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Abstract

Recent results demonstrate techniques for fully quantitative, statistical inference of the dynamics of individual

neurons described by multiple voltage-gated channels in a Hodgkin-Huxley framework. These approaches have

been successfully applied to simulated data from model neurons. Here we apply an method based on a variational

principle to whole-cell recordings from a population of real neurons recorded in a slice preparation of the zebra

finch forebrain nucleus HVC. Our results demonstrate that using only 1500 ms of voltage recorded while injecting

a complex current waveform, we can estimate the values of 12 state variables and 73 parameters in a dynamical

model, such that the model accurately predicts the responses of the neuron to novel injected currents. A less com-

plex model produced consistently worse predictions, indicating that the additional currents contribute significantly

to the dynamics of these neurons. Preliminary results indicate some differences in the physiological properties of

the models for different classes of HVC neurons, which accords with expectations from the biology. Whereas the

model for each cell is incomplete (representing only the somatic compartment, and likely to be missing classes of

channels that the real neurons possess), our approach opens the possibility to investigate in modeling the plausi-

bility of additional candidate classes of channels that the cell might possess, thus improving the models over time.

These results provide an important foundational basis for building biologically realistic network models, such as

the one in HVC that is central to the process of developmental vocal learning in songbirds.
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Author Summary

The relationship between a neuron’s inputs and outputs is key to understanding how circuits of neurons perform the

computations underlying complex animal behaviors. Many efforts to understand this relationship mechanistically

make use of extensions of the canonical model developed by Hodgkin and Huxley. These models are biologically

realistic and can predict the behaviors of neurons in numerous systems, but contain many unknown parameters and

state variables that have been difficult to measure experimentally. We recently developed a method to infer these

values for individual neurons from their responses to a sufficiently complex current input. We applied this method

to neurons in the zebra finch song system, and found that for most neurons we could estimate values for the model

from less than 2 s of data. Models incorporating such estimated parameters were then able to accurately predict

the responses of the neurons to novel patterns of stimulation. Our results demonstrate a tool for studying circuits

of diverse kinds of neurons. These methods can be applied to many dynamical systems where there is limited or

noisy data.

Introduction

Circuits of neurons typically comprise multiple cell types with distinct anatomical and physiological properties.

Behaviors of circuits and organisms depend both on the intrinsic properties of component neurons and on the

dynamics of their interactions. Many models for the emergence of complex behaviors in neurons and circuits are

based on the formalism proposed by Hodgkin and Huxley [1], which represents membrane dynamics in terms of

ion currents through passive, voltage-gated, and ligand-gated conductances. The dynamics of these conductances

can in turn be explained by biophysical properties of the specific ion channels expressed by the cell. These models

can thus provide mechanistic insights into the relationship between genetically specified cell properties and the

emergence of complex behaviors [2–5].

Although the tools for developing conductance-based models have matured in recent decades [6–8], a signif-

icant impediment to wider use is the large number of free parameters in realistic models that include multiple

compartments, moderate numbers of currents, or networks of synaptic connectivity. Although many parameters

can be constrained by detailed anatomical reconstructions and experimental data on biophysics, others need to be

determined for neurons individually. There is growing evidence of substantial heterogeneity among neurons with

similar morphology and physiology. Even though many kinds of ion channels have been identified and charac-

terized [9, 10], their expression, spatial distribution, isoform composition, and phosphorylation states may vary
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widely among cells [11,12] and over time [13,14]. Furthermore, because of nonlinear relationships between chan-

nel kinetic parameters and observable behavior, experimental data on average values for these parameters within a

population do not constrain well the values for individual neurons [15, 16].

There have been numerous efforts to develop automated methods to directly estimate the parameters that repro-

duce observed biological data from individual neurons [17,18]. Approaches range from brute-force grid, stochastic,

and evolutionary search algorithms [19–24] to statistical inference based on probabilistic frameworks that explic-

itly account for errors in measurement and model specification [25–28]. These methods have been successful in

estimating maximal conductances, which is a linear problem, but channel kinetic parameters have proven more

challenging, as this is a nonlinear task [29, 30].

We have previously described an exact statistical formalism for the problem of estimating the unknown states

and parameters of conductance-based neuronal models given measurements of the membrane potential alone [31–

33]. Using here an approximation to the exact formulation [31], we apply the method to whole-cell recordings in

slices of the song premotor area HVC (a proper name) from zebra finches (Taniopygia gutatta). HVC comprises

three broadly defined categories of neurons [34]: those projecting exclusively to striatal neurons in area X, those

projecting exclusively to the motor output nucleus RA, and interneurons whose axons are confined to HVC. Each

of these categories encompasses at least two subtypes [35–38], and there are likely to be more categories and

subclasses of HVC neurons. Intracellular recordings in vivo and in a slice preparation have defined principal

attributes of the HVC circuit [39,40], but the connectivity and intrinsic membrane properties of HVC neurons that

give rise to the precisely timed patterns of activity that HVC emits during production of song [41] remain an active

area of research [42–44].

Our goals were to test whether the methods developed in [31–33] on simulated data also work with real neurons

and if so, to determine whether the models give insight into the biology of HVC. Because the models are only an

approximation to the physical system, and the true channel complements and kinetic properties are not known,

we test the models by generating predictions to novel current injections and cross-validating against recorded

responses. We find that with a sufficiently complex model we can generate predictions for most neurons in HVC

that are nearly as good as the intrinsic variability of the neurons.
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Results

Estimation and prediction of HVC neuron responses to injected current

We made whole-cell recordings from 26 HVC neurons and stimulated them in current-clamp by injection of a

complex current waveform designed to close and open a broad range of voltage-gated ion channels. The observed

voltage and the known injected current from 1500 ms of the recording were used to estimate the unknown states and

parameters of conductance-based dynamical models for each neuron. The completed model was then integrated

forward to to predict the response of the neuron to the remainder of the recording epoch.

Because the full complement of channels expressed by HVC neurons is not known, the model was developed

iteratively, starting with a relatively simple model used in an earlier theoretical study [31]. The initial model con-

tained a transient sodium current (NaT), a non-inactivating potassium current (K1), a hyperpolarization-activated

cation current (HCN), and a passive leak current. Using a set of neurons that exemplified the range of physio-

logical responses we observed, we compared the predictions of the models to the recorded voltages, and added

additional voltage-gated currents that might account for features of the response missing from the prediction. Al-

though calcium- and sodium-gated currents may be present in some classes of HVC neurons [45], their dynamics

are complex and difficult to infer from limited amounts of data, so they were not explored in this analysis. The

predictions in each iteration were evaluated using spike shape, spike rate, and the RMS deviation in the subthresh-

old voltage. The final model included a persistent sodium current (NaP), an inactivating potassium current (K2), a

slow non-inactivating potassium current (K3), a high-threshold L-type calcium current (CaL), and a low-threshold

T-type calcium current (CaT), with a total of 12 state variables and 72 free parameters. These currents do not

represent specific, geneticially identified ion channels but rather a composite of ion channels with the same gating

kinetics.

