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Estimating Parameterized Post-Newtonian Parameters
from Spacecraft Radiometric Tracking Data
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The theory of general relativity can be tested by precisely measuring small changes in the trajectory of a spacecraft

traveling near the sun. An important aspect of such a measurement is the potential of estimating the parameterized

post-Newtonian parameters γ and β independently. We present a detailed covariance analysis of such a trajectory,

analyzing uncertainties in the spacecraft state and γ and β. The radiometric data types simulated in our analysis

are range, very long baseline interferometry, and Doppler measurements. Also included are the effects of Earth

and spacecraft relative geometries, station-location errors, stochastic accelerations, and uncertainties in the solar

quadrupole moment J2. For an X-band tracking system, we show that if the steady-state stochastic accelerations,

station-location, and solar quadrupole moment errors are known better than 10−14 km/s2, 0.1 m, and 10−8,

respectively, the experiment can achieve unbiased estimates σγ = 8.90 ×× 10−5 and σβ = 4.09 ×× 10−4. To achieve

this level of precision on accelerations requires a drag-free spacecraft or accurate accelerometers.

Nomenclature

A = linear map of the spacecraft dynamics
a = total acceleration acting on the

spacecraft, km/s2

aGR, aJ2 = acceleration vectors caused by general
relativity and solar quadrupole moment, km/s2

a0 = initial semimajor axis, km
c = speed of light, km/s
E , E0 = actual and initial (Keplerian) sets

of orbital elements
e0 = initial eccentricity
HR , HV , HD = partial derivatives of the range, very long

baseline interferometry (VLBI), and Doppler
measurements with respect to the state

In × n = n × n identity matrix
i0 = initial inclination, deg
J2 = solar quadrupole moment
k = discrete-time index for measurement times, s
M0 = initial mean anomaly, deg
P = covariance matrix
Pω = covariance caused by process noise
p = parameter vector
q = measurement model parameter vector
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R = square-root information filter matrix
RE = radius of the Earth, km
RH = upper triangularized square-root information

filter matrix
R⊙ = radius of the sun, km
r = norm of the spacecraft position vector, km
r = spacecraft position vector, km
rE = sun–Earth vector, km
rp = spacecraft periapsis radius, km
rsl = station-location vector, km
rts = tracking station vector from the

Earth center, km
TH = orthogonal Householder transformation matrix
t , t0 = current and epoch times, s
V∞ = excess velocity, km/s
v = norm of the spacecraft velocity vector, km/s
v = spacecraft velocity vector, km/s
vp = spacecraft periapsis velocity, km/s
vts = velocity vector from the sun to Earth tracking

station, km/s
x = spacecraft state vector
y = estimated state vector
Zm , Zn = longitudinal and latitudinal angular

measurements, deg
Z R , ZV , Z D = range, VLBI, and Doppler measurements
α = right ascension of the Earth tracking

station, deg
β = parameterized post-Newtonian parameter

appearing in the g00 component of the
metric tensor

γ = parameterized post-Newtonian parameter
appearing in the spatial component of the
metric tensor

�V = change in spacecraft velocity vector, km/s
δ = declination of the Earth tracking station, deg
η = Nordtvedt effect parameter
Λ = information matrix
µ = gravitational constant of the sun,

= G M⊙ = 1.327 × 1011 km3/s2

ξ = angle of the sun’s tangent line from the Earth
center, deg
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ρ = range from the Earth tracking station
to the spacecraft, km

ρ = position vector of the spacecraft from the Earth
tracking station, km

ρ̂ = unit position vector of the spacecraft from the
Earth tracking station

σa = steady-state stochastic accelerations, km/s2

σi = standard deviation of i
σi j = covariance of i and j
σR , σV , σD = approximated range, VLBI, and Doppler

measurement uncertainties
τ = correlation time for steady-state stochastic

acceleration, days
Φ = state transition matrix
φ = initial phase angle, deg
χ = spacecraft-Earth-sun angle, deg
ψ = Earth obliquity, deg
�0 = initial argument of ascending node, deg
ω = argument of perihelion, deg
ωE = Earth rotation rate, deg/day
ω0 = initial argument of perihelion, deg

Introduction

T HE theory of general relativity (GR) has been explored with
great intensity, both theoretically and experimentally. Previous

experimental tests of GR not only improved our understanding of the
theory, but also introduced new technologies, such as the Mössbauer
effect and atomic clocks in the case of the gravitational red shift.
Several GR mission tests, such as Gravity Probe-B, BepiColombo,
and the Laser Interferometry Space Antenna, are currently planned
to validate and further investigate our modern understanding of grav-
itational theories.

Tests of GR, such as the precession of Mercury’s perihelion and
the Viking radar time delay, confirmed the theory by measuring the
Eddington–Robertson–Schiff parameters γ and β, which appear in
the parameterized post-Newtonian (PPN) formulation.1 The param-
eter γ arises in the gi j components of the metric tensor gµν , while
β characterizes the g00 component. Measuring these constants will
essentially describe how well GR accounts for the law of gravita-
tion in the weak field limit. In Einstein’s formulation of GR, both γ

and β are unity, although both parameters can differ from unity in
some alternatives to GR. A recent experiment by Bertotti et al.,2 in
which the radio links with the Cassini spacecraft were calibrated,
provided a new estimate (γ − 1) = (2.1 ± 2.3) × 10−5. In contrast,
the parameter β has never been measured independently, but only
estimated indirectly from linear combinations involving γ , such as
the perihelion advance effect (2 + 2γ −β), or the Nordtvedt effect,3

which measures η = (4β − γ − 3). Let us consider the precession
of Mercury’s perihelion, where the secular effect of GR on Mer-
cury’s trajectory is measured. In this observation, the gravitational
shift is highly correlated with the solar quadrupole moment J2, a
measure of the solar oblateness. If we assume that GR is correct,
then our observations can be used to measure the solar quadrupole
moment. Alternatively, if we can assume a value for J2, an esti-
mate for γ and β can be found. A recent study by Pireaux and
Rozelot3 provides an estimated value of the solar quadruople mo-
ment J2 = (2.0 ± 0.4) × 10−7. The purpose of the present paper is to
verify the feasibility of the test of GR proposed by Longuski et al.,4

by carrying out a covariance analysis aimed at computing the level
of accuracy to which γ , β, and J2 can be estimated simultaneously.

