
 2004 Royal Statistical Society 0035–9254/04/53083

Appl. Statist. (2004)
53, Part 1, pp. 83–93

Estimating percentiles of uncertain computer code

outputs

Jeremy Oakley

University of Sheffield, UK

[Received June 2001. Final revision June 2003]

Summary. A deterministic computer model is to be used in a situation where there is uncertainty
about the values of some or all of the input parameters. This uncertainty induces uncertainty
in the output of the model. We consider the problem of estimating a specific percentile of the
distribution of this uncertain output. We also suppose that the computer code is computation-
ally expensive, so we can run the model only at a small number of distinct inputs. This means
that we must consider our uncertainty about the computer code itself at all untested inputs. We
model the output, as a function of its inputs, as a Gaussian process, and after a few initial runs
of the code use a simulation approach to choose further suitable design points and to make
inferences about the percentile of interest itself. An example is given involving a model that is
used in sewer design.

Keywords: Deterministic computer code; Gaussian process; Uncertainty distribution

1. Introduction

This paper is motivated by a specific problem that was experienced by the Water Research Cen-

tre (WRC). A computer model, known as the SIMPOL model, is to be used to predict some

quantity of interest y given a set of input parameters x. We denote this model by the function

y= η.x/, and we shall refer to any particular choice of values for the input parameters x as the

inputs. The model is deterministic, so, if it is run repeatedly at the same inputs, it will always

return the same output. However, the input parameters represent physical constants, the true

values of which are unknown. Denoting these true values by X, it then follows that the output

at the true inputs, which we denote by Y = η.X/, is also unknown. The WRC are interested in

extreme events that are related to the output quantity and wish to know the 95th percentile of

the distribution of Y .

The interest is in whether it is possible to obtain an accurate estimate of the 95th percentile

for a computationally expensive computer model, i.e. based on a small number of runs of the

computer code. The full model has at least 10 uncertain input parameters. We develop meth-

odology for estimating the 95th percentile and test it on a simplified example where only four

input parameters are considered uncertain, and the rest are kept fixed. In this example we can

obtain the true value of the 95th percentile, and so we can check the accuracy of the inferences

that are obtained by our methods.

Making inference about the distribution of Y is known to users of computer codes as uncer-

tainty analysis, and in this particular case we wish to know the 95th percentile of the uncertainty

distribution. This is an example of a variety of statistical problems that are encountered by users

Address for correspondence: Jeremy Oakley, Department of Probability and Statistics, Hicks Building, Univer-
sity of Sheffield, Houndsfield Road, Sheffield, S3 7RH, UK.
E-mail: j.oakley@sheffield.ac.uk

84 J. Oakley

of deterministic computermodels.Other problems involve choosingdesignpoints to run compu-

tationally expensive codes at to minimize the uncertainty about the output at the remaining

untested inputs, assessing the sensitivity of the output to specific inputs and calibrating models

to observations of reality. Some examples of the methodology that has been developed to tackle

these problems are Sacks et al. (1989), Craig et al. (1996), O’Hagan et al. (1999), Saltelli et al.

(2000) and Kennedy and O’Hagan (2001).

For computationally cheap computer codes, a simple Monte Carlo approach can be used

to determine the distribution of Y . Denoting the distribution of X by G, we draw a very large

sample of inputs x1, . . . ,xn fromG and run the code at each input to obtain a sample from the

distribution of Y . For computationally expensive models, this method is impractical; hence we

are considering how to estimate the percentile on the basis of a small number of runs of the

code.