We highlight three example neurons. Two of the neurons, which showed little or no adaptation to step currents,

were likely to be X-projecting (hereafter, N1 and N2) (Figures 1C and 2C). The third, which showed rapid adap-

tation to step currents, was likely to be RA-projecting (N3) (Figure 3C). The measured voltage trace and injected

current used to complete the neuron model for each of the exemplar neurons is shown in Figures 1A, 2A, and 3A.

The recorded voltage trace is shown in black and the final estimated Vm(t) of the model is in cyan. The magenta

traces show the results of integrating the completed model forward using the estimated values of the parameters

and state variables at the end of the assimilation window and the known injected current.

To further validate the model, a prediction for a different recording epoch was created, using a short (100 ms)

pysarn
Highlight
genetically

dan
Cross-Out

dan
Inserted Text
(see Discussion)

dan
Cross-Out

dan
Inserted Text
These currents are not meant to represent a specific type of ion channel that has been identified in HVC neurons. Each of these currents, however, can represent a composite of ion channels that share the same or similar gating kinetics. Actual HVC neurons may contain a subset of the ion channels that are well modeled by these currents, and may contain additional ion channels that are poorly modeled by these currents. 



5

assimilation window to estimate only the unobserved state variables (giving us the initial condition of the channel

gating particles), while the previously obtained parameters were held fixed. This model was then integrated forward

with the known injected current to predict the response to the rest of the epoch (Figures 1B, 2B, and 3B). One

additional parameter Idc was optimized for the prediction, which compensated for drifts in recording quality and

membrane potential over the time between the parameter assimilation epoch and the inter-epoch prediction.

For both the intra- and inter-epoch predictions, the predicted responses reasonably matched the recordings in

terms of spike rate, spike timing (see tick marks in Figures 1–3) and subthreshold voltage. The predicted spike

times did not always align perfectly with spikes in the data, but the variability was comparable to what we observed

in measured responses to the same stimuli presented at different times (data not shown). Similarly, errors in the

predicted responses to hyperpolarizing currents were consistent with small variations in input resistance over the

time course of the recording. Predicted spikes from the models closely matched the shape of the spikes in the

recordings (Figures 1D, 2D, and 3D), with the exception of a “kink” visible in the phase plane plots of the spikes

for N1 and N2 (Figures 1E and 2E).

We also compared responses to step currents with predicted responses of the model neurons (Figures 1C, 2C,

and 3C). The models accurately predicted many of the features of these responses (for example, the intial overshoot

in depolarization in Figure 3C), but on the whole the predictions were not as good as for the complex currents.

Estimated currents and channel kinetics

A detailed view of the estimated currents and gating state variables during the data assimilation window is shown

for neurons N1, N2, and N3 in Figures 4, 5, and 6 respectively. As expected, the neurons showed a strong

dependence upon the fast sodium current and a potassium current for spike generation, but subtle differences in

the strength and kinetics of these currents led to differences in spike shape and excitability. Compared to N2, N1

(Figure 4) had a higher spike rate, a stronger after-hyperpolarization potential (AHP), and little to no change in

spike shape or rate with prolonged depolarization (i.e., adaptation). In the model, these differences were due to a

relatively stronger potassium current in N1, which repolarized the cell more rapidly and strongly. In the model for

N2 (Figure 5), the K current was weaker and somewhat slower, leading to a weaker AHP but also to a buildup of

NaT inactivation, which may account for changes in spike shape and rate over sustained depolarization.

As with N1, the model for N3 (Figure 6) had a strong K current that resulted in a pronounced AHP. However,

this current was supplied by a channel with m1 kinetics, which caused it to stay open during prolonged depolariza-

tions. This current was balanced by a positive current from the persistent sodium channel. Together, these currents
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provided strong shunting inhibition that prevented the model from firing more than one action potential and gave

it its phasic response properties.

The relative importance of each of the currents in the model was ascertained in two ways. The first was to

compare the maximal conductances, both directly (Table S1) and as a fraction of the total membrane conductance

(g̃α = gα/∑i gi, Figure 7A, dark bars). As noted above, the N2 model had strong NaT conductance and relatively

weak K conductances, accounting for its rapid depolarization (Figure 2E) and weak AHP. For N3 the dominant

potassium conductance was from K3.

Categorizing neurons based upon their channel maximal conductances gα may not accurately reflect the dy-

namical importance of the channels in driving the membrane voltage over a significant time interval. It is not the

maximal conductance, but the strength of the current that influences changes in the membrane voltage. For exam-

ple, large currents may result from small conductances for a channel with a very slow time constant. The second

method we used to identify important currents was to calculate the fraction of the total current from each channel

type α , Ĩα =

〈
|Iα |

∑i |Ii|

〉
T

. These values are shown by the light bars in Figure 7A. The absolute value was used so that

the comparison was relative to the magnitude of the total current flux, and the time average was taken over the data

assimilation window, T . Comparing Ĩ values across neurons reveals the contribution of NaP to N3 dynamics, CaT

to N2 dynamics, and K3 to the dynamics of all three neurons, effects that are not seen in the maximal conductances

because these channels were weakly but tonically active. Conversely, the NaT currents were strongly expressed in

terms of g̃, but their rapid opening and closing resulted in a diminished contribution to the total neuronal current.

The differences in ĨNa between the three exemplar neurons appears to correspond to the differences in the number

of action potentials produced during the assimilation window.

Additional differences between neurons were also seen in the parameters governing channel dynamics. Fig-

ure 7B shows the equilibrium state (x∞(V )) and relaxation time constant (τ(V )) as a function of voltage for the

activation and inactivation variables for several channels. The K3 channel in the model for N3 had a higher V1/2

relative to both the same channel in the other neurons and relative to the V1/2 of the K2 channels in the N1 and N2

models (Figure 7B). This feature allowed some proportion of the K3 channels to remain open in moderately depo-

larized conditions, possibly contributing to the phasic response properties of this neuron. Also for N3, the V1/2 for

NaT inactivation occurred at lower voltages relative to the other two neurons, which gave the model relatively slow

inactivation kinetics at hyperpolarized potentials, and led to a buildup of inactivation that may have contributed to

this neuron’s phasic responses.
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Posterior distribution of parameter estimates

The parameter and state estimates obtained through the variational method are point estimates representing the

values most likely to give rise to the data. To explore the posterior variance (i.e., uncertainty) of these estimates, we

generated sampling distributions using a Metropolis-Hastings Monte Carlo algorithm (see Materials and Methods

and [32]). The marginal posterior distributions of selected parameters from the three exemplar neurons are shown

in Figure 8. Some parameters were strongly constrained by the data, such that only a narrow range of values

was consistent with the observed response, whereas other parameters had broader distributions. Several of the

parameters had complex, multimodal distributions. Note that the graphs only show marginal distributions, and

cannot represent manifolds in the parameter space where certain combinations of parameter values are particularly

probable or not.