A test of GR with use of a heliocentric spacecraft trajectory with
small perihelion was previously discussed by Mease et al.,5 who
studied the possibility of estimating the PPN parameters and so-
lar gravitational harmonics by using the proposed Starprobe space-
craft. Their baseline covariance analysis showed potential estimates
of the PPN parameter γ and solar J2 to accuracies of 10−2 and
10−8, respectively; however, the parameter β was unobservable at
the level of 10−2 because of large station-location uncertainties. In
a subsequent study, Mease et al.6 carried out a more detailed co-

variance analysis including additional quantities of interest, such as
the preferred-frame effect parameter α1 and the Moffat parameter κ .
However, neither γ nor β is observable to a significant level using
the assumed tracking capability.

More recently, Longuski et al.4 have reanalyzed a variation of
this test and shown that GR can be tested by precisely measuring
small changes in the position of a spacecraft as it escapes from the
sun on a hyperbolic trajectory. Their analysis used a heuristic argu-
ment, supported by solving the deflection equation for a hyperbolic
trajectory, to establish that γ and β could be measured to an ac-
curacy of 10−3 assuming foreseeable improvements in spacecraft
tracking technology. This theoretical discussion motivated a new
consideration of this test of GR. Our follow-on studies based on an
analytic approach7 verified that the PPN parameters are measurable
to the level ∼1 × 10−5 in principle. Another important result from
that study was that simultaneous estimates of the PPN parameters
could be obtained separately (i.e., with very little correlation be-
tween the estimates of γ and β). This result makes the proposed GR
experiment unique because other GR tests generally cannot clearly
disentangle γ and β from each other.3

The present paper presents a detailed numerical analysis of
this test, which includes realistic error sources, such as uncertain
nongravitational accelerations, station-location uncertainties, and
uncertainty in the solar quadrupole moment, using current and pro-
jected measurement accuracies. We first analyze individual contri-
butions from these error sources to the γ and β estimation accu-
racies. We then show how these errors degrade the performance of
radiometric measurements and discuss the level of precision needed
to carry out this experiment at a meaningful level. Also included is
the effect of solar occultations, which is a critical problem in the
proposed test. This problem is a consequence of the fact that the
gravitational shift is at a maximum in proximity of the sun, and
a loss of measurements in the early stage of the trajectory signif-
icantly degrades the quality of the γ and β estimates. In addition
to the hyperbolic trajectory considered in the previous work,7 we
also analyze different tracking geometries between the spacecraft
and Earth, as well as elliptic orbits with periapsis close to the sun.
In practice, an elliptic orbit would be more useful as it can provide
multiple passages close to the sun. An elliptic orbit allows for rep-
etition of the experiment, and for longer data arcs near perihelion
caused by the slower periapsis speed compared to a hyperbolic orbit.
We also present the uncertainty distributions of the PPN parameters
as functions of periapsis distance and eccentricity.

Our analysis differs in the following ways from the previous work
of Mease et al.6: 1) very long baseline interferometry (VLBI) mea-
surement is included as a data type in addition to range and Doppler,
and 2) more accurate measurement precisions are considered. Fur-
thermore, we ignore PPN parameters other than γ and β and con-
sider a wider range of spacecraft orbit geometries for the sensitivity
study. Over the past few decades, there have been significant im-
provements in the tracking accuracies of radiometric measurements
(e.g., S- to X-band tracking systems). The current implementation
of K-band tracking will further enhance our ability to accurately
track spacecraft. Future improvement can be anticipated if laser
communication is implemented; however, we do not consider this
possibility in the present paper. Moreover, VLBI provides high-
precision angular measurements of the spacecraft trajectory, a key
capability for obtaining better estimates of γ and β (Ref. 4). In this
analysis, we ignore higher-order PPN terms because their effects
are negligible.5 Also, because each radiometric data type measures
a fundamentally different aspect of the GR perturbation, and is sen-
sitive to the relative orbital geometries between the spacecraft and
the Earth, we explore a wide range of orbit orientations. Our re-
sults exhibit the influence of geometry on the GR estimates as a
function of initial phase angle (i.e., the angle φ shown in Fig. 1).
We also include the J2 perturbation in the model and study how
estimates of this parameter, along with γ and β, vary as a function
of inclination, argument of periapsis, and longitude of ascending
node. Finally, we show that a mission similar to the proposed Solar
Probe mission8 can satisfy the trajectory requirements for this test
of GR.
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Fig. 1 Hyperbolic flyby of a spacecraft about the sun.

Transient Effects of γ and β

One can consider the test we are investigating as an extension of
previous GR experiments, such as measurements of Mercury’s per-
ihelion shift or the deflection of light as a result of the sun’s gravity.
A novel aspect of this new experiment comes from the potential of
separately estimating γ and β. Precisely knowing these predicted
parameters allows us to determine how well GR accounts for gravity
data. The classic test of GR, observation of the precession of Mer-
cury’s perihelion, is based on the secular effect of GR over long time
spans. In actuality, the transient oscillations of Mercury’s orbit as a
result of GR are much larger (over one orbit) than the secular effect;
however, their amplitudes are small in absolute terms, and their ef-
fect averages out over time. Hence, only the secular effects can be
measured over very long time baselines, and these provide estimates
of linear combinations of γ and β, such as the perihelion advance
effect (2 + 2γ − β) or the Nordtvedt effect (η = 4β − γ − 3). Our
approach measures transient deviations in the trajectory caused by
GR over a short period of time, where the effect is large enough to
measure, and this allows us to disentangle γ and β.

