithm which first partitions the graph and
then chooses good landmarks for each partition.

Another set of literature has focused on methods for
estimating distance lower bounds [10], [11], [12], [13], [2], [8].
Lower bounds on distances are especially useful for pruning
the search space in graph search algorithms. However, it has
been observed that lower bounds using landmarks and the
triangle inequality are much worse predictors of the actual
distance than upper bounds [2]. In this work, we leverage upper
and lower bounds computed by landmarks to derive one of our
proposed distance functions.

Alternatively, local landmark approaches [8], [19], [28],
store only a subset of the selected vertex-landmark distances
for each vertex. This is motivated by the fact that not all global
landmarks are useful for every vertex in the graph. It is there-
fore more efficient if each vertex stores only those landmark
distances that are more likely to give tight estimates for this
particular vertex. Das Sarma et al. [8] simplifies the work of
Thorup and Zwick [19], allowing for an easier implementation
while retaining the theoretical guarantees. Furthermore, Das
Sarma et al. empirically evaluated their algorithm and show
that in practice the estimation errors are usually much better
than the theoretical guarantees. In our empirical evaluation we
found that the local landmark method proposed by Das Sarma

et al. gives slightly tighter bounds only for distance-1 queries,
compared to global landmark methods. In contrast, it has a
significantly (2 to 3 times) larger expected error for other
point-to-point distance queries, compared to the best global
landmark-based methods given the same space consumption.

Another recent paper proposing a local landmark scheme
is the work of Qiao et al. [28]. The authors of this work extend
the state-of-the-art global landmark methods by introducing an
additional index for every landmark. The role of this structure
during query processing of a vertex pair u, v is to find the
least common ancestor of u and v in the SPT rooted at
each landmark, and use the path passing through the least
common ancestor of u, v as a distance upper bound. They
propose two alternative methods, LLS and LS. LS results in
very accurate estimates compared to state-of-the-art landmark-
based approaches. It also outperforms their alternative method
LLS in terms of estimation accuracy. However, to achieve this
small error, it requires significant amounts of space to store its
indexes, as well as significant time to process a query. For the
Youtube graph, for instance, it requires 2 to 4 milliseconds for
a 0.3% error. If the available space is large, the exact distance
estimation methods proposed in [18] are more appropriate
solutions as they are faster and have no error. On the other
hand, LLS is faster and requires less space, but is less accurate
than our proposed method.

C. Other Related Work

A relevant and slightly more complex problem that has
received some attention is that of shortest path computation [7],
[29]. In [7], [29], the authors propose methods for efficiently
computing the set of edges composing a shortest path between
two vertices, rather than just computing the length of that
path. It is also worth mentioning that there is some somewhat
relevant work from the database community on query pro-
cessing [30], [31], [32], [33] in graphs. These papers mostly
focus on reachability queries rather than shortest path distance
computations.

In a slightly different context, in [34] the authors propose
a method to learn a structure-preserving distance metric for
graphs with respect to different connectivity algorithms. Their
goal in this work is to reconstruct the graph using only a small
amount of precomputed information for each vertex. This work
focuses on the problem of predicting whether an edge exists
or not, rather than on computing distances between arbitrary
nodes.

III. PRELIMINARIES

In this section we provide some notation and define the
problem that we study.

A. Problem Definition

Let G = (V,E) denote an undirected and unweighted
graph, with n = |V | vertices and m = |E| edges. Given any
pair of vertices u, v ∈ V , let Pu,v be a path connecting u and v;
formally, Pu,v = {u, a1, a2, . . . , al−1, v}, where ai ∈ V for all
i ∈ {1, 2, . . . , l − 1} and (u, a1), (a1, a2), . . . , (al−1, v) ∈ E.
The point-to-point distance d(u, v) between the two vertices
u, v is the length of the shortest path among all paths that
connect u and v, i.e., d(u, v) = minPu,v

|Pu,v|. Finally, the

diameter ∆ = maxu,v∈V d(u, v) of a graph G is the longest
shortest path connecting any two vertices in the graph G.

In this work, we focus on the problem of designing a
solution for serving real-time point-to-point distance queries.
As discussed above, computing the exact distance between two
arbitrary vertices u, v online is time consuming, and hence
impractical for many real-time applications. On the other hand,
pre-computing and storing all the pairwise distances in a look-
up data structure requires O(n2) space, which is prohibitive for
graphs of millions of nodes. Therefore, our goal is to provide
an “approximate” solution that is fast without requiring too
much space. In particular, we aim to implement a function
f(u, v) that, given two vertices u and v, computes an estimate
of their distance d(u, v) with a low relative error

|d(u, v)− f(u, v)|

d(u, v)
.