Model validation and selection

After the exemplar neurons were characterized, the final form of the model was used in data assimilation for

all 26 neurons in the recorded population. For each neuron, three recording epochs with different stimulation

waveforms were chosen. The stimulation protocols were similar across neurons except in amplitude, which had

been adjusted during the experiment to ensure sufficient numbers of action potentials. Each completed model was

used to generate an intra-epoch prediction (as in Figure 1A), which was compared to the data using metrics for

subthreshold voltage, spike rate, spike shape, spike timing, and total correlation (see Materials and Methods).

There was substantial varibility within neurons in prediction quality. Often, models estimated from different

epochs reproduced different features of the response better than others. Therefore, for each neuron we picked the

model that gave the best overall performance across all the prediction metrics. Table 1 shows summary statistics

of the prediction metrics for all the models and for the best-ranked models for each neuron. It also shows sum-

mary statistics for the same metrics applied to recorded responses to the same stimulus, as a measure of intrinsic

variability. As quantified by these metrics, the differences between model predictions and neural responses are

comparable to differences between neural responses to the same injected current. In some cases the intrinsic de-

viance was higher than the model deviance, although this is likely to reflect small, slow changes in input resistance

over the course of the recording.

One possible explanation for high within-neuron variability in model quality is that different stimuli explored

different regions of the model state space, leading to solutions that emphasized some features more than others.
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We made a more extensive analysis of prediction quality using many sets of data from the three exemplar neurons.

For each neuron, we selected 26–28 recording epochs, and from each epoch between 1–3 (mean 2.6) overlapping

segments of data to assimilate. Predictions for each completed model were compared to the data, and the variance

in prediction quality between epochs was compared to the variance within epochs. For three of the five metrics,

between-epoch variance was significantly higher than within-epoch variance (F-test; spike shape: F39,152 = 2.85,

P = 2.7× 10−6; spike timing: F41,163 = 3.36, P = 2.4× 10−8; correlation: F41,163 = 1.50, P = 0.041; spike rate:

F41,163 = 1.46, P = 0.05; subthreshold deviance: F41,163 = 1.14, P = 0.28), suggesting that differences in current

stimulus had an effect on model quality.

To determine whether the additional currents in the model quantitatively improved predictions, the assimila-

tion and prediction procedures were also applied to the same data using the initial model, which had only three

voltage-gated conductances. By all measures, the more complex model produced better predictions. In a pairwise

comparison between simple and complex models estimated from the same data, the median difference in subthresh-

old deviance was 1.46 mV (paired Wilcoxon test: P = 2.7×10−5), in spike rate deviance, 0.14 (P = 5.8×10−5),

in spike shape deviance, 0.015 (P = 2.6× 10−4), in spike coincidence, 0.11 (P = 3.2× 10−5), and in correlation

coefficient, 0.036 (P = 3.7× 10−5). Similarly, the best-ranked complex models outperformed the best-ranked

simple models (Figure 9) on all the metrics except spike timing. For 21/26 neurons (81%), the complex model

produced the best overall prediction. Four of the neurons better predicted by the simpler model were putatively

RA-projecting, and one was a putative interneuron.

Comparison of parameter estimates across cell types

We obtained a large enough sample of putative X-projecting (n = 7) and RA-projecting neurons (n = 16) to com-

pare parameter estimates within and between these cell types. We selected the best model for each neuron and

compared parameter estimates across the population. For the neurons better fit by the simpler model, the con-

ductances of the omitted channels were assumed to be zero. Some parameter values were consistent across the

population, some differed significantly between putative cell types, and others were highly variable without any

obvious correlation to physiology. As shown in Figure 10A, relative maximal conductances for the HCN, CaT, and

CaL currents were low for all the neurons. A weak contribution from the HCN current is consistent with the lack

of an obvious sag current in responses to hyperpolarization (see Discussion).

For the subset of neurons identified as RA-projecting based upon their phasic response properties, relative

NaT conductance was significantly lower than in putative X-projecting neurons (Wilcoxon test, P = 0.006). This
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difference may correspond to the relatively higher excitability of X-projecting neurons. As noted above, maximal

conductances do not fully reflect the dynamical importance of a current over time, but may indicate structural

differences between neurons related to channel expression levels. Within each of the putatively classified groups

of neurons there was substantial variability in conductance levels.

Kinetic parameter estimates also varied substantially across neurons, and we were unable to discern any obvi-

ous clustering that might correspond to specific cell types. As an example, estimates for the kinetic parameters that

define the transient sodium channel are shown in Figure 10B. The activation and inactivation variables are each

governed by four parameters: the half-potential V1/2 and slope κ of the equilibrium activation x∞(V ), and the width

σ and peak height τmax of the relaxation time constant τ(V ). Most of the estimates for the parameters associated

with x∞(V ) were well within the bounds specified in the assimilation procedure, suggesting that these parameters

are well constrained by the data; in constrast, many of the estimates for the parameters associated with τ(V ) were

at or near the bounds. It may be difficult to reliably estimate time constants from current-clamp data because the

neuron does not stay at highly depolarized voltages for very long.

Discussion

These results demonstrate the application of a statistical method for estimating unknown states and parameters

of complex, conductance-based, dynamical models. Using this method, which is a variational approximiation

to the high-dimensional path integral relating measured voltage to the internal dynamics of voltage-gated ion

channels [31, 33], we obtained state and parameter estimates for models of individual neurons from a diverse

population in the songbird vocal nucleus HVC. We used the completed models to predict responses to novel

injected currents and cross-validated the predictions against the recorded responses to those stimuli. Using a

broad range of metrics that emphasized different features of the response, we found that prediction errors were

comparable to intrinsic variation in the neurons’ responses, indicating that the models’ behaviors closely matched

those of the neurons at multiple levels of detail.

We began with a simple model containing only three voltage-gated currents, and found that additional sodium,

calcium, and potassium currents were necessary to obtain good predictions for over 80% of the neurons. The better

performance of the more complex model was not a consequence of overfitting a larger number of free parameters,

because the models were cross-validated on data that was not used in fitting. With the full complement of currents,

the model had 11 unmeasured state variables and 72 unknown parameters. To our knowledge, this is the largest
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search space explored to date for conductance-based neuron models. The data assimilation method we employ

here is a significant advance because it can efficiently estimate models of a size and complexity commensurate

with the biophysics of real neurons.

The better performance of the more complex model also indicates, unsurprisingly, that the dynamics of most

HVC neurons depend on more than the fast sodium and potassium currents that generate action potentials. Indeed,

the differences in predicted spike shapes between the simpler and more complex model were relatively small

compared to other features of the response like spike rate and timing. Many of the additional currents in the

complex model had relatively low maximal conductances, but were responsible for a substantial fraction of the

current flux (Figure 7). These currents had slower time constants, were more tonically active, and functioned in the

model to modulate the cell’s excitability. It is important to note that we did not enforce this behavior a priori: the

bounds for parameters governing gating time constants usually spanned several orders of magnitude (see Table S1).

Instead, the slower, more modulatory nature of the additional currents emerged from the data assimilation.