If we let E0 be a set of Keplerian orbital elements, the change
in E0 as a result of GR can be defined as �E = E − E0, where E
is computed by solving the two-body equations of motion incor-
porating the GR perturbation. The total acceleration acting on the
spacecraft is given by

a(t) = −(µ/r 3)r + aGR (1)

where aGR is the GR perturbing acceleration.1 Its dimensional rep-
resentation is

aGR = (µ/c2r 3)[2(γ + β)(µ/r)r − γ v2r + 2(γ + 1)(r · v)v] (2)

The changes in orbital elements as a result of this perturbation are
shown in Fig. 2, where we assume that the spacecraft is initially lo-
cated at perihelion (four solar radii) with hyperbolic excess velocity
39 km/s. We note that the GR perturbation acts only in the orbital
plane, and therefore the inclination and argument of ascending node
are unchanged. The largest change in orbital elements caused by γ

and β occurs very early in the trajectory and essentially disappears
after a few days. This is expected because the GR perturbation is
at its maximum in close proximity to the sun. One outcome of this
observation is a drive to extend radiometric tracking as close to the
sun as possible. Furthermore, Longuski et al.7 discuss the impor-
tance of the partial derivatives of the orbital elements with respect
to the GR parameters as a spacecraft travels along its trajectory. An
important conclusion from their study is that the partials of the argu-
ment of periapsis ω, with respect to β and γ , are unique. The ratios
of these partials, which represent the correlation between β and γ ,

Fig. 2 Change in the semimajor axis a, eccentricity e, argument of

periapsis ω, and mean anomaly M caused by GR.

converge to a constant value slower than the ratios of the partials of
the other orbital elements, indicating that there might be sufficient
information to disentangle γ and β by tracking the spacecraft close
to perihelion.

In addition to independent γ and β measurements, our proposed
heliocentric spacecraft trajectory offers an opportunity to check GR
under a fundamentally different flight regime (i.e., a sub-light-speed
experiment). As discussed earlier by Longuski et al.,4 deflection of
a spacecraft trajectory as a result of GR is greater than that of light
at the same periapsis distance rp . Therefore proper tracking of a
spacecraft can, at least in principle, provide PPN estimates that are
comparable to the light-speed experiments.

Covariance Analysis

Baseline State To Be Estimated

In our numerical approach we follow the baseline trajectory an-
alyzed in Refs. 4 and 7, which places the spacecraft on an escape
hyperbolic trajectory at perihelion equal to four solar radii, rp = 4R⊙
(R⊙ = 6.96 × 105 km). The periapsis velocity is vp = 311 km/s with
corresponding excess velocity V∞ = 39 km/s. The nominal trajec-
tory has initial orbital elements of semimajor axis a0 = −0.58 as-
tronomical unit (AU) = − 8.725 × 107 km, eccentricity e0 = 1.03,
and i0 = ω0 = �0 = M0 = 0 deg. The spacecraft and Earth orbits are
assumed to be coplanar about a spherical sun. The Earth’s orbit is
circular with radius of 1 AU. The spacecraft trajectory is obtained
by numerically integrating two-body equations of motion that incor-
porate the GR perturbation. While the initial sun–Earth-spacecraft
angle (phase angle φ) remains as a free parameter, we assume a
phase angle of zero for our baseline case.

Our hypothetical trajectory approaches perihelion on an ellip-
tic orbit (with aphelion at Jupiter ∼5.2 AU), then boosts into
a hyperbolic escape trajectory (using a perihelion maneuver of
�V ∼ 3 km/s at 4R⊙). Hence, to constrain the initial velocity er-
ror we assume the presence of accelerometers to measure the large
perihelion burn. At epoch the conservative initial uncertainties (vari-
ances) for the initial covariance matrix are σxx = σyy = σzz = 1 km2,
σuu = σvv = σww = 1 m2/s2, and σγ γ = σββ = 1 with zero correlation.
The boost into this hypothetical trajectory introduces new errors.
This maneuver is a part of the baseline trajectory only because it
was used as a nominal case in earlier studies. We show later that the
perihelion boost is not necessarily needed to obtain the same level
of γ and β estimates by analyzing a wider range of trajectories that
do not include this maneuver.

In addition to the state and PPN parameters γ and β, we also
include other parameters of interest, such as the uncertainties in the
station-location vector and in solar J2, and study their impact on
the γ and β uncertainties. Our goal is to analyze their individual
contributions to the PPN estimates, as this allows us to constrain
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the uncertainties in these parameters and to determine the level of
accuracy required in carrying out this experiment. Additionally, we
briefly discuss the potential for obtaining improved estimates of
these parameters. Lastly, we model the effect of stochastic accelera-
tion perturbations on the trajectory, which can have a critical impact
on γ and β estimation uncertainties.

Definition of the Information and Covariance Matrix

Our filter model is based on ordinary first-order least-squares
approximation theory9 and is carried out by using modern orbit
determination procedures.10 The state vector we estimate in our
analysis can be represented as y(t) = [xT pT qT ]T for an arbi-
trary system. For the baseline analysis we define the state vector
as y = [rT vT γ β]T , which assumes no measurement parameters.
When additional parameters are included, we simply add them to
the state and carry out the same process.

Numerical precision is often lost in the computation of covariance
as a result of numerical integration and matrix inversion. A method
for retaining precision is to use the square-root information filter
(SRIF)9:

Λ(t0; tk, t0) = RT (t0; tk, t0)R(t0; tk, t0) (3)

Here Λ(t0; t0, tk) is the initial state information matrix, which rep-
resents the information content of the radiometric data added in the
time interval from t0 to tk , and R(t0; tk, t0) is the initial state SRIF
matrix, which we propagate, instead of the information matrix, to
update data in each time increment. The SRIF matrix is related to
the adjoint of the state transition matrix (STM) and ideally maps as

R(tk; tk, t0) = R(t0; tk, t0)Φ(t0, tk) (4)

whereΦ(tk, t0) describes the linear mapping of the state perturbation
about the nominal trajectory. Let TH be an orthogonal Householder
transformation matrix9 such that the updated SRIF matrix is defined
as

R(t0; tk + 1, t0) = TH





















R(t0; tk, t0)

1

σR

HR(tk + 1)Φ(tk + 1, t0)

1

σV

HV (tk + 1)Φ(tk + 1, t0)

1

σD

HD(tk + 1)Φ(tk + 1, t0)





















=
[

RH (t0; tk + 1, t0)

0

]

(5)