B. Vertex Centrality Attributes

In order to define our solutions, we will be using vertex
centrality attributes that provide some measure of how
well-connected a vertex is with the rest of the graph.

Vertex betweenness. The betweenness B(v) of a vertex v
provides a measure of how central the position of this vertex
is in the graph. It is defined as the ratio of the number of
shortest paths that go through the vertex and the total number
of shortest paths. Formally, let P (s, t) be the set of shortest
paths between two vertices s, t, and let P =

⋃
s,t P (s, t) be

the union of all these sets. Then,

B(v) =
|{p ∈ P | v ∈ p}|

|P |
.

Vertex closeness. The closeness-centrality C(v) of a node v
aims to quantify how close this vertex is to every other vertex
of the graph. In particular, it is the inverse of the sum of the
distances of v to every other vertex u:

C(v) =
1∑

u∈V

d(u, v)

Vertex n
th degree. The nth degree Dn(v) of a vertex v is the

natural generalization of the commonly used first degree, and
it measures how many vertices of the graph are at most n hops
away from v, that is,

Dn(v) = |{u ∈ V | d(u, v) ≤ n}|.

C. Landmarks

A set of landmarks is an appropriately selected subset of
vertices L ⊂ V that can be used in order to derive upper and
lower bounds regarding the distance between any two vertices
via the triangle inequality. In particular, given a landmark l ∈ L
and any two vertices u, v ∈ V , applying the triangle inequality
implies that

|d(u, l)− d(l, v)| ≤ d(u, v) ≤ d(u, l) + d(l, v).

Hence, a landmark set L defines a range [B−
L (u, v), B+

L (u, v)]
within which the actual distance d(u, v) needs to lie, where

B−
L (u, v) = max

l∈L
{|d(u, l)− d(l, v)|} (1)

is the maximum lower bound over all landmarks in L, and

B+
L (u, v) = min

l∈L
{d(u, l) + d(l, v)} (2)

is the minimum upper bound.

IV. LEARNING TO PREDICT DISTANCES

Our the key objective is to generate highly accurate dis-
tance estimates based on minimal information stored about
the graph. Ideally, our goal would be to store only a fixed
amount of information per node, leading to space requirements
that grow linearly, instead of quadratically with the number of
nodes.

Formally, one can think of such a solution as a mapping
Q1 : V → R

α that represents each node in an α-dimensional
space, for some constant α. This mapping can be computed
during pre-processing and then, during processing of a query
involving a pair of nodes (u, v), the solution combines the
representations qu = Q1(u) and qv = Q1(v) of the two nodes
in order to generate a distance estimate.

The state-of-the art solutions for the problem of point-to-
point distance estimation [5], [6], [2], [10], [7], [8] are in fact
instances of this approach: during pre-processing time these
algorithms choose a subset of nodes L to serve as landmarks,
and the distance of every node from every landmark is com-
puted. The representation qu of a node u then corresponds to
the vector of distances d(u, l) of u from each landmark l ∈ L,
i.e., α = |L| and

qu = [d(u, l1), d(u, l2), . . . , d(u, l|L|)]
T (3)

Then, given a point-to-point query for a pair of nodes (u, v),
these solutions respond with either B−

L (u, v) or B+
L (u, v),

which they compute during processing time using the informa-
tion from the representations qu, qv and Equations (1) and (2).

Although these solutions satisfy the desired space con-
straints and give guaranteed upper and lower bounds for the
distance, they do not necessarily lead to a small error. In
light of this observation we, revisit the problem, as a learning
problem aiming to derive a distance estimation function that
outputs an improved estimate. The functions that we propose
are linear combinations of a set of signals including structural
attributes of the nodes involved as well as the upper and lower
bounds induced by the landmark-based methods.

A. Learning Distances using Vertex Properties

Our first approach uses pre-processing in order to compute
some structural attributes, such as centrality metrics, of each
node in the graph. The values of these attributes for each node
u then form the representation qu of the node, which provides
us with some information about the node’s “position” in the
graph. In particular, centrality attributes like the degree and the
closeness of a node are directly related to its expected distance
from a random node in the graph, and thus they provide very
useful structural signals, especially for dense graphs with small
diameter, and a skewed degree distribution, such as social
networks. On the other hand, as we also point out in Section V,
this may not be true for some types of graphs like grids or road
networks, where the distances are larger, the graphs are sparser,
and the distribution of the degrees more uniform. The specific

attributes that we compute for each node u are its closeness-
centrality, its betweenness-centrality, and its 1st, 2nd, and 3st

degree. Thus we have:

qu = [B(u), C(u), D1(u), D2(u), D3(u)]
T
. (4)

The 1st, 2nd, and 3nd degree are easily computed. However,
computing the exact closeness-centrality and betweenness-
centrality can be very time consuming for large graphs.
Thus, we instead compute an approximation of closeness and
betweenness centralities that is commonly used in practice:
we first sample a subset of the graph’s nodes uniformly at
random, and then run BFS from the subset to the rest of the
graph to compute the distances and calculate closeness. During
this process we also apply the algorithm of [35] to compute
the betweenness. Note that, unlike the existing algorithms
mentioned above, where the value of α corresponds to the
number of landmarks used and can take large values, the value
of α in this approach is fixed to 5.