There are three stages to the method that is presented here. The first problem is that we can

evaluate the computer code only at a small number of distinct inputs. To obtain an accurate

estimate of the percentile, we shall need to extract as much information as possible from each

run of the computer code, i.e. we shall need a statistical model for the output of the code

at untested inputs given these runs. Secondly, given this model and the distributions for the

unknown inputs, we shall need a method for making inferences about the 95th percentile of the

distribution of the output. Finally, given the method we shall need to consider how to choose

the initial inputs to run the model at so that we can estimate the 95th percentile as accurately

and as efficiently as possible. In Oakley and O’Hagan (2002) a technique was described that can

be used to make inference about any summary of the distribution of Y based on a small number

of runs of the code. Consequently, in this paper we shall be concentrating on the third stage to

the method, which was not addressed in Oakley and O’Hagan (2002) for the case of estimating

percentiles. Given the expense in obtaining runs of the computer code in these problems a care-

ful consideration of the design can be advantageous. The design is particularly important for

the 95th or more extreme percentiles because we need to balance obtaining information about

η.·/ everywhere with obtaining information about η.·/ in a rather unrepresentative region, in

some sense.

In the next section we describe the SIMPOLmodel and the uncertain inputs. In Section 3 we

discuss inference about functions using a Gaussian process. Estimating percentiles by using the

Gaussian process model is described in Section 4, and a method for choosing design points is

developed in Section 5. The approach is applied to the SIMPOL model in Section 6.

2. The SIMPOL model

The SIMPOL model is used as an aid in the design of combined sewer overflows (CSOs) that

are required to meet certain environmental standards. A combined sewer carries both sewage

and surface-water from urban drainage. These sewers are common in the UK. In a storm, the

excess of water may lead to an increase in pressure in the sewer pipes and a risk of flooding.

To counter this, overflows (CSOs) are built into the sewer system at critical points. These over-

flows then discharge the excess water into rivers and streams. Clearly, there are environmental

concerns when sewage is being discharged. Currently, CSOs are being upgraded to reduce both

the number and the volume of spills. One method is to provide storage for the storm flow at the

CSO. Once the storm has subsided, the stored flow can then continue through the sewer system.

The output of the SIMPOL model is the volume of storage that is required to meet specific

environmental standards. These standards usually involve the condition of the river following

a spill from the CSO.

Percentiles of Computer Code Outputs 85

2.1. The model input parameters

Four input parameters in the model are treated as unknown and the remainder are kept fixed.

These are as follows:

(a) the maximum pass forward rate at the CSO, the capacity of the sewer downstream of the

CSO—this determines the flow rate at which the storage starts to fill;

(b) the average dryweather biochemical oxygendemand (BOD)of the sewer flow—the break-

down of organic matter uses oxygen, and the BOD is a measure of the potential potency

of the oxygen demand, expressed as a concentration;

(c) the BOD sediment load, the maximum load that can be built up in a sewer, if sufficient

depositionoccurs—indryweather, sedimentation canoccur in sewers, andduring a storm

large sewer flows can erode the sediment, causing an increase in the BOD of the storm

sewage;

(d) the BOD erosion concentration, the rate at which the sediment load is eroded.

The WRC have assumed independent log-normal distributions for the true values of all four

inputs. We transform these inputs so that we can think of the output of the model as being a

function of four inputs x1,x2,x3 and x4, where the true values all have standard normal distribu-

tions. Note that, for certain values of the inputs, the required environmental standards are met

or even exceeded without the need for any extra storage volume. The SIMPOL model returns a

negative output, which is then corrected to 0. For our purposes, we retain the original negative

outputs, as these will still give us information about how the output varies with the inputs.

3. Inference about functions using Gaussian processes

We now describe the Gaussian process model for an unknown function η.·/. Gaussian processes
have been used before for modelling computer codes, and examples are Currin et al. (1991) and

Haylock and O’Hagan (1996). The key requirement is that η.·/ is a smooth function, so if we

know the value of η.x/ we should have some idea about the value of η.x′/ for x close to x′. It
is this property of η.·/ that will give us the opportunity to improve on Monte Carlo sampling,

since the extra information that is available after each code run is ignored in the Monte Carlo

approach.