In the computation, we adopt QR factorization as the Householder
transformation.9 Here, the H are the partial derivatives of the mea-
surements with respect to the state computed at t = tk + 1; the sub-
scripts R, V , and D denote range, VLBI, or Doppler measurements,
respectively. The noise factors (i.e., σR , σV , and σD) are given in
Table 1, where they represent the approximate measurement un-
certainties provided by S-, X-, and K-band tracking systems. After
the Householder transformation is applied, the updated information
matrix becomes

Λ(t0; tk + 1, t0) = RT
H (t0; tk + 1, t0)RH (t0; tk + 1, t0) (6)

and the updated covariance matrix becomes

P(t0; tk + 1, t0) = Λ
−1(t0; tk + 1, t0)

= R−1
H (t0; tk + 1, t0)R

−T
H (t0; tk + 1, t0) (7)

Table 1 Summary of measurement accuracies

Tracking system σR , m σV , nrad σD , mm/sa

S-band 10 5 1
X-band 1 1 0.1
K-band 0.1 0.1 0.01

aFor 1-min count time.

which represents the evolution of the a priori uncertainties in the
state vector.

Computation of the State Transition Matrix

The STM represents the linear mapping of the state perturbation
as a function of time and is defined by the initial spacecraft state
vector [i.e., Φ(tk, t0; r0, v0, γ, β)]. For the given state vector, the
time propagated STM is represented as

Φ(tk, t0) = ∂y(t)

∂y(t0)
(8)

with Φ(t0, t0) an 8 × 8 identity matrix. The time derivative of the
STM is a simple linear relation, Φ̇(tk, t0) = AΦ(tk, t0), where the
linear mapping matrix A is given by

A(t) =









03 × 3 I3 × 3 03 × 1 03 × 1

∂a

∂r

∂a

∂v

∂a

∂γ

∂a

∂β

02 × 3 02 × 3 02 × 1 02 × 1









(9)

The partial derivatives of the acceleration vector with respect to the
state variables yield

∂a

∂r
= − µ

r 3

[

I3 × 3 − 3r̂r̂T
]

+ ∂

∂r
(aGR) ∼ − µ

r 3

[

I3 × 3 − 3r̂r̂T
]

(10)

∂a

∂v
= ∂

∂v
(aGR) ∼ 03 × 3 (11)

∂a

∂γ
= µ

c2r 3
[2µr̂ − v2r + 2(r · v)v] (12)

∂a

∂β
= 2µ2

c2r 3
r̂ (13)

where the unit vector r̂ is the normalized spacecraft-position vector.
The partials of aGR with respect to spacecraft states (i.e., r and v) are
included in the simulation; however, their contribution is negligible
when compared to Newtonian gravity.

Implementing Stochastic Acceleration Effects

Time-correlated random accelerations can be included in the
SRIF matrix as discussed in Scheeres et al.11 The perturbations
caused by process noise directly feed into the SRIF matrix at time
tk , and therefore, we solve instead for the SRIF matrix directly rather
than solving for the STM. We define the current-state information
matrix and related quantities as

Λ(tk; tk, t0) = RT (tk; tk, t0)R(tk; tk, t0) (14)

P(tk; tk, t0) = Λ
−1(tk; tk, t0) (15)

Ṙ(tk; tk, t0) = −R(tk; tk, t0)A(tk) (16)

The current state-covariance matrix [Eq. (15)] represents the un-
certainties in the state variables at time tk , whereas the preceding
definition is for the a priori estimates. The resulting γ and β un-
certainties do not change because they are not dynamical variables.
In the absence of stochastic perturbations, the two definitions of
covariance matrices can be mapped into each other by

P(tk; tk, t0) = Φ(tk, t0)P(t0; tk, t0)Φ
T (tk, t0) (17)

However, this ideal relation is no longer preserved in the presence of
stochastic perturbations. The time derivative of the perturbed SRIF
matrix is11

Ṙ(tk; tk, t0) = −R(tk; tk, t0)A(tk)

− 1
2
R(tk; tk, t0)BPωBT RT (tk; tk, t0)R(tk; tk, t0) (18)
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where

B = [03 × 3 I3 × 3 03 × 2]T (19)

Pω = 2τσ 2
a I3 × 3 (20)

We assume that the stochastic accelerations are not being estimated
during the orbit-determination process and continuously affect the
state. For this reason, we map the covariance caused by the process
noise Pω only into the velocity space by using the matrix B. In the
actual computation the correlation time τ is set to 0.5 days, and
we vary the steady-state acceleration noise to study its impact on
γ and β estimates. Between these measurements, the SRIF matrix
is propagated by solving the preceding differential equations, and
each measurement is incorporated into the SRIF matrix by

R(tk + 1; tk + 1, t0) = TH























R(tk + 1; tk, t0)

1

σR

HR(tk + 1)

1

σV

HV (tk + 1)

1

σD

HD(tk + 1)























=
[

RH (tk + 1; tk + 1, t0)

0

]

(21)

The current-state covariance matrix is then obtained by computing

P(tk + 1; tk + 1, t0) = R−1
H (tk + 1; tk + 1, t0)R

−T
H (tk + 1; tk + 1, t0) (22)

which represents the a posteriori estimates of the state vector at
t = tk + 1.

Extracting γ and β Estimate Uncertainties

Each component in a covariance matrix σi j represents the vari-
ances of the state or the covariances between two state variables.
Hence, we can obtain the uncertainty estimates (i.e., standard devia-
tions) of γ and β by computing σγ = √

σγ γ and σβ = √
σββ , respec-

tively. The unique opportunity of the proposed test is the potential of
separately estimating γ and β; hence, it is of interest to analyze how
these two parameters are correlated. We thus also find the correlation
between γ and β by computing [σγβ/

√
(σγ γ σββ)] = (σγβ/σγ σβ),

which can range between −1 and 1. A value of zero represents
a purely uncorrelated measurement, whereas values close to 1 or
−1 represent highly correlated or anticorrelated measurements,
respectively.