Now, when a distance query for a node-pair (u, v) arrives,
we combine the representations qu and qv of the two nodes into
a representation qu,v of the node-pair using a mapping Q2 :
R

α ×R
α → R

β . Then we use a trained function fv(·) which,
given qu,v , outputs an estimate for d(u, v). In order to train
fv(·), each element of the β-dimensional vector corresponding
to the representation qu,v is used as a feature, and weights are
computed for each one of these features using linear regression.

The particular representation qu,v that we use merges the
corresponding attributes of qu and qv , giving higher priority
to the one with higher value. That is, the first element of qu,v
is max{B(u), B(v)}, the second one is min{B(u), B(v)},
the third one is max{C(u), C(v)}, and so on. The reasoning
behind this choice is that, given two vertices u and x such
that qu = qx, we would like to ensure that qu,v = qx,v for
any other vertex v. Since the distance function is a symmetric
one, violating the property described above would hinder the
learning algorithm’s ability to generalize.

B. Learning Distances using Landmarks

The above function using structural properties of vertices as
features is based on signals that the two vertices give regarding
their “position” in the graph. Another option is to use the
distance bounds computed by landmarks as such signals, thus
using the existing landmark-based distance-bounding methods
as subroutines. Based on this idea, we propose a second family
of distance estimation functions that begin with the same
representation qu for each vertex u defined in (3), but then we
use linear regression in order to learn how to better combine
these representations into distance estimates.

In choosing a representation qu,v that combines the infor-
mation in qu and qv , our goal was to include useful signals
regarding the true value of the distance d(u, v). Hence, one
choice would be to let qu,v be the vector of the |L| upper
bounds implied by the landmark distances in qu and qv:

qu,v = [d(u, l1) + d(l1, v), . . . , d(u, l|L|) + d(l|L|, v)]
T . (5)

Applying linear regression in order to train a function f(·)
that aims to predict the distance d(u, v) given qu,v amounts to
treating each one of the β elements of qu,v as features, and
learning a weight value for each one of them. This means that,

if we were to use the representation of (5), then the training
process would assign higher weights to landmarks that on
average (across all vertex pairs in the training set) give tighter
distance upper bounds, and smaller weights to landmarks that
give looser distance bounds. However, this approach would be
problematic since in general, no single landmark is expected
to provide good predictions for most of the pairs. Instead,
different landmarks provide good predictions for different pairs
of nodes. In order to avoid these issues we instead let qu,v
be the vector of ordered upper bound values from smallest to
largest. As a result, the weights learned correspond to a profile
of decreasingly tight bounds instead of specific landmarks. In
what follows, we will refer to the distance prediction function
that is trained using the ordered upper bounds representation
as fub.

Fig. 1: Example for landmark distance bounds.

Note that all the previous distance prediction algorithms
used only the tightest upper or lower bound provided by the
chosen landmarks in order to respond to a given query. In
contrast, the approach that we propose instead aims to extract
useful information from more of the available bounds. For
example, consider the graph of Figure 1, which has three
landmark vertices L = {l1, l2, l3}. The distance of vertex
pair (u1, v1) is d(u1, v1) = 3 whereas the distance of pair
(u2, v2) is d(u2, v2) = 5. The unordered representation of the
node-pair (u1, v1) is [5, 5, 6] and that of node-pair (u2, v2) is
[7, 5, 7]. A traditional distance upper-bounding method using
these landmarks would output the tightest estimate for each
pair, which in this example is 5 for both of the pairs. However,
if we consider all bounds that the landmarks suggest, we may
suspect that while we know that both pairs of vertices are at
most 5 hops away from each other, u1 is likely to be closer
to v1 than u2 is to v2. Based on this idea, we give all bounds
computed by the landmark set as an input to our distance
estimation function, which will learn the importance of the
information that each bound carries.