Some of the currents were consistently estimated to have low maximal conductances and relative current contri-

butions (Figure 10), including the high-threshold calcium channel (CaL) and the hyperpolarization-activated cation

channel (HCN). Therefore, it may be possible to remove them from the model formulation without substantially

impacting the behavior. On the other hand, the estimated contribution may be low because the injected currents

failed to activate these channels sufficiently to affect the neuron’s response. In particular, HCN is a fairly slow

current and may require longer and stronger hyperpolarization [37, 45].

An important consideration in modeling studies is uncertainty in parameter estimates [16, 46, 47]. Because

of measurement errors, and because the model is always an approximation of the physical system, it can never

perfectly reproduce the system’s behavior. For a dynamical system, the distribution of parameter values that are

consistent with the data is given by a high-dimensional path integral [31, 33]. The variational method gives a

maximum likelihood estimate of the best parameters with the assumption of no model error. To incorporate model

error, we sampled numerically from the path integral distribution [32], and found that many of the key parameters

were well-constrained by the data and significantly different between neurons (Figure 8). However, most of the

parameter estimates for different neurons and even different epochs from the same neuron exhibited a large degree

of variance, in spite of producing similar quality predictions.

We propose several hypotheses for this variability. One, the relatively short length of the data assimilation

window may mean that the current stimulation protocols insufficiently explored the state space of the model. Mod-

els estimated from different segments of data may emphasize some features of the response more than others. In
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support of this hypothesis, the stimulation currents we used in data assimilation did not include long step depo-

larizations, and in general the models were not as good at predicting responses to step currents (e.g., Figure 1C).

Furthermore, in a subset of the data, we observed significantly more variability in model quality among epochs

with different current protocols than among different segments of data from the same epoch. By incorporating

more data with a more diverse set of injected current stimuli for assimilation, the number of solutions should

shrink, although additional work is needed to deal with the computer memory requirements of larger datasets.

Two, because the system is nonlinear and the model is an approximation, the parameter landscape may have

many local minima. Because the variational method is based on gradient descent, it is sensitive to starting condi-

tions [cite?] and may converge on widely divergent solutions. Consistent with this hypothesis, studies with more

global optimization strategies have found that most simple models have multiple solutions widely separated in the

parameter space [15, 16, 46, 48]. Expanding the model to include a larger assortment of potential currents, such

as from calcium- or sodium-dependent channels [45], should ameliorate this problem by expanding the parameter

space to include values closer to the true solution. Additional compartments may also allow more global minima

to be found. For example, the kink observed in the phase plot of some spikes (Figure 1C) is thought to correspond

to spike generation in the initial segment of the axon [49], where sodium channel densities are often much higher

than in the soma. The model used here included only one compartment for simplicity, but as a result the solutions

represent a non-optimal average of the two compartments.

Finally, there are likely to be degeneracies in the actual physical system such that neurons can achieve the same

physiological output with widely divergent parameters [11, 50–53]. The parameter variance we observed may, at

least to some extent, reflect the heterogeneity of the population, even within morphologically and physiologically

defined cell types. However, if this is the case, the solution for a given neuron will be only one of many it could

adopt, and additional data from online pharmacological [45, 53] or dynamic clamp manipulations [54] will be

needed to constrain the solution.

Diversity of cell types is a common feature of neural circuits and is likely to be functionally significant. In

recent studies, conductance-based models have been less successful than more phenomenological models in pre-

dicting the responses of individual neurons [55,56], and thus have been less suitable for addressing diverse circuits

in spite of the potential mechanistic insight such models provide. These results indicate that more complex, realis-

tic conductance models can predict spike timing on par with the best phenomenological models [57,58], in addition

to reproducing many fine details of the neural response that the other models cannot represent. In light of the large

uncertainties in parameter estimates from these still highly simplified models, it would be premature to make strong
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inferences about many of the underlying biophysical properties of the neurons under study. However, the method

we describe here provides a means of efficiently characterizing individual neurons with more biologically realistic

models. Such models can incorporate prior information about anatomy and channel expression and can be used to

generate testable hypotheses about the roles of specific currents in the generation of complex behaviors.

Materials and Methods

Ethics Statement

All animal procedures were performed according to protocols approved by the University of Chicago Institutional

Animal Use and Care Committee and consistent with the guidelines of the National Institutes of Health.

HVC Slice Preparation

Slices were prepared from adult (> 90 days post hatch) male zebra finches. Birds were deeply anesthetized with

isoflurane and decapitated, and the brains were placed in ice-cold, oxygenated dissection buffer containing (in

mM): 205 sucrose, 3 KCl, 1 NaH2PO4H2O, 26 NaHCO3, 25 D-glucose, 6 MgSO4, and 0.5 CaCl (290–310

mOsm). Parasaggital slices were cut (400 m thick, Vibratome 1000) from both hemispheres and placed in 37

C oxygenated artificial cerebrospinal fluid (ACSF) containing (in mM): 123 NaCl, 3 KCl, 1 NaH2PO4H2O, 26

HaHCO3, 25 D-glucose, 3 MgSO4, 1 CaCl (290–310 mOsm, pH 7.2–7.3). Slices were allowed to recover for

at least 1 h, during which time the ACSF was allowed to return to room temperature. For recording, slices were

superfused (1.5–2.0 mL/min) with oxygenated ACSF (23–26 C).

Electrophysiology

Current-clamp somatic whole-cell recordings were made from 45 neurons in HVC with an NPI SEC-05L amplifier

(npi electronic, Tamm, Germany). Of these, 26 neurons had spikes with peaks > 0 mV and stable resting potential

<−60 mV, and were deemed suitable for analysis. Neurons were putatively classified as RA-projecting (n = 16)

if they showed strong adaptation, firing only a single spike or a short burst at the beginning of depolarization, and

X-projecting (n = 7) if they showed weak or no adaptation. One cell was classified as an interneuron based on its

high firing rate and complete lack of adaptation, and two neurons could not be classified based on these criteria.

Cells were selected visually with differential IR optics for health but not for somatic size or shape. Patch
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pipettes (3–5 MΩ) were pulled from standard-walled borosilicate glass (Model G150F-4, Warner Instruments,

Hamden CT) with a Sutter P-97 (Sutter Instruments, Novato CA) and filled with internal solution containing (in

mM): 130 K-gluconate, 10 Na-gluconate, 10 HEPES, 4 NaCl, 4 MgATP, 0.3 NaGTP, 10 Na-phoshocreatine, 0.1

EGTA (290–310 mOsm, pH 7.2–7.3). In some experiments 0.50% neurobiotin (Vector Labs, Burlingame CA)

was added to the internal solution. Pipette capacitance and series resistance were compensated on the amplifier.

Voltage and injected current (as reported by the amplifier) were high-pass filtered at 20 kHz and digitized at 50 kHz

with a PCI-6052E (National Instruments, Austin TX). Injected currents consisted of positive and negative steps of

varying amplitude and a complex, non-sinusoidal waveform derived from the Lorenz equations (e.g., Figure 1A)

delivered at varying frequencies. The amplitude of the complex current was set to ensure that spikes were elicited

and the neuron was hyperpolarized to at least -90 mV for some period of time. Data collection was controlled by

custom software written in MATLAB (The Mathworks, Natick MA).