Measurement Data Types and Measurement Partials

with Respect to the State Vector

As mentioned earlier, three different measurement data types are
considered. The first data type is two-way radar range measure-
ments,

Z R = |r − rE − rts| = |ρ| = ρ (23)

which measure the distance between the spacecraft and the tracking
station based on the travel time of the uplink and downlink signals.
Here, rE is the vector from the sun to Earth center, and rts is the vector
representing the location of the Earth tracking station (Goldstone in
our example) relative to the origin at the Earth center. Its analytic
representation is given by

rts(t) =





1 0 0

0 cos ψ −sinψ

0 sin ψ cos ψ









RE cos(α + ωE t) sin δ

RE sin(α + ωE t) sin δ

RE cos δ



 (24)

where ψ is the Earth obliquity (23.45 deg), RE is Earth mean radius
(6378 km), α is the right ascension (243.17 deg), δ is the declination
(54.67 deg), and ωE is the Earth inertial rotation rate. We assume

that the Earth is initially located along the vernal equinox. We take
the partial of Z R with respect to y to find

HR = ∂ Z R

∂y
=

[

∂ Z R

∂r

∂ Z R

∂v

∂ Z R

∂(γ, β)

]

=
[

ρ̂
T

01 × 5

]

(25)

where ρ̂ is the unit position vector of the spacecraft from the Earth
tracking station.

The second data type we consider is VLBI measurements ZV .
VLBI measures the longitudinal and latitudinal angles of the space-
craft trajectory in the plane of sky relative to the tracking station.12

Combined with range measurements, the three-dimensional position
of the spacecraft can be obtained. We represent this measurement
as a set of angles

ZV = [Zm Zn]T (26)

Taking partials with respect to y yields

HV = ∂ ZV

∂y
=











m̂T
0

ρ
01 × 5

n̂T
0

ρ
01 × 5











(27)

where we define

l̂0 = ρ̂ (28)

m̂0 = l̂0 × n̂0 (29)

n̂0 = ẑ − (ẑ · l̂0)l̂0

|ẑ − (ẑ · l̂0)l̂0|
(30)

and where ẑ = [0 0 1]T .
The final data type we consider is Doppler measurements Z D ,

Z D = d

dt
|r − rE − rts| = ρ̂ · ρ̇ (31)

which are widely used for interplanetary missions. This data type
gives range rate via Doppler frequency shifts in the transmitted
signals and, because of the Hamilton–Melbourne effect,13 provide
angular information on the trajectory as well. The partial derivative
of Z D results in

HD = ∂ Z D

∂y
=

[

ρ̇T

(

∂ρ̂

∂r

)T

ρ̂
T

01 × 2

]

(32)

where

∂ρ̂

∂r
= 1

ρ

[

I3 × 3 − ρ̂ρ̂
T
]

(33)

Solar Occultation Effects

When the spacecraft passes in front of (or behind) the sun (Fig. 3),
we cannot obtain radiometric measurements. Because the trajectory
originates close to the sun, this can be an important effect in the
early stages of the experiment.

Let us define

χ = cos−1

[

ρ · (−rE )

ρr

]

(34)

Based on the geometry of the Earth and sun, the angle between rE

and the tangent vector from center of the Earth to the outer radius
of the sun ξ is computed to be 0.267 deg. We assume that no mea-
surements are taken (i.e., H = 0) if χ ≤ ξ + 0.5 deg for Doppler and
VLBI measurements and χ ≤ ξ + 5 deg for range measurements.14
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Fig. 3 Occultation effect caused by the sun.

Station-Location Errors

We define the station-location vector rsl as

rsl =





RE sin δ

RE cos δ

α



 (35)

To analyze the effect of uncertainties in rsl on γ and β estimates,
we include rsl in the state vector y and carry out the same covari-
ance analysis. The only information needed are the partials of the
observation vectors with respect to rsl. Taking partials of range mea-
surements with respect to the station-location vector results in

∂ Z R

∂rsl

= −ρ̂
T

(

∂rts

∂rsl

)

(36)

Taking partials of the VLBI measurements with respect to the
station-location vector yields









∂ Zm

∂rsl

∂ Zn

∂rsl









=











− m̂T
0

ρ

(

∂rts

∂rsl

)

− n̂T
0

ρ

(

∂rts

∂rsl

)











(37)

Finally, the partial derivatives of Doppler measurements are

∂ Z D

∂rsl

= − ρ̇T

ρ

(

I3 × 3 − ρ̂ρ̂
T
)

(

∂rts

∂rsl

)

− ρ̂

(

∂vts

∂rsl

)

(38)

where vts is the time derivative of rts.
Uncertainties in station locations corrupt the quality of radiomet-

ric measurements and hence can significantly degrade the accuracy
of our estimates of γ and β. To analyze this effect, we assume that
the uncertainty in the station-location vector is constant and do not
estimate rsl in the covariance computation.

Effect of Solar Quadrupole Moment J2

As discussed by Mease et al.,5,6 this test also offers the potential
of estimating the solar quadrupole moment J2 to a precision of
order 1 × 10−8 for an X-band mission and an order of magnitude
better if K-band tracking is employed. Because of large correlations
between the PPN parameters and J2, we must search the parameter
space (γ , β, J2) to study their simultaneous contributions to the
gravitational shift.3 Hence, we include the solar J2 as a state variable
and estimate it along with γ and β.

To incorporate the solar quadrupole moment in the analy-
sis, we modify the spacecraft acceleration vector by incorporat-
ing the perturbing acceleration caused by solar oblateness [i.e.,

a = −(µ/r 3)r + aGR + aJ2], where

aJ2 = ∂

∂r

{

µ

r

[

1 +
R2

⊙ J2

2r 4
(r 2 − 3z2)

]}

(39)

Inclusion of J2 changes the spacecraft orbit, in particular the orien-
tation of the orbital plane. We analyze orbit orientation (i , ω, �) to
determine the effect of J2 on the accuracy of our γ and β estimates.
In this geometric analysis, we only consider a 90-deg inclination
case to take maximum advantage6 of measuring J2, whose nominal
value is assumed to be 2 × 10−7 as discussed in Ref. 3. The partial
derivatives of the acceleration vector with respect to the spacecraft
state are almost negligible, which is expected because the J2 accel-
eration aJ2 is even smaller than the GR contribution. The partials
with respect to J2 are given as

∂a

∂ J2

= −
3µR2

⊙
2r 5





















(

1 − 5
z2

r 2

)

x

(

1 − 5
z2

r 2

)

y

(

3 − 5
z2

r 2

)

z





















(40)