For any set of points {x1, . . . ,xn}, we represent our uncertainty about {η.x1/, . . . , η.xn/}
through a multivariate normal distribution. The mean of η.x/ is given by

E{η.x/|β} = h.x/Tβ, .1/

conditional on β. The vector h.·/ consists of q known regression functions of x, and β is a

vector of coefficients. The choice of h.·/ is arbitrary, though it should be chosen to incorporate
any beliefs that we might have about the form of η.·/. The covariance between η.x/ and η.x′/ is
given by

cov{η.x/, η.x′/|σ2} = σ
2 c.x,x′/, .2/

conditional on σ
2, where c.x,x′/ is a function which decreases as |x − x′| increases and also

satisfies c.x,x/= 1 ∀x. The function c.·, ·/ must ensure that the covariance matrix of any set of
outputs {y1 = η.x1/, . . . ,yn = η.xn/} is positive semidefinite. A typical choice is

c.x,x′/= exp{−.x − x′/TB.x − x′/}, .3/

where B is a diagonal matrix of (positive) roughness parameters. Conventionally, a weak prior

for β and σ
2 in the form p.β,σ2/ ∝ σ

−2 is used. In Oakley (2002) a means of including proper

86 J. Oakley

prior information about the function η.·/ is presented, through the use of the conjugate prior,
the normal inverse gamma distribution. We have

p.β,σ2/ ∝ .σ2/−.d+q+2/=2 exp[−{.β − z/TV−1.β − z/ + a}=2σ2]: .4/

(Recall that q is the number of regressors in the mean function.)

The output of η.·/ is observed at n design points, x1, . . . ,xn, to obtain data y. Given the prior

in expression (4) it can be shown that

η.x/ − mÅ.x/

σ̂
√
cÅ.x,x/

|y,B ∼ td+n, .5/

where

mÅ.x/= h.x/Tβ̂ + t.x/TA−1.y − Hβ̂/, .6/

cÅ.x,x′/= c.x,x′/−t.x/TA−1t.x′/+.h.x/T−t.x/TA−1H/.HTA−1H/−1.h.x′/T−t.x′/
T
A−1H/T:

.7/

t.x/T = .c.x,x1/, . . . , c.x,xn//, .8/

HT = .hT.x1/, . . . , h
T.xn//, .9/

A=









1 c.x1,x2/ . . . c.x1,xn/

c.x2,x1/ 1
:::

: : :
:::

c.xn,x1/ · · · 1









, .10/

β̂ =VÅ.V−1z + HTA−1y/, .11/

σ̂
2 = {a + zTV−1z + yTA−1y − β̂

T
.VÅ/−1β̂}=.n + d − 2/, .12/

VÅ= .V−1 + HTA−1H/−1, .13/

yT = .η.x1/, . . . , η.xn//: .14/

Full details of the prior-to-posterior analysis can be found in O’Hagan (1994). In this paper

we shall simply condition on a posterior estimate of B, rather than taking into account the

uncertainty that we may have. The estimate could be the posterior mode, though with a small

sample of data the likelihood can be fairly flat. For the SIMPOL model example, we found a

cross-validation procedure to be more effective; each observation was left out in turn and B

was chosen to minimize the error between the posterior mean of the omitted output and the

known true value. Ideally we should be allowing for the uncertainty in B, though Kennedy and

O’Hagan (2001) have suggested that this uncertainty may not be important. Neal (1999) used

Markov chain Monte Carlo sampling to sample from the posterior distribution of B.

4. Estimating percentiles by simulation

If η.·/ was a computationally cheap function, then the required 95th percentile could be deter-
mined by using Monte Carlo sampling, in principle to an arbitrary degree of accuracy. Denote

this value of the true 95th percentile by ν. It is important to appreciate that ν is the 95th percen-

tile of the distribution of Y |η.·/, and not the marginal distribution of Y . We could estimate the

Percentiles of Computer Code Outputs 87

95th percentile of themarginal distribution of Y by repeatedly sampling x fromG, and then η.x)

from its posterior distribution given in equation (5), again in principle to an arbitrary degree of

accuracy. But it would clearly be false to report to theWRC that we then knew ν with certainty;

running the actual code more times might lead to a different estimate, as the distribution of

η.x/ would change.