In addition to the fub function, which is trained using
the ordered upper bounds representation, we also study the
performance of flb, which is trained using an ordered lower
bounds representation, and fub,lb which uses both upper and
lower bounds. For flb we follow the same process with the
difference that the lower bounds in the representation are
sorted from largest to smallest. For fub,lb the length of the
representation qu,v is 2|L|. The first half of the representation
consists of non-decreasing upper bound values, and the second
half of non-increasing lower bound values.

In order to gain a better understanding of how considering
more than just the tightest bound improves the performance of

our algorithms, we experiment with a threshold value t which,
for a given set of landmarks L, controls how many of the
tightest bounds are included in qu,v . In other words, we study
the effect of letting the input of fub have dimension t with
t < |L|. Note that this is not the same as removing some
of the landmarks, since each node pair’s representation may
disregard the bound provided by a different landmark.

Finally, we also study the effect of combining these
landmark-based approaches with the ones based on vertex
attributes into a single prediction function fub,lb,v . In particu-
lar, we combined the upper and lower bounds with the three
centrality metrics into one representation .

V. EXPERIMENTAL EVALUATION

A. Datasets

In order to measure the quality of the estimates produced
using our approaches, we conducted an extensive experimental
evaluation on the following 6 graphs of different size and
structure, which we obtained from the Stanford Network
Dataset Collection1:

• Astro-Phys: This graph represents an Astro-Physics
collaboration network. Each node corresponds to an
author and each edge covers a scientific collaboration
between two authors who submitted at least one paper
to the Astro Physics category.

• DBLP: This is also a co-authorship network where
two nodes (authors of computer science papers) are
connected by an edge if they have published at least
one paper together.

• P2P-Gnutella: This graph represents a snapshot of the
Gnutella peer-to-peer file sharing network. Each host
is represented by a node and each connection between
Gnutella hosts is represented by an edge.

• Orkut: Orkut is a free online social network. Each
node represents a user of the network and each edge
a friendship between the two users.

• Youtube: The Youtube video-sharing web site in-
cludes a social network where users friend each other.
As in Orkut, each user is represented by a node and
a friendship by an edge.

• CA-RoadNet: This graph is the road network of
California. Each node represents an intersection or an
endpoint and each edge a road connecting intersec-
tions and endpoints.

Table I lists some structural properties of the graphs that
we used in our experiments. The first column is the number of
nodes, the second the number of edges, the third the diameter
of the graph, and finally the fourth column is the average
clustering coefficient of each graph. Note that all graphs are
unweighted and undirected.

Figure 2 shows the distance distribution for every graph
in the experiments, which appears to be close to a normal
distribution for all six graphs. Note that the first five graphs
have a much smaller range in the distance distribution. This

1http://snap.stanford.edu/data/

Graph Name |V | |E| diam avg. clus. coef.

Astro-Phys 18K 1967K 14 0.6306

DBLP 317K 1M 21 0.6324

P2P-Gnutella 62.6K 148K 11 0.0055

Orkut 3M 117M 10 0.1666

Youtube 1.1M 3M 20 0.0808

CA-RoadNet 1.96M 5.5M 849 0.0464

TABLE I: Graph properties

is of course to be expected, since there is an underlying
social network structure in all of them. On the other hand,
the distances in the CA-RoadNet graph range from 1 to 750.

B. Training and Testing

In order to compare the quality of the methods that we
propose with that of the existing landmark-based distance
bounding methods, we selected a testing set T for each graph;
T comprises one million vertex-pairs selected uniformly at
random from all the vertex-pairs in the graph. We separated
the testing set into ten parts of 100K vertex pairs each and
performed 10-fold cross validation, i.e., each part was used for
testing a distance prediction function which was trained using
the remaining 9 parts. We found that after a certain training
set size (around 100K), the quality of the resulting distance
estimation function converges independently of the graph size
(a more detailed review of our experiments and our results
can be found in the full version of the paper [36]). In order to
evaluate the performance of each distance prediction function
f , we computed the average relative error of its estimates for
all pairs in T :

1

|T |

∑

(u,v)∈T

|d(u, v)− f(u, v)|

d(u, v)

C. Baselines

In order to compare the performance of our solutions to
the state-of-the-art, we implemented all the existing landmark-
based distance-bounding methods and run experiments with
them on all six graphs for landmark-sets L ranging from
|L| = 1 to |L| = 500. Then, for each graph we identified
the most accurate out of all these solutions (the one with the
smallest average relative error on that graph’s testing set) and
used it as a baseline for our experiments on that graph. In
fact, for every graph, its best method performed better than
the rest for every number of landmarks, which allowed us to
make an unambiguous winner selection for our baseline. Note
that for the rest of the paper we will refer to the the baseline
of each graph as Base. In particular, Betweenness (selecting
landmarks by decreasing betweenness) outperformed all other
landmark selection methods for all graphs except Astro-Phys
and CA-RoadNet. For Astro-Phys Adaptive-Max-Degree [6]
was the winning method, and for CA-RoadNet the winner was
Optimized-Farthest [11]. Our experiments also showed that for
the five “social” graphs, the upper bounds yield significantly
tighter estimates than the lower bounds, and therefore they
are more precise distance estimators. On the other hand,
the lower bounds for the CA-RoadNet graph provided better
estimates than the upper bounds. Due to space constraints, the
corresponding figures are in the full version of the paper [36].