Results

Unbiased Results

For our analysis, the trajectory conditions given in Refs. 4 and
7 are first verified as the unbiased case, where we assume no er-
ror sources are included. The spacecraft is initially located at pe-
riapsis of a heliocentric hyperbolic trajectory with rp = 4R⊙ and
V∞ = 39 km/s. Figure 4 shows the evolution of PPN uncertainties
as a function of time considering S-, X-, and K-band tracking ca-
pabilities. An important result is that measurements in the early
stage of the trajectory significantly improve the estimates of γ and
β. However, as shown in the correlation plot (Fig. 5), early stage
measurements have higher correlation factors, and we need to fur-
ther investigate ways to calibrate radiometric measurements and
disentangle the information content for γ and β estimates. The co-
variances are linearly proportional to the measurement noise in the
absence of stochastic accelerations. Hence, changing measurement
accuracies from X- to K-band tracking can improve γ and β esti-
mates by an order of magnitude.

The results of the γ and β estimates, with different time spans, are
presented in Table 2. Taking measurements before periapsis passage
significantly reduces the uncertainties in γ and β. This is expected
because taking measurements near perihelion provides more useful
information about the trajectory. However, for our hyperbolic tra-
jectory, the orbital maneuver at perihelion can introduce problems.
Hence we also consider the possibility of obtaining comparable
precision with elliptic orbits. All of the values σγ and σβ shown in

Table 2 Summary of unbiased analysis with X-band

tracking systema

Initial time,b Final time, A posteriori A posteriori

days days σγ × 104 σβ × 104

0c 10c 0.890c 4.09c

0 30 0.782 3.69
0 100 0.495 3.19
0 200 0.317 0.86
−5 5 0.607 1.12
−10 10 0.581 1.08
−15 15 0.526 0.95
−100 100 0.123 0.24

aNo error sources are included.
bWith respect to perihelion passage.
cUnbiased case.
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Fig. 4 Uncertainties of γ and β as functions of time, excluding error

sources.

Fig. 5 Correlation between γ and β estimates as a function of time

with X-band tracking accuracies, excluding error sources.

Table 2 are the final ones (a posteriori) taken at the end of the times-
pan. These uncertainties will be decreased by an order of magnitude
when K-band tracking systems are implemented, implying that both
γ and β can be estimated with accuracies better than 10−5, at least
in principle. The parameter γ can be estimated more accurately than
β, which is the result obtained by Mease et al.5,6 as well.

Figure 6 shows the uncertainties and correlations between γ and
β with different initial phase angles, with and without the solar
occultation effect. The estimates are taken at the end of a 10-day
timespan, where the spacecraft starts from its perihelion. The un-
certainties are relatively sensitive to the initial phase angle φ. This
plot shows that there is an order-of-magnitude difference in the es-
timates when different spacecraft-Earth geometries are considered,
thus emphasizing the importance of trajectory design for this exper-
iment. The inclusion of the VLBI measurements as an additional
data type did not contribute a significant improvement in γ and β

estimates when compared to Mease et al.; hence, the accurate range
and Doppler measurements and finding the optimal spacecraft ori-
entation are the keys in obtaining improved estimates of the PPN
parameters.

For the remainder of this paper, by “unbiased case” we mean
tracking the spacecraft for 10 days from perihelion by using X-band
measurement noise (i.e., the first line of Table 2). We used this
result as a standard as it represents the true information content our
measurements can extract from the trajectory.

Fig. 6 Uncertainty and correlation of γ and β estimates as functions

of initial sun-Earth-spacecraft angle, excluding error sources.

Fig. 7 Accuracies of γ and β estimates as functions of eccentricity e,

excluding the error sources (s = rp/R⊙).

Elliptic Orbits

As mentioned earlier, the longer data arcs and repeated measure-
ments possible with an elliptic orbit might improve our estimation
results. Figure 7 shows the sensitivity of uncertainties in γ and β as
a function of eccentricity for various periapses, where e < 1 repre-
sents an elliptic orbit. This figure shows that the overall change in
the uncertainty distribution for a fixed rp is not significant, which
means that there is a possibility of conducting this test using elliptic
orbits. Also restricting the periapsis radius to rp = 4R⊙ is not nec-
essary: rp can be increased to lower the heat shield requirement and
thus mission cost. However, when the solar J2 is included, it might
still be desirable to minimize periapsis distance because the J2 un-
certainty is highly sensitive to rp (Ref. 5). For orbits with rp = 4R⊙,
the estimate of β becomes more accurate as eccentricity decreases,
whereas the estimates of γ are better with hyperbolic orbits. Consid-
ering the repetition in tracking measurements, increased data arcs in
the vicinity of the sun, and absence of a large maneuver at periapsis,
elliptic orbits provide an opportunity for more accurate estimation
of γ and β. This assumes that the spacecraft is capable of enduring
multiple close passes of the sun.

Effect of Stochastic Accelerations

The effect of stochastic accelerations on the state variables (i.e.,
position and velocity components) is usually negligible over a short
period of time; however, their effect on γ and β uncertainties is
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Table 3 Effect of stochastic accelerationa

Steady-state acceleration A posteriori A posteriori

σa , km/s2 σγ × 104 σβ × 104

10−10 465 231

10−11 63.3 42.8

10−12 7.53 8.62

10−13 1.57 5.18

10−14 0.971 4.41

Unbiasedb 0.890 4.09

aCovariances are evaluated at the end of a 10-day time span.
bAssumes no stochastic acceleration.

Fig. 8 Effect of station-location errors on the estimates of γ and β
with X-band tracking noises.

significant. Table 3 shows how the process noise affects overall
tracking performance. As seen from the table, the 10−3 precision for
γ and β discussed in Ref. 4 is obtainable when σa = 10−12 km/s2.
If the steady-state uncertainty is known to better than 10−14 km/s2,
we can achieve the unbiased estimates; however, this will require
either accurate onboard accelerometers or a drag-free spacecraft.