When we have uncertainty about η.·/, the distribution of Y |η.·/ is itself uncertain, and so ν

is therefore also uncertain. We must both estimate ν and consider our uncertainty about ν. In

achieving this, the key step involves generating a function η.·/ from its posterior distribution,

with the property that the function generated, denoted by η.i/.·/, is computationally cheap. We

can then determine the 95th percentile of Y |η.i/ by usingMonte Carlo sampling. A sample from

the distribution of ν can therefore be obtained as follows.

Step 1: generate a random function η.i/.·/ from the distribution of η.·/, with the property

that η.i/.x/ can be evaluated quickly for any input x.

Step 2: determine the 95th percentile of η.i/.X/, denoted by ν.i/, by usingMonte Carlo meth-

ods.

Step 3: repeat steps 1 and 2 to obtain a sample ν.1/, . . . , ν.K/ from the distribution of ν.

The posterior distribution for the outputs at any set of inputs is multivariate t, with the mean

for each outputmÅ.x/ and covariance between any two outputs σ̂
2 cÅ.x,x′/. Denote the sample

space of X by X . We cannot obtain an exact realization of η.·/, since in practice the set X of

possible values of x is infinite and to sample η.·/ means to sample η.x/ for all x ∈ X . Given

that we shall evaluate η.i/.·/ at only a finite sample of inputs to obtain ν.i/, we might think

of just sampling η.·/ jointly at all the inputs in the Monte Carlo sample. This can be unreli-

able because the variance–covariance matrix of all the corresponding outputs is ill conditioned.

Instead we use the following procedure to obtain approximate draws from the distribution

of η.·/.
We choose N points x′

1,x
′
2, . . . ,x

′
N , which we shall refer to as the simulation design points,

distinct from the original n design points, x1, . . . ,xn that are used to obtain the data vector

y. For the ith realization from the distribution of η.·/, denoted by η.i/.·/, we generate random
data y.i/ = {η.i/.x

′
1/, . . . , η.i/.x

′
N/}. For x =∈ {x′

1, . . . ,x
′
N ,x1, . . . ,xn}, η.i/.x/ is still unknown.

However, η.i/.x/|y,y.i/ also has a t-distribution as given in expression (5), with the variance of
η.i/.x/ very small for all x of interest, if x′

1, . . . ,xN are well chosen and N is sufficiently large.

Consequently, we can now approximate η.i/.·/ by mÅ.i/.·/, which is the posterior mean of η.i/.·/
given the original n observations and the N new sampled observations. For suitably chosen

x′
1,x

′
2, . . . ,x

′
N , the error in approximating η.i/.·/ by mÅ.i/.·/ should be minimal. This process is

then repeated to obtain a new realization, η.j/.·/.

5. Choice of design points

Various schemes have been suggested for choosing design points to run a computer code at,

when the aim is to estimate the output over some range of inputs of interest. Examples are given

in Sacks et al. (1989) and Haylock and O’Hagan (1996). In this case, however, the sole interest

is in estimating the 95th percentile of the output. Consequently, we shall not necessarily need

to know much information about the function η.·/ over the entire input space. Suppose that
we can identify a subset R of X such that we are almost certain that the 95th percentile of the

output will occur at some input x, with x ∈ R, even though we still have uncertainty about η.·/
over all of X . In this case, we shall only require accurate information about η.·/ over the region
R. A novel approach to choosing the design points will be required here.

88 J. Oakley

An outline of the design scheme is as follows. The design points will be chosen in two stages.

The first set of design points is chosen with the purpose of learning about η.·/ as a whole. Given
the first set of runs, we then explore the posterior distribution of η.·/ by using the simulation
procedure that was described in the previous section, to identify regions of the input space that

produce large output values. A second set of design points is then chosen to cover these regions,

so that we can reduce our uncertainty about η.·/ over the range of inputs that are relevant for
estimating ν.