Fig. 2: Illustration of the distance distributions for the graphs used in the experimental evaluation.

D. Centrality Measures Approach

First, we studied the performance of the distance function
fv that was derived using the structural attributes of the vertices
as features. We ran gradient descent with η = 0.001, which
converged after about 10K iterations. Our initial experiments
showed that the 3rd-degree feature did not lead to coefficients
with small p-values (its p-values varied from 0.13 to 0.24 for
the six graphs), indicating that this feature was not providing
useful information. Therefore, in order to improve the space
consumption, we decided to remove this attribute from the rep-
resentation qu of the nodes, reducing the length of the represen-
tation from 5 to 4. On the other hand, min{C(u), C(v)} was
the feature of qu,v with the highest coefficient and the smallest
p-value (less than 10−7) for all graphs, except roadNet-CA.
The next highest weighted features, with p-values less than
10−6, were min{D2(u), D2(v)} and max{B(u), B(v)}.

This method needs to store the closeness, the betweenness,
the 1st degree, and the 2nd degree for each node. In order
to minimize the amount of space required, we stored the
log values of the 1st and 2nd degree and normalized the
closeness and betweenness values. Then we used a validation
set and experimented with different quantization schemes for
the feature values in order to reduce the number of bits to
be stored per vertex without losing estimation accuracy. As a
result, we reduced the space requirement to approximately 20
bits per vertex for all graphs except the roadNet-CA, which
required 18 bits per vertex due to its smaller degrees.

On the other hand, the space requirement of the baseline
approach is proportional to the number of landmarks being
used. The addition of each new global landmark to L leads to
an additional cost of a few bits for each vertex, since the vertex
needs to store its distance from that landmark. In particular,
each distance that a vertex needs to store per landmark can be
encoded in log2 ∆ bits, where ∆ is the diameter of the graph.
Hence, for the social graphs, the addition of each landmark
costs 4 to 5 bits per vertex, whereas for the road network, the
addition of each landmark costs 10 bits per node.

In Table II we compare the average relative error of fv
to that of the Base. In particular, the second column provides
the average relative error of Base if it is restricted to using
20 bits per vertex, i.e., 4-5 landmarks (depending on the

Graph Name fv (20bpv) Base20bpv Base40bpv Base60bpv

Astro-Phys 0.091 0.261 0.201 0.173
DBLP 0.067 0.259 0.200 0.177

P2P-Gnutella 0.080 0.354 0.307 0.268
Orkut 0.107 0.201 0.166 0.152

Youtube 0.044 0.061 0.048 0.041
CA-RoadNet 0.423 0.383 0.247 0.208

TABLE II: Average relative error for fv and Base.

graph diameter)2. The last two columns of the table show
the average relative error Base for two and three times the
space consumption of fv respectively. Note that the bits per
vertex define the total size of the index for every graph. 20
bits per vertex for instance, result in index sizes of 44KB for
Astro-Phys, 774KB for DBLP, 153 for P2P-Gnutella, 7.2MB
for Orkut, 2.6M for Youtube, and 4.7MB for roadNet-CA,
respectively. Moreover, the query processing in our method
involves retrieving the vertex property values from arrays
stored in main memory, and computing a linear combination
with the learned weights.

We observe that for the five social graphs, fv outperforms
Base when the baseline is restricted to the same space con-
sumption. In fact, even if we allow Base to use three times
more space, fv still either almost matches or even outperforms
Base.

In contrast, fv performs worse than the Base when it comes
to the CA-RoadNet graph. This, is somewhat expected as the
structure of the road network graph is very different than that
of the social networks in terms of both distance distribution
and degree distribution. The centrality metrics are therefore not
able to generalize the graph structure as in the other graphs.

In addition to the very positive results of Table II, our
experiments also indicate that the extent to which fv outper-
forms Base in social graphs is even more pronounced when
it comes to point-to-point distance queries whose distance is
small (details deferred to [36]). This is significant since, for
many of the social search related applications, predicting small

2To be precise, the bit consumption for roadNet in the first two columns is
18 bits per vertex, in the second 36, and in the third 54 bits per vertex.

distances accurately is of higher importance.