Effect of Station-Location Errors

Figure 8 presents the time responses of σγ and σβ when station-
location errors of 0.8, 0.2, and 0.1 m are considered. As seen, station-
location uncertainties ∼0.1 m will ensure that our desired accuracy
will be achieved. Fortunately, current technology provides this level
of precision, and hence X-band radiometric measurements can pro-
vide useful information about the GR contribution to the trajectory.
However, reducing the noise level by use of K-band tracking does not
necessarily improve the γ and β uncertainties because simultaneous
increases in station-location precision are required. Therefore, if the
K-band tracking system is implemented, it might be more practi-
cal to estimate the station-location vector along with γ and β. Also
shown in the plot are oscillations in σγ and σβ . If the station location
is estimated, σγ and σβ will always decrease without oscillation.

Effects of Solar Quadrupole Moment

Table 4 shows σγ and σβ when J2 is included for a spacecraft
orbit with zero inclination. Considering the J2 uncertainty as an
unestimated perturbation causes a dramatic degradation in the γ

and β estimates as a result of the high correlations between β and
J2. Hence, we include J2 in our state estimates. Table 4 shows that
the estimate of β is highly sensitive to initial uncertainties in J2,
which explains why β has not been estimated independently from
the precession of Mercury’s perihelion (i.e., either J2 or β must be
known accurately to measure the other).

To understand the effect of orbit orientation, we show the un-
certainty distributions of γ , β, and J2 as functions of ω and
� in Figs. 9–11. We consider a 90-deg inclination with a priori

Table 4 Effect of solar quadrupole momenta

A priori A posteriori A posteriori A posteriori

σJ2 σγ × 104 σβ × 104 σJ2 × 108

10−5 0.894 27.8 3.15

10−6 0.894 27.7 3.15

10−7 0.893 26.5 3.00

10−8 0.890 9.26 0.953

10−9 0.890 4.18 0.1

Unbiased 0.890 4.09 0b

aCovariances are evaluated at the end of a 10-day time span.
bAssumes σJ2 = 0.

Fig. 9 Uncertainty of γ as a function ofω and Ω with X-band tracking

noises and 90-deg inclination.

Fig. 10 Uncertainty of β as a function of ω and Ω with X-band track-

ing noises and 90-deg inclination.

σJ2
= 10−6. One important result to note is that σγ , σβ , and σJ2

are
highly sensitive to spacecraft orbit orientations, analogous to the
sensitivity of σγ and σβ to the initial phase angle. When solar occul-
tation effects are included, the range of uncertainties changes, but the
basic trend of the uncertainty distributions remains the same. The
estimates become highly degraded near � = ±90 deg. One clear
explanation comes from the fact that the spacecraft orbit is perpen-
dicular to the Earth line of sight, decreasing the information content
of both range and Doppler.
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Table 5 Accumulated effect of error sourcesa

A A A A

Data σa , σsl,
b priori posteriori posteriori posteriori

type km/s2 m σJ2 × 108 σγ × 104 σβ × 104 σJ2 × 108

X-band 10−12 0.1 1 12.6 75.3 0.999

X-band 10−14 0.1 1 1.87 24.8 0.981

K-band 10−12 0.1 1 65.0 113 1.29

K-band 10−14 0.1 1 2.17 26.7 3.01

K-band 10−14 0.05 1 1.10 14.1 1.58

K-band 10−14 0.01 1 0.295 6.03 0.622

K-band 10−15 0.01 1 0.227 3.09 0.435

K-band 10−16 0.001 0.1 0.144 1.88 0.0971
Unbiased 0 0 0 0.890 4.09 0

aAssumes a 10-day time span from perihelion and includes occultation effects. Typical
mission uncertainty caused by nongravitational forces15 is 10−12 km/s2 (1-σ ).
bAccuracy of the Earth-tracking station location.

Fig. 11 Uncertainty of J2 as a function of ω and Ω with X-band track-

ing noises and 90-deg inclination.

Accumulated Effect of Error Sources

The preceding results have exhibited the effects of individual error
sources on estimates of γ and β. We now discuss how accurately γ

and β can be estimated when all of the error sources are accumulated
in the estimation filter.

Table 5 shows how the estimates of γ , β, and J2 vary when
different error uncertainties are included in the filter model. The
unbiased accuracies are not obtainable with these assumed error
bounds; however, uncertainties with accumulated errors can still
be compared to current estimates of γ and β. We also see from
this table that a decrease in the measurement noise to the K-band
tracking capability requires simultaneous reduction in the relevant
error sources (e.g., station-location errors), which is expected. We
can conclude from this table that the most challenging task of this
experiment is to accurately assess the nongravitational forces acting
on the spacecraft near the sun, which, according to Longuski et al.,15

are typically 10−12 km/s2.
Finally, Table 6 provides γ , β, and J2 estimates when different

spacecraft orbits are analyzed. For these results we apply more real-
istic error bounds on the process noise and on J2 to show the current
feasibility of this test. Again, σγ , σβ , and σJ2

are sensitive to the
relative geometries. The last result, where i = 90 deg, ω = 180 deg,
and � = 225 deg, represents an orbit analogous to the baseline case
considered in Mease et al.5,6

Comparison of Baseline and Solar Probe Trajectories

At present, the mission that could feasibly carry out this new test
of general relativity is the Solar Probe mission,8 which is still at a
preapproval stage at NASA. The apoapsis distance of the current
mission plan is approximately 5.2 AU (at Jupiter) with the periapsis

Table 6 Effect of spacecraft orientationa

i , ω, �, A posteriori A posteriori A posteriori

deg deg deg σγ × 104 σβ × 104 σJ2 × 108

0 0 0 12.6 75.3 0.999
45 0 0 12.7 75.0 0.996
90 0 0 12.7 75.2 0.987
45 45 45 33.5 52.3 0.989
90 45 45 8.7 58.6 0.953
90 180 225 16.6 59.2 0.970

aAssumes σa = 10−12 km/s2, station-location error = 0.1 m, σJ2 = 10−8

(a priori), and includes solar occultations.

at 4R⊙, which corresponds to an eccentricity of ∼0.99 and a period
of approximately four years. Figure 7 indicates that the resulting un-
certainties in β are favorable with this elliptic orbit. The hyperbolic
trajectory (with e = 1.03) provides a slightly better result for γ (but
not for β); however, Solar Probe’s multiple perihelion passages will
allow for an overall increase in the level of accuracy. To carry out
this experiment, considering the large nongravitational disturbances
present near the sun, the spacecraft might need to be equipped with
precision accelerometers or a drag-free system. We believe that our
results indicate that there is a realistic possibility of carrying out
this new GR experiment as an add-on component to the Solar Probe
mission objectives.