If we have proper prior information about η.·/, then we can generate random functions from

the prior distribution of η.·/, and so the first set of design points may not be strictly necessary.
However, depending on the strength of the prior knowledge, a few runs of the computer code

to improve our overall understanding of η.·/ may still be helpful before attempting to identify
R. In the SIMPOL example, no proper prior knowledge was available to us, and so for the

remainder of this section we shall assume that we have weak prior knowledge about η.·/.

5.1. Choosing the first set of design points

As mentioned before, there are various schemes for choosing design points to learn about η.·/
as a whole. Denote the data that are obtained after the code has been run at the first set of design

points by y1. The suggestion in Haylock and O’Hagan (1996) was to choose design points to

minimize the preposterior expected value
∫

X

var{η.x/|y1} dG.x/:

A drawback with this scheme (and certain others) is that it is a function of the unknown rough-

ness parameters B, and so a prior estimate of B is needed. However, for common modelling

choices regardingG.·/ and η.·/, and initial assumptions about the structure of the design, it can
be computationally very convenient to use this criterion, given an estimate of B, and this was

the scheme that was adopted in the SIMPOL example.

5.2. Choosing the second set of design points

Wenowwish to identify a regionR in which we shall concentrate the second set of design points.

This is done as follows. We generate a random function η.i/.·/, and we define the 95th percentile
of η.i/.X/ to be ν.i/. We then estimate ν.i/ by using the Monte Carlo approach; a set of inputs

{xÅ1 ,x
Å
2 , . . . ,x

Å
J } is randomly drawn from G.x/, and ν.i/ is estimated by the 95th percentile of

{mÅ.i/.x
Å
1 /, . . . ,m

Å
.i/.x

Å
J /}. The estimate of ν.i/ must be the value of m

Å
.i/.x/ for one of the inputs

x in the set {xÅ1 ,x
Å
2 , . . . ,x

Å
J }. Consequently, for the ith generated function η.i/.·/, we use the

notation xÅ.i/ to denote the input in the set {xÅ1 ,x
Å
2 , . . . ,x

Å
J } whose expected output mÅ.i/.x

Å
.i// is

the estimate of ν.i/. Now suppose that we have performed the simulation procedure K times

and have obtained {ν.1/ =mÅ.1/.x
Å
.1//, . . . , ν.K/ =mÅ.K/.x

Å
.K//}. We can now think of R as being

the convex hull containing {xÅ.1/,x
Å
.2/, . . . ,x

Å
.K/}. If we denote the extra data that are obtained

after the code has been run at the second set of design points by y2, then we should choose the

second set of design points to minimize the preposterior expected value of
∫

R

var{η.x/|y1, y2} dx: .15/

Given the region R, the sample of inputs {xÅ.1/,x
Å
.2/, . . . ,x

Å
.K/} may not necessarily occur uni-

formly across R. Consequently, we introduce a weight function into expression (15), so that we

instead choose design points to minimize

Percentiles of Computer Code Outputs 89
∫

R

var{η.x/|y1,y2}w.x/ dx, .16/

for some function w.x/. This function is chosen by fitting a density function to the sample

{xÅ.1/,x
Å
.2/, . . . ,x

Å
.K/}. We do not believe that it is necessary to truncate w.x/ to lie inside R, as

we cannot claim that our method precisely determines the boundary of R to begin with.

Clearly, the success of this approach in identifying a region R and choosing an appropriate

weight function w.x/ will depend on the nature of the function η.·/. For monotonic functions
(or non-monotone functions with an overall increasing or decreasing trend), we would certainly

expect to be able to do better this way than by just choosing design points to coverX in general.

For non-monotonic functions, rather than focusing on identifying a single regionR, wemay still

be able to exclude some regions of X where we are sure that η.x/ is above or below ν. We could

then choose the second set of design points to cover the remaining regions of the sample space

uniformly. This should still lead to a reduction in posterior uncertainty about ν, compared with

a more general design.

We have the criterion for choosing the second set of design points given in expression (16).

However, actually finding the design thatwillminimize this integralmay itself not be straightfor-

ward. Consequently, we use a suboptimalmethod that is selected on the grounds of convenience.