E. Landmark Bound Approach

Before comparing the performance of the landmark-based
distance estimation functions that we proposed, we first studied
the effect of the threshold parameter t on the accuracy of
these learned functions. As described above, t is number of
the best upper bounds that we use as features in in the distance
function. In particular, we evaluated the effect of different
values of t on the performance of our solutions, for landmark-
sets L with sizes ranging from |L| = 1 to |L| = 500.
Note that if t < |L|, then t is rounded down to |L|. As a
result of these experiments, we verified our conjecture that
considering more than just the tightest bound could lead to a
more accurate distance estimation function. In addition to this,
we observed that the benefit due to increasing the value of t
becomes insignificant beyond t = 100. The plot of Figure 3
illustrates this effect for the Orkut graph and the fub function,
and it is representative of the effect that we noticed for fub
on other graphs as well; the benefit due to increasing t is less
pronounced for flb (see [36]). The X-axis denotes the landmark
set size |L| and the Y-axis the average relative error for the
particular landmark set size.

Fig. 3: Comparing various threshold values t. The X-axis denotes the
landmark count and the Y-axis denotes the average relative error.

It is worth pointing out that our decision to use values of t
greater than 1 was also strongly supported by our experiments,
as the weights that were learned for the less tight bounds were
often larger than those of the tightest bound. Also, the p-values
for the coefficients of the less tight bounds were less than 10−4,
indicating that bounds other than the tightest one provided
helpful signals.

For each landmark set size |L|, we trained a set of distance
estimation functions. For each vertex pair in the training set we
obtained the upper and lower bounds computed by L. Then we
used the t tightest bounds (if |L| < 100, t = |L|, else t = 100)
in order to create our feature vectors. Finally, we ran gradient
descent and derived the t + 1 weights (one weight for each
bound, and the intercept) of our distance function. The learning
parameter that we used was η = 0.005, and the algorithm
converged after approximately one thousand iterations.

Figure 4 provides a comparison between the performance
of Base and the variations of our proposed distance estimation
functions. The X-axis denotes the number of bits used by each

node in order to store the |L| distances to the landmarks, and
the Y-axis corresponds to the average relative error. We studied
the error of the distance estimation functions for various
space constraints in order to understand their performance in
different settings. In each plot of Figure 4, the line with the
triangle markers represents the baseline method. The plain line
represents fub, whereas the line with the circle markers is flb,
and the dashed line is fub,lb. Finally, the dotted line is fub,lb,v ,
and it starts only after a few bits in the X-axis because we have
introduced a constant space overhead for the representation of
every vertex (since the values of its centrality metrics need to
be stored).

For the social graphs, we observe that fub outperformed
flb, while flb outperformed fub in the road network. As we
mentioned earlier, our experiments on the known landmark-
based distance-bounding methods revealed that their upper
bounds were more accurate when it came to social graphs, and
their lower bounds were more accurate for the road network.
As a result it is to be expected that flb is more accurate for
the road network than fub, as opposed to the social networks.
Also, fub,lb slightly outperforms both fub for the social graphs
and flb for the road network, which confirms our intuition
that combining upper with lower bounds could lead to better
estimates than simply using one of the two. As expected for
social networks, the coefficients assigned to lower bounds are
much smaller than those assigned to upper bounds, and vice
versa for the road network. The benefit of leveraging both
bounds is actually clearer in the road network; this is due to the
fact that lower bounds in social networks are not as informative
signals about the actual distance as are upper bounds for the
road network. Finally, we observe that while fub,lb,v performs
very poorly on the road network, its performance on all the
social graphs is even better than that of fub,lb.

In addition to this, we observe that for most of the graphs
our prediction methods significantly outperform Base; this is
especially true when the space limitations are very strict. The
Youtube graph is an exception, as the benefit from using
the prediction method for the distance estimation is less
significant. For all social graphs we can see that the error
of the new distance estimation function is close to 0.1 with
just a few landmarks (about 5 to 15 bits per node), whereas
Base for the social graphs (except for Youtube) requires more
than 200 bits per vertex to achieve the same accuracy. This
means that fub,lb,v requires almost 20 times less space to
achieve the same accuracy as Base. Even for the roadNet-CA
graph, fub,lb requires only about 75 bits per vertex to bring the
relative error down to 0.1, whereas Base requires more than
10 times more space to achieve the same accuracy. Moreover,
just as we mentioned for the case of fv , our experiments also
indicate that the learned functions fub, fub,lb, and fub,lb,v all
perform better than the existing bounding-methods, especially
for smaller distances [36], which is the case we are focusing
on.