Dynamical State and Parameter Estimation of Neuron Models

Data assimilation is the general name given to the incorporation of information from measurements of a physical

system into a set of model dynamical equations with the goal of finding a set of parameters and state variables

such that the model best describes the data. We call a model with parameters estimated in this manner a completed

model. In this preparation, the data to be assimilated were the measurements of membrane potential from the

somatic current-clamp electrode, which was also used to deliver selected forcing by current injection. The same

principles apply to preparations in which data from other parts of the cell are be available from other electrodes or

fluoresent reporters [59].

Statistical properties of estimated quantities such as the expected state during a learning window, or in a predic-

tion window following the learning period, along with the estimated errors of these expected values, are given by

the evaluation of a path integral through the state space of the model [60–63]. The appropriate integrals can be ap-

proximated numerically using Monte Carlo sampling techniques [32]. Here we used a combined approach in which

parameter estimates were first obtained by a variational method that approximates these integrals using a saddle

point approach to minimize an objective function, providing the maximum likelihood estimate of the distribution.

These estimates were then used as starting values in a Monte Carlo algorithm to sample from the full path integral

distribution. As with all optimization methods, the variational approach has strengths and weaknesses [64], but it

remains a reliable choice for deterministic systems where the derivatives are available [65, 66]. One benefit is that

the optimization of state variables, including the data dimension, is performed at every time-point. This allows for
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a generic choice of objective function measure, such as least-squares used here (Equation 1), avoiding the question

of how to incorporate more subjective measures such as spike number, rise-times, and inter-spike-interval into a

meaningful objective function.

A critical concern in variational approaches to nonlinear dynamical systems is that the familiar least-squares

objective function may give an irregular search surface with many local minima [67]. We addressed this problem

by including a balanced synchronization term, u(t)(Vdata(t)−Vm(t)), in the model dynamics, which regularizes

and minimizes the influence of local minima by ensuring that the solution set defines a model that is capable of

synchronizing with the data [68–71]. The objective function has a penalty for this regularization and is taken as

1
T

T

∑
t=1

{
(Vdata(t)−Vm(t))2 +u(t)2

}
, (1)

where Vdata(t) is the measured voltage, Vm(t) is the voltage output from the model, and T is the number of discretely

sampled time points.

The neuron model that we investigated is not known to be chaotic for the biophysical range of our parameters,

but it is nonlinear, and in the high dimensional search space there may well exist chaotic regions that must be

explored by the optimization routine, and these will benefit from this regularization. We have shown using sim-

ulated data that the variational approach using this regularized cost function can recover unmeasured states and

parameters, including both maximal conductances and channel kinetics [31, 72].

Provided a solution to the model can be found that is consistent with the data, at the end of the optimization the

value for the control parameter u(t), governing the magnitude of the synchronization term, should be small relative

to the model dynamics. The quality of the model was tested by setting u(t) to zero and integrating the model

forward from the end of the assimilation period using the estimated parameter and state values. The integration

algorithm was 4th-order Runge-Kutta with timestep 0.02 ms.

Model Validation

The intra-epoch predictions for completed models were compared to recorded data using five complementary

metrics. The correlation coefficient (CC) was the simplest metric, and the most closely related to the objective

function used to fit the model. We note that CC strongly penalizes errors in spike timing greater than the width of

a spike. The other four metrics required separating the spikes from the subthreshold voltage. Spikes were detected

by an algorithm that determined when the voltage crossed a threshold and then located the next peak within 1.5 ms



15

of the threshold crossing. The time of the peak was considered the spike time. For each spike, the voltage values

between 3.5 ms before the peak and 8.0 ms after were extracted to give the spike waveform. The subthreshold

voltage was defined by clipping out time points contiguous with the peak of the spike where V (t)>−50 mV.

Subthreshold voltage deviance was calculated as the RMS difference between time points in the predicted

and measured voltage, excluding points that had been clipped out around spikes in either time series. Spike

rate deviance was calculated as |Np−Nm|/max(Np,Nm), where Np was the number of predicted spikes and Nm

the number of measured spikes. Spike shape deviance was calculated by creating a 2-dimensional histogram of

the spike waveforms in the phase plane (as in Figure 1E), with one axis corresponding to V (t) and the other to

dV (t)/dt [21]. Histograms were bounded between −90 to 60 mV, and −1000 to 1500 mV/ms, with 100 bins in

each dimension. The histograms were normalized to a total area of 1.0 and the deviance was the RMS difference

between the histograms. Spike timing was compared using the coincidence factor Γ [58], with a window size of 2

ms. This metric compares the number of coincident spikes observed between data and prediction with the number

of coincidences expected from a homogeneous Poisson process with the same rate.

When possible, the prediction metrics were also calculated between the assimilation epoch and another epoch

with the same stimulus, as a measure of the neurons’ intrinsic variability. Not enough neurons were presented with

the same stimuli multiple times to enable scores for individual neurons to be corrected for intrinsic variability, but

we were able to estimate values for the population. There was a trend for putative RA-projecting neurons to be

more precise (Γ = 0.56±0.06) than X-projecting neurons (Γ = 0.30±0.08), but the difference was not statistically

significant (t test, P = 0.08).

To choose the best overall model for each neuron, scores on each of the metrics were ranked, with a rank of

1 indicating the lowest deviance, highest correlation, or highest coincidence. Ranks were summed across metrics,

and the model with the lowest sum was considered the best overall. CC was used to break ties.

Parameter Uncertainty Calculations

The uncertainty in a solution is dependent upon both measurement and model error, and is expressed by the joint

probability distribution resulting from the path integral defined in [31]. This integral can be approximated with

numerical sampling, as discussed in detail in [32]. Both measurement and model error were approximated as

Gaussian, with measurement error σm = 0.4 mV (obtained experimentally) and model error σ f = 0.04 (mV for
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Vm, unitless for the gating particles). Using this approximation, we sampled the path distribution

P(y(t)|Vdata(t)) ∝ e−A0(y(t),Vdata(t)),

with the action, A0, given by

A0 =
1

2T σ2
m

T

∑
t=0

(
y1(t)−Vdata(t)

)2
+

1
2T σ2

f

T−1

∑
t=0

12

∑
i=1

TRP2(yi(t),yi(t +1)), (2)

using Metropolis-Hastings Monte Carlo [73, 74]. The model errors are represented in the TRP function, which is

the error of the trapezoidal integration rule between the model values at time t and t + 1. The objective function

(Equation 1) used for the variational optimization is clearly reminiscent of the action (Equation 2) but in the

limit of vanishing model error where instead the model equations are enforced as constraints. The solution of the

variational optimization obtains u(t)≈ 0 and represents the maximum likelihood path of this distribution.