Conclusions

In this paper, we have analyzed how well the parameterized
post-Newtonian (PPN) parameters γ and β can be estimated from
spacecraft radiometric tracking data, such as range, very long base-
line interferometry, and Doppler measurements. In the baseline
case, the spacecraft starts from a perihelion at four solar radii with
vp = 311 km/s, and we obtain radiometric measurements as it prop-
agates along the heliocentric trajectory. Various error sources are
included in estimates of γ and β, including stochastic acceleration,
station-location errors, and solar J2. Although this is a preliminary
analysis, it captures most of the fundamentals required for evaluation
of this experiment. Several crucial characteristics of the uncertain-
ties in γ and β are obtained from this analysis. The first important
conclusion is that placing a spacecraft on a heliocentric elliptic orbit
yields results that are essentially equivalent to those obtained from
a hyperbolic orbit. Additionally, an elliptic orbit provides multiple
perihelion passages, which will enhance the estimation accuracy of
γ , β, and J2. Analysis shows that it might be feasible to carry out
this test as part of the Solar Probe mission, which is currently under
development. To do so, some improvements in spacecraft-tracking
technology will be required. The effect of stochastic accelerations
significantly degrades the accuracy of the experiment, and hence
it is necessary to decrease the steady-state uncertainty in nongrav-
itational accelerations by either using accurate accelerometers or
by implementing a drag-free spacecraft. Station-location errors de-
grade the accuracies of the PPN parameters, but current estimates
appear to be adequate for X-band tracking. Simultaneous reduction
in station-location error is required for a K-band tracking system. Fi-
nally, the solar J2 can be measured accurately from this experiment.

We have demonstrated that under ideal conditions general rela-
tivity can be tested to a significant accuracy by tracking spacecraft
trajectories near the sun and have shown that such an experiment is
feasible.

Acknowledgments

The research described in this paper was sponsored by the In-
terplanetary Network Directorate Technology Program at the Jet
Propulsion Laboratory, California Institute of Technology, which
is under contract with NASA. The work of E. Fischbach was sup-
ported in part by the U.S. Department of Energy under Contract
DE-AC02-76ER071428.



568 PARK ET AL.

References
1Will, C. M., Theory and Experiment in Gravitational Physics, Cambridge

Univ. Press, Cambridge, England, U.K., 1993, Sec. 7.
2Bertotti, B., Iess, L., and Tortora, P., “A Test of General Relativity Using

Radio Links with the Cassini Spacecraft,” Nature, Vol. 425, No. 6956, 2003,
pp. 374–376.

3Pireaux, S., and Rozelot, J.-P., “Solar Quadrupole Moment and Purely
Relativistic Gravitation Contributions to Mercury’s Perihelion Advance,”
Astrophysics and Space Science, Vol. 284, No. 4, 2003, pp. 1159–1194.

4Longuski, J. M., Fischbach, E., and Scheeres, D. J., “Deflection of Space-
craft Trajectories as a New Test of General Relativity,” Physical Review
Letters, Vol. 86, No. 14, 2001, pp. 2942–2945.

5Mease, K. D., Wood, L. J., Bergam, M. J., and White, L. K., “Estima-
tion of Solar Gravitational Harmonics with Starprobe Radiometric Tracking
Data,” Journal of the Astronautical Sciences, Vol. 31, No. 1, 1983, pp. 3–22.

6Mease, K. D., Anderson, J. D., Wood, L. J., and White, L. K., “Tests of
General Relativity Using Starprobe Radio Metric Tracking Data,” Journal
of Guidance, Control, and Dynamics, Vol. 7, No. 1, 1983, pp. 36–44.

7Longuski, J. M., Fischbach, E., Scheeres, D. J., Giampieri, G., and Park,
R. S., “Deflection of Spacecraft Trajectories as a New Test of General Rel-
ativity: Determining the PPN Parameters β and γ ,” Physical Review D,
Vol. 69, 2004, 042001.

8Anderson, J. D., Colombo, G., Friedman, L. D., and Lau, E. L., “An
Arrow to the Sun,” Gravitazione Sperimentale, International Meeting on

Experimental Gravitation, Accademia Nazionale dei Lincei, Rome, 1977,
pp. 393–422.

9Montenbruck, O., and Gill, E., Satellite Orbits, 2nd ed., Springer-Verlag,
Berlin, 2001, pp. 257–291.

10Bierman, G. J., Factorization Methods for Discrete Sequential Estima-
tion, Academic Press, New York, 1977.

11Scheeres, D. J., Han, D., and Hou, Y., “Influence of Unstable Manifolds
on Orbit Uncertainty,” Journal of Guidance, Control, and Dynamics, Vol. 24,
No. 3, 2001, pp. 573–585.

12Thurman, S. W., and Sybert, C. B., “Planetary Approach Orbit Determi-
nation Using Earth-Based Short and Long Baseline Radio Interferometry,”
Advances in the Astronautical Sciences, Vol. 76, Pt. 2, 1991, pp. 1039–1053.

13Hamilton, T. W., and Melbourne, W. G., “Information Content of a
Single Pass of Doppler Data from a Distant Spacecraft,” JPL Space Programs
Summary, Vol. 3, May 1966, pp. 18–23.

14Morabito, D. D., Shambayati, S., Finley, S., and Fort, D., “The Cassini
May 2003 Solar Conjunction,” IEEE, Vol. 51, No. 2, 2003, pp. 201–219.

15Longuski, J. M., Todd, R. E., and Koenig, W. W., “Survey of Non-
gravitational Forces and Space Environmental Torques: Applied to the
Galileo,” Journal of Guidance, Control, and Dynamics, Vol. 15, No. 3, 1992,
pp. 545–553.

D. Spencer
Associate Editor


