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Abstract

PURPOSE—The purpose of this study was to develop and validate methods for analyzing wrist 

accelerometer data in youth.

METHODS—181 youth (mean±SD; age, 12.0±1.5 yrs) completed 30-min of supine rest and 8-

min each of 2 to 7 structured activities (selected from a list of 25). Receiver Operator 

Characteristic (ROC) curves and regression analyses were used to develop prediction equations 

for energy expenditure (child-METs; measured activity VO2 divided by measured resting VO2) 

and cut-points for computing time spent in sedentary behaviors (SB), light (LPA), moderate 

(MPA), and vigorous (VPA) physical activity. Both vertical axis (VA) and vector magnitude 

(VM) counts per 5 seconds were used for this purpose. The validation study included 42 youth 

(age, 12.6±0.8 yrs) who completed approximately 2-hrs of unstructured PA. During all 

measurements, activity data were collected using an ActiGraph GT3X or GT3X+, positioned on 

the dominant wrist. Oxygen consumption was measured using a Cosmed K4b2. Repeated 

measures ANOVAs were used to compare measured vs predicted child-METs (regression only), 

and time spent in SB, LPA, MPA, and VPA.

RESULTS—All ROC cut-points were similar for area under the curve (≥0.825), sensitivity 

(≥0.756), and specificity (≥0.634) and they significantly underestimated LPA and overestimated 

VPA (P<0.05). The VA and VM regression models were within ±0.21 child-METs of mean 

measured child-METs and ±2.5 minutes of measured time spent in SB, LPA, MPA, and VPA, 

respectively (P>0.05).

CONCLUSION—Compared to measured values, the VA and VM regression models developed 

on wrist accelerometer data had insignificant mean bias for child-METs and time spent in SB, 

LPA, MPA, and VPA; however they had large individual errors.
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INTRODUCTION

The benefits of physical activity (PA) for youth have been well documented. In order for 

these benefits to be studied in more detail, there is a need for accurate assessments of PA. 

Self-report assessments of PA are commonly used, but they are limited in their accuracy. 

Accelerometers are increasingly being recognized as a practical tool for objective PA 

measurement. Accelerometers are used in both laboratory- and clinical-based studies, as 

well as population-based surveillance studies including the National Health and Nutrition 

Examination Study (NHANES) (21). Recently, there has been a movement away from the 

traditional placement of accelerometers on the hip, to locations such as the wrist (5,7,12,15). 

Advantages to the wrist location include increased wear time compliance and the ability to 

assess sleep. However, there is a lack of information, especially for the ActiGraph 

accelerometer, on how to use wrist accelerometer data to predict energy expenditure, and 

time spent in PA intensities.

In adults, a variety of monitors have been used to develop regression equations relating 

counts to energy expenditure for several different wear locations (e.g., wrist, hip, ankle) 

(10,13,20). These regression equations are commonly used to develop cut-points for time 

spent in sedentary behaviors (SB; < 1.50 METs (multiples of resting metabolic rate)), light 

PA (LPA; 1.50–2.99 METs), moderate PA (MPA; 3.00–5.99 METs), and vigorous PA 

(VPA; ≥ 6.00 METs). However, these studies show that there is a large variation in the 

relationship between counts and energy expenditure that is not consistent between placement 

sites, thus requiring each location to have separate methods of predicting energy expenditure 

and PA intensity. Similar to studies in adults, a number of studies in children have used an 

ActiGraph worn at the hip site to establish regression equations and cut-points (2,6,14). 

However, only a few studies have addressed the wrist location. Specifically, the validity of 

algorithms for the Actical (1-axis; wrist) (7,17), Actiwatch (1-axis; wrist) (4), and 

GENEActiv (3-axis; wrist) (5,18) have been examined in the laboratory for children. 

Ekblom et al. (4) showed that the Actiwatch accelerometer counts were significant 

correlated with EE (r = 0.80, p < 0.001) and Schaefer et al. (18) demonstrated the ability of 

the GENEActiv to accurately classify SB and PA intensities.

Currently, there are three published articles that have used the wrist location with the 

ActiGraph in young children (15–36 months) (9) and adolescents (8,16). However, one of 

the studies in adolescents looked at activity classification using a combined wrist and hip 

algorithm (16), while the other study in adolescents used raw acceleration (8), which cannot 

be used with previously collected data utilizing counts. Thus, there is a need for accurate 

methods of converting the ActiGraph accelerometer counts, which are still widely used, into 

PA outcomes (e.g., energy expenditure, time spent in MVPA, etc.). Therefore, the primary 

aim of this study was to develop prediction models for estimates of energy expenditure and 

time spent in SB, LPA, MPA, and VPA using the wrist accelerometer placement in youth 

using two methods: 1) Receiver Operator Characteristics (ROC) analyses, and 2) regression 

analyses. A secondary aim was to examine the validity of the developed youth wrist models 

in an unstructured PA setting (simulated free-living).
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METHODS

Participants

Eighty-four girls and 97 boys between the ages of 8 and 15 yrs volunteered to participate in 

the study. Participants were recruited using flyers and word of mouth at elementary and 

middle schools and after school programs in the Boston, MA area. The procedures were 

reviewed and approved by the University of Massachusetts Boston and Boston Public 

School Institutional Review Board before the start of the study. A parent/legal guardian of 

each participant signed a written informed consent and filled out a health history 

questionnaire, and each child signed a written assent prior to participation in the study. 