F. Query Processing Time

Computing the distance estimate for a pair of vertices (u, v)
under this approach is very efficient and depends on the num-
ber of features that the distance estimation function uses. For
fv , query processing consists of retrieving the vertex features
from an array in memory (even for graphs of 100M vertices

Fig. 4: Base vs. Distance Prediction Methods. The x-axis denotes bits per node, while the y-axis denotes the average relative error.

this structure fits in less than 2GB) and then combining them
using the learned weights. The performance depends on the
size of the graph, since a series of random lookups in smaller
arrays is faster than a series of lookups in larger arrays due to
caching.

Graph Name fv Base

Astro-Phys 0.04 0.312
DBLP 0.14 0.671

P2P-Gnutella 0.08 1.058
Orkut 0.22 0.48

Youtube 0.19 0.23
CA-RoadNet 0.2 0.17

TABLE III: Time (in µs) for fv vs. Base for the same error.

Table III shows the query processing time for fv and the
query processing time of Base for the same average relative
error that fv achieves. Moreover, note that in [28] the reported
time for Youtube was slightly larger than that of Base (for 20
landmarks) and had an error of 0.049. Our method has error
0.044 and needs 80% of the time that Base needs. This means
that is has a smaller error, and requires in query processing
time to achieve that accuracy.

For the case of fub, we require the same time as Base
for the same number of landmarks to compute the bounds,
but additional overhead is introduced to sort the bounds and
compute their linear combination. However, due to the fact that
fub achieves better accuracy with much fewer landmarks, given
a limit on space the query processing the query processing time
of fub is still smaller than that of Base.

VI. CONCLUSIONS

In this paper, we have studied the problem of estimating
point-to-point distances in large graphs. We propose new
solutions that significantly improve upon the accuracy of the
state-of-the-art methods while maintaining very low space
consumption and response time. From a different perspective,
our methods achieve the same accuracy as landmark-based
distance bounding methods with much faster query processing
time and lower space requirements.

Our first solution uses pre-processing time in order to com-
pute structural attributes of the graph nodes, and then leverages
this information using linear regression in order to infer
good distance predictions. We also propose a set of solutions
that use the existing state-of-the-art methods as subroutines.
Instead of estimating distances as bounds using landmarks,
our machine-learned linear functions predict distances using
these computed upper and lower bounds as features. Finally,
we also consider combining the vertex attribute-based signals
with the landmark-based bounds to get even better point-to-
point distance estimates.

ACKNOWLEDGEMENT

This work was supported by NSF Grant IIS-1117829
“Efficient Query Processing in Large Search Engines”.

REFERENCES

[1] A. Ukkonen, C. Castillo, D. Donato, and A. Gionis, “Searching the
wikipedia with contextual information,” CIKM, pp. 1351–1352, 2008.

[2] M. Potamias, F. Bonchi, C. Castillo, and A. Gionis, “Fast shortest path
distance estimation in large networks,” CIKM, pp. 867–876, 2009.

[3] B. Bahmani and A. Goel, “Partitioned multi-indexing: bringing order
to social search,” WWW, pp. 399–408, 2012.

[4] M. Qiao, L. Qin, H. Cheng, J. X. Yu, and W. Tian, “Top-k nearest
keyword search on large graphs,” PVLDB, vol. 6, no. 10, 2013.

[5] M. V. Vieira, B. M. Fonseca, R. Damazio, P. B. Golgher, D. de Cas-
tro Reis, and B. A. Ribeiro-Neto, “Efficient search ranking in social
networks,” CIKM, pp. 563–572, 2007.

[6] M. Qiao, H. Cheng, and J. X. Yu, “Querying shortest path distance
with bounded errors in large graphs,” SSDBM, vol. 6809, pp. 255–273,
2011.

[7] A. Gubichev, S. J. Bedathur, S. Seufert, and G. Weikum, “Fast and
accurate estimation of shortest paths in large graphs,” CIKM, pp. 499–
508, 2010.

[8] A. D. Sarma, S. Gollapudi, M. Najork, and R. Panigrahy, “A sketch-
based distance oracle for web-scale graphs,” WSDM, pp. 401–410, 2010.

[9] E. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[10] A. V. Goldberg, H. Kaplan, and R. F. F. Werneck, “Reach for a*:
Effcient point-to-point shortest path algorithms,” Microsoft Research,
CA, Tech. Rep. MSR-TR-2005-132, October 2005.

[11] A. V. Goldberg and C. Harrelson, “Computing the shortest path: A*

search meets graph theory,” SODA, pp. 156–165, 2005.

[12] A. V. Goldberg, “Point-to-point shortest path algorithms with prepro-
cessing,” SOFSEM (1), vol. 4362, pp. 88–102, 2007.