Neuron Model

We used a single-compartment, isopotential model with a passive leak conductance and eight active, voltage-gated

conductances. We developed the model iteratively, starting with the standard Hogkin-Huxley transient sodium and

non-inactivating potassium channels, along with a nonselective hyperpolarization-activated cation channel (HCN).

This model was used in an earlier study with simulated data [31], which showed that the variational method could

recover the states and parameters of the model used to simulate data. However, we found that this simple model

was unable to reproduce several features of our recordings from real neurons in HVC, so we added additional

sodium, potassium, and calcium channels that have been found in a broad range of neurons, some in HVC [75].

In the absence of data on the expression patterns of specific ion channel genes in HVC, we chose relatively wide

parameter bounds for the channel kinetic parameters, thereby allowing the currents to represent classes of channels

with similar voltage dependence and gating kinetics. The membrane voltage Vm is given by the current conservation

equation
dVm(t)

dt
=

1
Cm

(
INaT + INaP + IK1 + IK2 + IK3 + IHCN + ICaL + ICaT + ILeak + Iin j/ISA

)
, (3)

where Cm is the specific membrane capacitance, and ISA is a parameter relating to the surface area of the mem-

brane; it sets the scale of the injected current actually seen by the neuron. The IX are channel currents. Each of

the voltage-gated currents depends on ion flow through channels whose permeability is controlled by activation
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(m) and inactivation (h) gating variables. Iion(t) = gionm(t)n1h(t)n2(Ereversal −Vm(t)), where gion is a maximal

conductance and n1,n2 are integers. The voltage-gated currents we included are transient sodium (INaT ; kinetics

m3h), persistent sodium (INaP; m), non-inactivating fast potassium (IK1; m4), inactivating potassium (IK2; m4h),

slow potassium (IK3; m), hyperpolarization-activated cation (IHCN ; h), high-threshold L-type calcium (ICaL; m2h),

and low-threshold T-type calcium (ICaT ; m2).

Each of the sodium, potassium, and leak currents were modeled by the Nernst approximation to the Goldman-

Hodgkin-Katz (GHK) current equation, Iα = gα Xα

(
Erev −Vm

)
, where gα is the maximal conductance of the

channel, Xα is a channel-dependent and voltage-dependent function related to the proportion of open channels,

and Erev is the reversal potential of the active ion species. Due to the large differences in intra- and extracellular

calcium concentrations, the full GHK equation was used to describe these currents. For numerical stability, we

used a 24th-order polynomial expansion of this equation.

The permeability of each voltage-gated channel species depended on one or more gating variables (e.g. m,h)

whose opening and closing was modeled by the Boltzmann barrier-hoping rate,

dm(t)
dt

=
m∞(Vm(t))−m(t)

τ(Vm(t))
, (4)

where m∞(V ) gives the equilibrium activation and τ(V ) gives the time constant as functions of voltage. In terms

of the opening rate α(V ) and closing rate β (V ) in the original Hogkin-Huxley formulation [1], m∞ = α/(α +β )

and τ = 1/(α +β ). These functions are usually expressed in terms of exponentials, but for numerical stability we

used a hyperbolic tangent approximation, with

m∞(Vm) =0.5(1+ tanh((Vm(t)−V1/2)/κ))

τ(Vm) =τ0 + τmax(1− tanh2((Vm(t)−V1/2)/σ))

dm(t)
dt

=
1
2
·

1+ tanh((Vm(t)−V1/2)/κ)−2m(t)

τ0 + τmax(1− tanh2((Vm(t)−V1/2)/σ))
. (5)

In this representation, V1/2 is the half-activation voltage, κ is the slope of the activation function between the closed

and open state, τ0 is the minimum relaxation time, τmax + τ0 is the peak relaxation time, and σ is the width of the

relaxation time function. Equations for the inactivation variables (h) have a similar form (see Equation 6). For the

K2 and CaT inactivation particles we used a more complex form that allowed relaxation voltage dependence to be

asymmetric (see Equation 6 below).
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The membrane voltage and the values for each of the gating variables formed a 12-dimensional vector {y1(t),y2(t), ...,y12(t)}

that described the state of the neuron. The dynamics of the state vector were defined by a set of ordinary differential

equations that depended on a number of unknown parameters. The complete set of model equations used for the

optimization procedure, including the synchronization-inspired regularization term were as follows:

Voltage : dy1/dt =((p2y3
2y3 + p3y4)(p4− y1)+(p5y4

5 + p6y4
6y7 + p7y8)(p8− y1)

+(p71y2
9 + p72y2

10y11)19.2970673(p11−0.0001exp(y1/13))/GHK(y1)

+ p9(p10− y1)+ p12y12(−43− y1)+ Iin j/p13)/p1 +u(t)(Vdata(t)− y1)

NaT,m : dy2/dt =0.5(1+ tanh((y1− p14)/p15)−2y2)/(p17 + p18(1− tanh2((y1− p14)/p16)))

NaT,h : dy3/dt =0.5(1+ tanh((y1− p19)/p20)−2y3)/(p22 + p23(1− tanh2((y1− p19)/p21)))

NaP,m : dy4/dt =0.5(1+ tanh((y1− p24)/p25)−2y4)/(p27 + p28(1− tanh2((y1− p24)/p26)))

K1,m : dy5/dt =0.5(1+ tanh((y1− p29)/p30)−2y5)/(p32 + p33(1− tanh2((y1− p29)/p31)))

K2,m : dy6/dt =0.5(1+ tanh((y1− p34)/p35)−2y6)/(p37 + p38(1− tanh2((y1− p34)/p36)))

K2,h : dy7/dt =0.5(1+ tanh((y1− p39)/p40)−2y7)/(p42 + p44 +0.5(1− tanh(y1− p39))

· (p43(1− tanh2((y1− p39)/p41))− p44))

K3,m : dy8/dt =0.5(1+ tanh((y1− p45)/p46)−2y8)/(p48 + p49(1− tanh2((y1− p45)/p47)))

CaT,m : dy9/dt =0.5(1+ tanh((y1− p50)/p51)−2y9)/(p53 + p54(1− tanh2((y1− p50)/p52)))

CaL,m : dy10/dt =0.5(1+ tanh((y1− p55)/p56)−2y10)/(p58 + p59(1− tanh2((y1− p55)/p57)))

CaL,h : dy11/dt =0.5(1+ tanh((y1− p60)/p61)−2y11)/(p64 + p65(1+ tanh((y1− p60)/p62))

· (1− tanh((y1− p60)/p63))(1− tanh(y1− p60) tanh((1/p62 +1/p63)(y1− p60)))

/(1+ tanh((y1− p60)/p62) tanh((y1− p60)/p63)))

HCN,h : dy12/dt =0.5(1+ tanh((y1− p66)/p67)−2y12)/(p69 + p70(1− tanh2((y1− p66)/p68)))

(6)
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Numerical Analysis Details

The optimization was accomplished using the open source software IPOPT [66] and the pardiso [76] or ma57 lin-

ear solver libraries, on standard desktop hardware and on a Cray XE6. The data assimilation window over which

the model properties were estimated was 1500 milliseconds long; the data were sampled at 50 kHz, resulting in

75,000 time points of voltage data. Common to ‘direct method’ variational approaches, the model trajectories were

co-located during the optimization procedure; that is, each component of {y1(t),y2(t), ...,y12(t)} was treated as an

independent variable with the model dynamical equations imposed as equality constraints between neighboring

time-points. Gating particle variables were constrained between 0 and 1, and each of the parameters was con-

strained between biologically realistic bounds (see Table S1). Data assimilation of the full model took an average

of 52 h (range 14–199 h) of computation per epoch on a single core.