Two methods are combined; maximin Latin hypercube sampling, given in Mitchell and Morris

(1995), and a maximum entropy method that was suggested by Shewry and Wynn (1987). A

large number of maximin Latin hypercube samples of inputs are generated from the density

function w.x/. For each sample of inputs, the determinant of the variance–covariance matrix of

the outputs is computed. The samplewith the largest determinant is then chosen to be the second

set of design points. Maximizing this determinant has the effect of minimizing the remaining

entropy of η.·/. This should still lead to a design that makes expression (16) small, even if it does
not give the minimum.

5.3. Choosing the simulation design points

In general, when generating a random function the simulation design points are chosen to

ensure that the variance of the function given both the original data and the new simulated data

is small. Again, since the purpose of generating a function here will either be to estimate the

95th percentile or to determine at which inputs the 95th percentile occurs, the variance of the

function generated will not need to be small over the entire input space. The following approach

can be used to remove unnecessary inputs from the simulation design points.

After running themodel at thefirst set of designpoints,we canfind lower andupperbounds for

the 95thpercentilewithouthaving to simulate any functions.Wedrawa large sampleofJ random

inputs {xÅ1 , . . . ,x
Å
J } and consider pointwise 99% intervals for η.xÅi /, for i= 1, . . . ,J .We then find

the 95th percentiles of the sets {mÅ.xÅ1 / − tn−q,0:005σ̂ cÅ.xÅ1 /, . . . ,m
Å.xÅJ / − tn−q,0:005σ̂ cÅ.xÅJ /}

and {mÅ.xÅ1 / + tn−q,0:005σ̂ cÅ.xÅ1 /, . . . ,m
Å.xÅJ / + tn−q,0:005σ̂ cÅ.xÅJ /}. This gives us an (overly

conservative) interval which we denote by .νL, νU/ for the 95th percentile. When considering

the simulation design points {x′
1, . . . ,x

′
N}, for i= 1, . . . ,N, we exclude x′

i from the design if

mÅ.x′
i/ − tn−q,0:005σ̂ cÅ.x′

i/ > νU, .17/

or

mÅ.x′
i/ + tn−q,0:005σ̂ cÅ.x′

i/ < νL: .18/

For simplicity, we first obtain a maximin Latin hypercube sample and then remove unnecessary

design points by using the above procedure, to obtain suitable simulation design points.

90 J. Oakley

x
l

x
u

υ
u

υ
l

x

η(x)

Fig. 1. Selecting design points for generating random functions: since we are confident that the 95th per-
centile will be between νL and νU, we should concentrate the simulation design points between xl and xu

To illustrate this, consider a one-dimensional function, in which we have run the code at

three inputs. In Fig. 1 the full curves show pointwise 99% intervals for the function η.x/. After

determining the interval .νL, νU/, we can see that we only need to simulate the function between

the inputs xl and xu. Once we have simulated η.x/ for x∈ .xl,xu/, we can be confident that

the estimate of the 95th percentile for the simulated function and the corresponding input at

which the percentile occurs will not change irrespective of what values we simulate for η.x/ for

x =∈ .xl, xu/.

6. The method applied to the SIMPOL model

The true value of the 95th percentile is determined from a large sample of model runs and found

to be 1142 units. We then consider using the Gaussian process model to obtain an efficient

estimate. We set h.x/= .1 x1 x2 x3 x4/
T and

c.x,x′/= exp{−.x − x′/TB.x − x′/}, .19/

for some diagonal matrix B. No proper prior information about the function η.·/ is available to
us, and so we set p.β,σ2/ ∝ σ

−2. To obtain the first set of design points, we consider selecting

two points in each dimension and then forming a 16-point product design to make
∫

X

var{η.x/|y1} dG.x/

small. We denote the intital 16 observations by y1.