[13] C. Demetrescu, A. V. Goldberg, and D. S. Johnson, “Implementation
challenge for shortest paths,” in Encyclopedia of Algorithms, M.-Y. Kao,
Ed. Springer, 2008.

[14] Y. Xiao, W. Wu, J. Pei, W. Wang, and Z. He, “Efficiently indexing
shortest paths by exploiting symmetry in graphs,” EDBT, pp. 493–504,
2009.

[15] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick, “Reachability and
distance queries via 2-hop labels,” SIAM J. Comput., vol. 32, no. 5, pp.
1338–1355, 2003.

[16] R. Jin, N. Ruan, Y. Xiang, and V. Lee, “A highway-centric labeling
approach for answering distance queries on large sparse graphs,” in
SIGMOD, 2012, pp. 445–456.

[17] A. W.-C. Fu, H. Wu, J. Cheng, and R. C.-W. Wong, “Is-label:
An independent-set based labeling scheme for point-to-point distance
querying,” Proc. VLDB Endow., vol. 6, no. 6, pp. 457–468, 2013.

[18] T. Akiba, Y. Iwata, and Y. Yoshida, “Fast exact shortest-path distance
queries on large networks by pruned landmark labeling,” in SIGMOD,
2013, pp. 349–360.

[19] M. Thorup and U. Zwick, “Approximate distance oracles,” STOC, pp.
183–192, 2001.

[20] J. Bourgain, “On lipschitz embedding of finite metric spaces in hilbert
space,” Israel Journal of Mathematics, vol. 52, no. 1, pp. 46–52, 1985.

[21] J. Matousek, “On the distortion required for embedding finite metric
spaces into normed spaces,” Israel Journal of Mathematics, vol. 93,
no. 1, pp. 333–344, 1996.

[22] Y. Bartal, “On approximating arbitrary metrices by tree metrics,” STOC,
pp. 161–168, 1998.

[23] J. Fakcharoenphol, S. Rao, and K. Talwar, “A tight bound on approxi-
mating arbitrary metrics by tree metrics,” J. Comput. Syst. Sci., vol. 69,
no. 3, pp. 485–497, 2004.

[24] T.-H. H. Chan, K. Dhamdhere, A. Gupta, J. M. Kleinberg, and
A. Slivkins, “Metric embeddings with relaxed guarantees,” SIAM J.

Comput., vol. 38, no. 6, pp. 2303–2329, 2009.

[25] X. Zhao, A. Sala, H. Zheng, and B. Y. Zhao, “Efficient shortest paths
on massive social graphs,” CollaborateCom, pp. 77–86, 2011.

[26] S. Baswana, “Streaming algorithm for graph spanners - single pass and
constant processing time per edge,” Inf. Process. Lett., vol. 106, no. 3,
pp. 110–114, 2008.

[27] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang, “Graph
distances in the streaming model: the value of space,” SODA, pp. 745–
754, 2005.

[28] M. Qiao, H. Cheng, L. Chang, and J. Yu, “Approximate shortest
distance computing: A query-dependent local landmark scheme,” IEEE

Transactions on Knowledge and Data Engineering, vol. 26, no. 1, pp.
55–68, 2014.

[29] K. Tretyakov, A. Armas-Cervantes, L. Garcı́a-Bañuelos, J. Vilo, and
M. Dumas, “Fast fully dynamic landmark-based estimation of shortest
path distances in very large graphs,” CIKM, pp. 1785–1794, 2011.

[30] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry, “3-hop: a high-compression
indexing scheme for reachability query,” SIGMOD Conference, pp. 813–
826, 2009.

[31] R. Jin, Y. Xiang, N. Ruan, and H. Wang, “Efficiently answering reacha-
bility queries on very large directed graphs,” SIGMOD Conference, pp.
595–608, 2008.

[32] S. Trißl and U. Leser, “Fast and practical indexing and querying of very
large graphs,” SIGMOD Conference, pp. 845–856, 2007.

[33] R. Schenkel, A. Theobald, and G. Weikum, “Hopi: An efficient connec-
tion index for complex xml document collections,” EDBT, vol. 2992,
pp. 237–255, 2004.

[34] B. Shaw, B. C. Huang, and T. Jebara, “Learning a distance metric from
a network,” NIPS, pp. 1899–1907, 2011.

[35] U. Brandes, “A faster algorithm for betweeness centrality,” Journal of

Mathematical Sociology, vol. 25, no. 2, pp. 163–177, 2001.

[36] M. Christoforaki and T. Suel, “Learning to estimate pairwise distances
in large graphs,” http://cse.poly.edu/~christom/distanceestimation.pdf
2014.