The completed model, with estimated parameters and state variables at t = 1500 ms, was then integrated

forward with u(t) = 0 for the remainder of the data epoch with the same injected current that was presented to the

real neuron. To generate predictions on different data epochs, a short (100 ms) section of data was used to find the

initial conditions for the state variables (the parameters being held fixed at their previously established values), and

then the model was integrated forward again with the corresponding injected current and u(t) = 0.

The Monte Carlo evaluation of error statistics was performed by a Markov chain that random walks through the

space of model variables and parameters. For this calculation, the timeseries of model variables was down-sampled

from 50 kHz to 5 kHz, although the entire data assimilation window was used. The initial path was provided by

the result of the variational optimization, and the chain was allowed to explore the space about this solution while

accepting 5% increases in the objective function with 50% probability. A random perturbation to all variables,

(y(t), p) was considered one step in the Markov chain. The chain was allowed to come to equilibrium over 5x106

steps and then 1x103 samples were taken, uniformly distributed over the next 2x106 steps.

As a technical note, it is essential to fully exercise the dynamical range of the neuron’s dynamics during

the data assimilation window [23]. This is achieved by subjecting the neuron to a current with a complicated

waveform, exhibiting a broad power spectrum (many characteristic timescales) as well as regions of constant

(positive, negative and zero) current to ascertain the neuron’s passive response properties. High frequency currents

are not useful as they are filtered out by the RC time constant of the membrane. Our results also indicate that

long duration, low frequency currents (including steps) may be essential for uncovering slow potentials like the

HCN current. More naturalistic currents may fail to uncover contributions from channels with slower kinetics or

smaller maximal conductances, or may require much longer assimilation windows for those contributions to have
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a significant influence on the estimated parameters.



21

References

1. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to

conduction and excitation in nerve. J Physiol (Lond) 117: 500–44.

2. Briggman KL, Abarbanel HDI, Kristan WB (2005) Optical imaging of neuronal populations during

decision-making. Science 307: 896–901.

3. Marder E, Bucher D (2007) Understanding circuit dynamics using the stomatogastric nervous system of

lobsters and crabs. Annu Rev Physiol 69: 291–316. doi:10.1146/annurev.physiol.69.031905.161516.

4. Briggman KL, Kristan WB (2008) Multifunctional pattern-generating circuits. Annu Rev Neurosci 31:

271–94. doi:10.1146/annurev.neuro.31.060407.125552.

5. Ayali A, Lange AB (2010) Rhythmic behaviour and pattern-generating circuits in the locust: Key concepts

and recent updates. J Insect Physiol 56: 834–43. doi:10.1016/j.jinsphys.2010.03.015.

6. Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9: 1179–1209.

7. Herz AVM, Gollisch T, Machens CK, Jaeger D (2006) Modeling single-neuron dynamics and computations:

A balance of detail and abstraction. Science 314: 80–85. doi:10.1126/science.1127240.

8. Gleeson P, Crook S, Cannon RC, Hines ML, Billings GO, et al. (2010) NeuroML: A language for describing

data driven models of neurons and networks with a high degree of biological detail. PLoS Comput Biol 6:

e1000815. doi:10.1371/journal.pcbi.1000815.

9. Trimmer J, Rhodes K (2004) Localization of voltage-gated ion channels in mammalian brain. Annu Rev

Physiol 66: 477–519. doi:10.1146/annurev.physiol.66.032102.113328.

10. Kew JNC, Davies CH, editors (2010) Ion Channels: From Structure to Function. New York: Oxford

University Press.

11. Schulz DJ, Goaillard JM, Marder E (2006) Variable channel expression in identified single and electrically

coupled neurons in different animals. Nat Neurosci 9: 356–362. doi:10.1038/nn1639.

12. Günay C, Edgerton JR, Jaeger D (2008) Channel density distributions explain spiking variability in the

globus pallidus: A combined physiology and computer simulation database approach. J Neurosci 28: 7476–

91. doi:10.1523/JNEUROSCI.4198-07.2008.



22

13. Cerda O, Trimmer JS (2010) Analysis and functional implications of phosphorylation of neuronal voltage-

gated potassium channels. Neurosci Lett 486: 60–7. doi:10.1016/j.neulet.2010.06.064.

14. Johnston J, Forsythe ID, Kopp-Scheinpflug C (2010) Going native: Voltage-gated potassium channels con-

trolling neuronal excitability. J Physiol (Lond) 588: 3187–3200. doi:10.1113/jphysiol.2010.191973.

15. Golowasch J, Goldman MS, Abbott LF, Marder E (2002) Failure of averaging in the construction of a

conductance-based neuron model. J Neurophysiol 87: 1129–31.

16. Achard P, Schutter ED (2006) Complex parameter landscape for a complex neuron model. PLoS Comput

Biol 2: e94. doi:10.1371/journal.pcbi.0020094.

17. Vanier MC, Bower JM (1999) A comparative survey of automated parameter-search methods for compart-

mental neural models. J Comput Neurosci 7: 149–171. doi:10.1023/A:1008972005316.

18. Geit WV, Schutter ED, Achard P (2008) Automated neuron model optimization techniques: A review. Biol

Cybern 99: 241–251. doi:10.1007/s00422-008-0257-6.

19. Foster WR, Ungar LH, Schwaber JS (1993) Significance of conductances in Hodgkin-Huxley models. J

Neurophysiol 70: 2502–18.

20. Prinz AA, Billimoria CP, Marder E (2003) Alternative to hand-tuning conductance-based models:

Construction and analysis of databases of model neurons. J Neurophysiol 90: 3998–4015. doi:

10.1152/jn.00641.2003.
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66. Wächter A (2002) An Interior Point Algorithm for Large-Scale Nonlinear Optimization with Applications

in Process Engineering. Phd thesis, Carnegie Mellon University.

67. Abarbanel HDI, Kostuk M, Whartenby W (2010) Data assimilation with regularized nonlinear instabilities.

Q J Meteor Soc 136: 769-783.

68. Huijberts HJC, Lilge T, Nijmeijer H (2001) Nonlinear discrete-time synchronization via extended observers.

Int J Bifurcat Chaos 11: 1997–2006.

69. Abarbanel HDI, Creveling D, Jeanne J (2008) Estimation of parameters in nonlinear systems using balanced

synchronization. Phys Rev E 77: 016208.