To obtain suitable simulation design points we begin with a Latin hypercube sample of size

200 and reduce this to 55 design points through rejecting unnecessary design points.We generate

1000 functions, and for each function we draw a random sample of 1000 inputs fromG.x/. We

obtain the sample of inputs P = {xÅ.1/, . . . ,x
Å
.1000/}, where m

Å
.i/.x

Å
.i// is the estimate of ν.i/. On

the basis of the initial 16 runs of the code, we estimate the 95th percentile of the output to be

1159.0, and a 95% interval for the 95th percentile is (1071,1255).

Percentiles of Computer Code Outputs 91

Table 1. Correlations between the inputs in R

x1 x2 x3 x4

x1 1 0.010 0.224 −0.079
x2 0.010 1 −0:578 0.206
x3 0.224 −0:578 1 0.537
x4 −0:079 0.206 0.537 1

• • • • • • • • • • • • •
• • • • •

•
•

•
• • •

•

•
• •

•
•

•

•

•
•

• • • • • • • • • • • • • • • •

output

-500 0 500 1000 1500 2000

0
.0

0
.0

0
1

0
.0

0
2

0
.0

0
3

Fig. 2. Density function of η.X/, .� � � � � � �/ and fitted density of η.x/ for x 2 R ()

In equation (16), we considered using a weight function w.x/ when minimizing the variance

over the region R. To determine a suitable weight function, we fit a density function to x in

the set P . Considering x1, x2, x3 and x4 separately, kernel density plots show that the distribu-

tion of each input is unimodal in the set R (the plots have been omitted here). Within R, there

are also correlations between some of the input parameters, and these are given in Table 1. A

multivariate normal distribution N.a,V/ is fitted to x within the region R. This distribution is

supposed to represent the region of the input space where outputs around the 95th percentile

occur. Since we can obtain true outputs of the model easily, we check to see whether this is so.

A large sample of inputs is drawn from N.a,V/, and the output of the model at these inputs is

evaluated. A kernel density estimate of these outputs is plotted in Fig. 2 as the full curve. Note

that the modal output of this new density is very close to the true 95th percentile. The dotted

curve shows the density estimate of Y , based on a large sample of outputs whose inputs are

drawn fromG.x/. This demonstrates that we have been successful in identifying an input region

R which produces outputs that are concentrated around the 95th percentile of Y |η.·/ (though
this does not prove that R contains all x-values with outputs around the 95th percentile).

After identifying R, eight new design points are chosen to cover R. These points are chosen

by using the combination of maximin Latin hypercube sampling and maximum entropy, as

described in Section 5.2. The eight new observations are denoted by y2.

92 J. Oakley

output

0 500 1000 1500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

......
....

....
...

...
...

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
...

...
....

......
.............

......

Fig. 3. Estimate of the distribution function given data y1 and y2: � � � � � � �, true distribution function; ,
estimate and pointwise 95% bounds

We update the distribution of η.·/ after learning the eight new outputs, and we use the sim-

ulation procedure again to obtain a final estimate of the 95th percentile. After simulating 1000

functions, we estimate the 95th percentile to be 1150.5, and a 95% interval for the 95th percen-

tile is (1122.4,1172.1). In Fig. 3, we plot the median distribution function and a pointwise 95%

interval.

We should also consider what our design selection strategy offers us over simply choosing all

the design points to cover the input space, as described byG, in one go. 24 points are chosen by

using the maximin Latin hypercube scheme. The estimate of the 95th percentile by using these

observations is 1162. A 95% interval for the 95th percentile is (1125,1199).

Fitting the normal density to R to choose the second set of eight points after the initial 16

has given a smaller 95% interval for the 95th percentile than that obtained by a single 24-point

design to learn about η.·/ as a whole.
Finally, we should consider the uncertainty that we would have about ν if we were simply

to use the Monte Carlo approach of generating a large sample of inputs from G and running

the computer code at every input to estimate ν. Confidence intervals for Monte Carlo estimates

are derived by using the procedure given in Campbell and Gardner (1988). We summarize these

results in Table 2. The sample size is denoted by n. We can see that we have less uncertainty

about ν from the Bayesian approach with 24 runs than we have from a Monte Carlo approach

with 1000 runs.