70. Abarbanel HDI, Creveling DR, Farsian R, Kostuk M (2009) Dynamical state and parameter estimation.

SIAM J Appl Dyn Syst 8: 1341-1381.
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Figure Legends

Figure 1. Data assimilation window and prediction window for intracellular responses for exemplar
neuron N1. (A) Membrane voltage (top) in response to injection of a complex current waveform (bottom). The
black trace shows recorded values, and the cyan trace shows estimated voltage from our data assimilation
procedure utilized for time [0,1500] ms, during which all state variables and parameters of the model were
estimated. The magenta trace shows the predicted voltage coming from integrating the model with estimated
parameters and state variables forward in time; t > 1500 ms. Vertical tick marks indicate times of action
potentials. (B) Membrane voltage from a different recording epoch with a different injected current. A brief
assimilation period (cyan) (100 ms) using the model from (A) was used to set the initial conditions for the
prediction (magenta) in this epoch. (C) Voltage responses (top, black trace) to simple step currents (bottom), with
predicted responses from the model in magenta. (D) Detail of randomly selected spikes extracted from the
recorded voltage, assimilation estimates, and predictions. (E) The same spikes are plotted in the phase plane to
show additional details of the spike shape. Each spike appears as a loop, with increasing time going clockwise.
The arrow indicates an initial period of rapid depolarization.

Figure 2. Data assimilation window and prediction of intracellular responses for exemplar N2. The format
is the same as in Figure 1. Note the differences with N1 in membrane time constant, lower firing rate, reduced
after-spike hyperpolarization, and other aspects of spike shape.

Figure 3. Data assimilation window and prediction of intracellular responses for exemplar N3. The format
is the same as in Figure 1. Note the much lower spike rate and strong adaptation compared to N1 and N2.

Figure 4. Estimated ion currents from the completed model for exemplar N1. (A) Voltage response to
depolarizing current step. Note the after-spike hyperpolarization, consistent spike height, and minimal adaptation.
(B) Currents from the major fast sodium and potassium channels from the model. Only the fast sodium (NaT) and
inactivating potassium (K2) currents contribute significantly to spike generation. (C) Estimated values for the Na
activation (solid blue line) and inactivation (dashed blue line) gating variables, and the K2 activation and
inactivation gating variables (cyan lines). The full range from 0 to 1 is shown. (D–F) Details of voltage, current,
and gating variable estimates for the indicated spike in (A–C).

Figure 5. Estimated ion currents from the completed model for exemplar N2. The format is the same as in
Figure 4. Similar to N1, only the fast sodium (NaT) and inactivating potassium (K2) currents contribute
significantly to spike generation, but note the relatively stronger NaT vs K2 current and the buildup of inactivation
during long depolarizations that leads to spike rate and shape adaptation.
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Figure 6. Estimated ion currents from the completed model for exemplar N3. The format is the same as in
Figure 4. Differing from N1 and N2, the slow, non-inactivating potassium (K3) current drives repolarization and
remains open during prolonged depolarization. Also note the slight presence of the NaP current between spikes.

Figure 7. Comparison of currents and channel kinetics for exemplar neurons. (A) Maximal conductances
(g̃, dark bars) and average currents (Ĩ, light bars) relative to the total conductance or average current for each of
the major currents in the model, for neurons N1 (blue), N2 (green) and N3 (red). IHCN is not shown as it did not
contribute significantly to any of the models. (B) Kinetics of the activation and inactivation variables for NaT, K2,
and K3 channels for the exemplar neurons, shown in terms of their equilibrium activation x∞(V ) and relaxation
time τ(V ).

Figure 8. Posterior distributions of selected parameters. The uncertainty in the reported parameter solution set
for the membrane capacitance Cm and maximal conductances of neurons N1 (blue), N2 (green) and N3 (red).
Using a Metropolis-Hastings Monte Carlo algorithm, the distribution was sampled with the variational method
estimates for initial guesses.

Figure 9. Comparison of simple and complex model prediction quality. Each panel shows one of the metrics
of how well models predicted various features of the intracellular voltage trace. Points connected by lines
correspond to individual neurons and show the values for the best model in each class. For deviance metrics,
smaller values indicate closer agreement with recorded data, whereas for correlation coefficient, larger values
indicate better agreement. Blue, green, and red dots correspond to exemplar neurons. Red dots displaced to either
side indicate median values, and vertical bars the 25th and 75th percentiles. The 9-current model is significantly
better for all metrics (paired Wilcoxon test: all P < 0.008).

Figure 10. Distributions of selected parameters for 22 HVC neurons. (A) Estimated relative maximal
conductances (g̃) for each of the currents in the model separated by the putative neuron class (RAn: projects to
RA; Xn: projects to area X). Permeabilities for the calcium channels were converted to conductances by
evaluating the GHK expression with the estimated calcium concentrations. Black points, indicating individual
neurons, are horizontally jittered for clarity. Red points and error bars indicate means and 95% confidence
intervals (estimated by bootstrapping). Light blue, green, and red dots correspond to exemplar neurons. Asterisks
indicate significant difference between putative neuron classes (Wilcoxon test, P < 0.05). Total K conductance
(Ktotal) is the sum of g̃ for K1–3. (B) Kinetic parameters for activation (left) and inactivation (right) of the NaT
channel. V1/2, half-activation; κ , the slope of the equilibrium state; σ , the width of the relaxation time function;
τmax, the peak time constant. The ranges of the plot ordinates correspond to the upper and lower bounds for the
parameters.
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Table 1. Prediction quality metrics for models of 26 HVC neurons. Multiple models for each neuron were
estimated with data from different recording epochs. The left columns show summary statistics for all the models;
the central columns show statistics for all the models, and the right columns show statistics comparing measured
responses to the same stimulus. IQR: interquartile range.

All Models(a) Best Models(b) Intrinsic

Metric median IQR(c) σneuron
(d) σepoch

(e) median IQR median IQR

subthreshold deviance (mV) 3.5 2.3–5.3 5.4 4.8 2.6 1.7–3.8 5.9 4.2–6.8
spike rate deviance 0.22 0.049–0.38 0.27 0.24 0.09 0.00-0.26 0.12 0.09–0.21
spike shape deviance 0.087 0.070–0.13 0.041 0.042 0.077 0.060–0.096 0.064 0.049–0.092
spike coindence (Γ) 0.38 0.25–0.57 0.29 0.23 0.45 0.32–0.69 0.54 0.38–0.63
correlation coefficient 0.87 0.80–0.92 0.21 0.10 0.88 0.84–0.92 0.87 0.83–0.92

(a) statistics for all neurons and epochs
(b) statistics for best models for each neuron
(c) interquartile range (i.e., 25th and 75th percentile)
(d) sample standard deviation between neurons
(e) sample standard deviation between epochs from the same neuron
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Supporting Information

Table S1. The complete list of optimization bounds and model parameter estimates for exemplar neurons N1–N3.

Figure S1. Prediction quality metrics for models estimated with different sets of data from the exemplar neurons

N1–N3.