7. Conclusions

In this paper the aim has been to obtain an accurate estimate of the 95th percentile based on a

small number of runs of the code. This has been achieved, although the method that was used

may not work as effectively when the input has a large number of dimensions, since the number

of simulation design points that is needed can increase rapidly as the number of dimensions

Percentiles of Computer Code Outputs 93

Table 2. 95% intervals for the 95th percentile
by using Bayesian and Monte Carlo methods

Method n Interval

Bayes 24 (1122.4, 1172.1)
Monte Carlo 100 (1017.0, 1259.4)
Monte Carlo 500 (1086.2, 1197.3)
Monte Carlo 1000 (1102.5, 1182.5)

increases. In the SIMPOL example, the output is monotonic with respect to each input, and

this has resulted in the region R being noticeably smaller than X . In non-monotone cases, it

might not be possible to concentrate the design points in one particular region of the input

space, and so we would not expect to improve as much on simply choosing design points to

minimize the variance over the sample space of X. It should still be possible to identify some

regions of X where extra design points would not be beneficial. Finally, in various environmen-

tal applications we would expect there to be interest in extreme model outputs and we hope that

this approach will be useful for other users of deterministic models.

Acknowledgements

I thank Edward Glennie and his colleagues at the WRC for the data and advice regarding the

SIMPOL model. I also thank Tony O’Hagan for many valuable discussions, and two referees

for their helpful comments and suggestions regarding the clarity of this paper.

References

Campbell, M. J. and Gardner, M. J. (1988) Calculating confidence intervals for some non-parametric analyses.
Br. Med. J., 296, 1454–1456.

Craig, P., Goldstein, M., Seheult, A. H. and Smith, J. A. (1996) Bayes linear strategies for matching hydrocarbon
reservoir history. In Bayesian Statistics 5 (eds J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith),
pp. 69–95. Oxford: Oxford University Press.

Currin, C., Mitchell, T. J., Morris, M. and Ylvisaker, D. (1991) Bayesian prediction of deterministic functions
with applications to the design and analysis of computer experiments. J. Am. Statist. Ass., 86, 953–963.

Haylock, R. G. and O’Hagan, A. (1996) On inference for outputs of computationally expensive algorithms with
uncertainty on the inputs. In Bayesian Statistics 5 (eds J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M.
Smith), pp. 629–637. Oxford: Oxford University Press.

Kennedy,M. C. and O’Hagan, A. (2001) Bayesian calibration of computer models (with discussion). J. R. Statist.
Soc. B, 63, 425–464.

Mitchell, T. J. and Morris, M. D. (1995) Exploratory designs for computational experiments. J. Statist. Planng
Inf., 43, 381–402.

Neal, R. (1999) Regression and classification using gaussian process priors. In Bayesian Statistics 6 (eds J. M.
Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith), pp. 69–95. Oxford: Oxford University Press.

Oakley, J. (2002) Eliciting Gaussian process priors for complex computer codes. Statistician, 51, 81–97.
Oakley, J. E. and O’Hagan, A. (2002) Bayesian inference for the uncertainty distribution of computer model
outputs. Biometrika, 89, 769–784.

O’Hagan, A. (1994) Kendall’s Advanced Theory of Statistics, vol. 2B, Bayesian Inference. London: Arnold.
O’Hagan, A., Kennedy, M. and Oakley, J. E. (1999) Uncertainty analysis and other inference tools for complex
computer codes (with discussion). In Bayesian Statistics 6 (eds J. M. Bernardo, J. O. Berger, A. P. Dawid and
A. F. M. Smith), pp. 503–524. Oxford: Oxford University Press.

Sacks, J., Welch, W. J., Mitchell, T. J. and Wynn, H. P. (1989) Design and analysis of computer experiments.
Statist. Sci., 4, 409–435.

Saltelli, A., Chan, K. and Scott, M. (eds) (2000) Sensitivity Analysis. New York: Wiley.
Shewry, M. C. and Wynn, H. P. (1987) Maximum entropy sampling. J. Appl. Statist., 14, 165–170.