Participants were excluded from the study if they had any contraindications to exercise, or 

were physically unable to complete the activities. In addition, none of the participants were 

taking any medications that would affect their metabolism (e.g. Concerta or Ritalin).

Procedures

This study was part of two larger studies using the same participants and exercise protocols 

that were combined for the purpose of this study (2,3). Specifically, participants recruited 

for structured activity routines 1–3 (see below) were part of the first study and participants 

recruited for structured activity routine 4 and the unstructured PA were part of a second 

study. The overall study procedures consisted of two parts: 1) structured activities that were 

used for development of the wrist prediction models, and 2) unstructured PA measurement 

that was used to examine the validity of the developed prediction methods. All testing took 

place at GoKids Boston: Research, Training, and Outreach Center, located on the campus of 

the University of Massachusetts Boston or at a Boston public school.

Structured Activity Routines

The structured activity routines (n=181) was performed over a 2-day period. Measurement 

days were separated by a minimum of 24 hours with a maximum of two weeks between the 

testing days. On day 1, participants had their anthropometric measurements taken and 

completed 30 minutes of supine rest in a quiet room for an estimate of resting metabolic rate 

(RMR). On day 2, participants performed various lifestyle and sporting activities that were 

broken into four routines. All participants performed the resting measurement and one of 

four physical activity routines. Routine one was completed by 38 participants (17 boys and 

21 girls), and routines two and three were each completed by 37 participants (21 boys and 

16 girls). Sixty-nine participants (38 boys and 21 girls) completed 2–7 activities in routine 4; 

however due to scheduling issues, not all participants completed all activities for the routine. 

Participants performed each activity in a routine for eight minutes, with a one to two minute 

break between each activity. Once eligibility was determined, participants completing 

routines 1–3 were randomly assigned to a routine based on their age, gender, and BMI, so 

that approximately equal numbers would complete each of the activities. Since routine 4 was 

part of a separate study, participants were recruited to complete that specific routine along 

with the unstructured PA (see below). Routine one included: reading, sweeping, Nintendo 

Wii, Floor Light Space, slow track walking (self-selected speed), and brisk track walking 

(self-selected speed). Routine two included: watching television, Wall Light Space, Dance 

Dance Revolution, playing catch, track walking with a backpack (self-selected speed), and 
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soccer around cones. Routine three included: searching internet, vacuuming, Sport Wall, 

Trazer, workout video, track running (self-selected speed). Routine four included: computer 

games, board games, light cleaning, Jackie Chan video game, wall ball, walking a course 

around campus (self-selected speed), and running a course around campus (self-selected 

speed). All activities within a routine were performed in the order listed above; a detailed 

description of these activities can be found elsewhere (2,3).

Oxygen consumption (VO2) was measured continuously, using indirect calorimetry 

(Cosmed K4b2, Rome Italy). Simultaneously, activity data were collected using an 

ActiGraph GT3X (routines 1–3) or ActiGraph GT3X+ (routine 4) accelerometer positioned 

on the dominant wrist. Previous studies have used both the dominant and non-dominant 

wrist and there is not a clear consensus as to which to use. Thus, we chose the dominant 

wrist as we felt it would detect more of the activities performed requiring the dominant hand 

(e.g. sports and household chores) and provide a better overall estimate of energy 

expenditure. To account for the additional weight of the devices, 2 kg was added to the 

participant’s body weight. This was done for the calculation of measured energy expenditure 

values from the Cosmed, except for non-weight bearing activities (e.g. lying, computer play) 

where the additional weight of the devices would not influence the energy cost to perform 

the activity.

Unstructured PA Measurement

Children participating in routine four were asked to return for a third day of measurement 

which consisted of approximately two hours of unstructured PA (n=41), which was meant to 

simulate free-living activity. Briefly, a research assistant was with the child at all times 

during the unstructured PA measurement, but did not communicate with the child or instruct 

them what to do. During water and bathroom breaks, if needed, the Cosmed mask was 

removed, resulting in a loss of data. Thus, time periods when the breaks occurred were 

removed from the analysis. All testing took place at University of Massachusetts Boston or 

the school the participant attended. During the measurement period participants interacted 

with other youth who were not part of the measurement, allowing for a more realistic 

setting. Example activities during the unstructured PA measurement included: SB (e.g., 

watching movies, reading, homework), active games (e.g., Dance Dance Revolution and 

Nintendo Wii), and recreational activities (e.g., soccer, basketball, lifting weights) (see 

Crouter et al. for further detail (3)). Oxygen consumption and activity data (GT3X+) were 

collected in the same manner as the structured activities.

Anthropometric measurements

Prior to testing, participants had their height and weight measured (in light clothing, without 

shoes) using a stadiometer and a physician’s scale, respectively. Body mass index (BMI) 

was calculated according to the formula: body mass (kg) divided by height squared (m2) and 

gender- and age-specific BMI percentiles were calculated using CDC algorithms (1).

Indirect calorimetry

A Cosmed K4b2 was used to measure oxygen consumption and carbon dioxide production 

during each activity routine and unstructured PA measurement. Prior to each test the oxygen 
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and carbon dioxide analyzers were calibrated according to the manufacturer’s instructions. 

This consisted of: 1) room air calibration, 2) reference gas calibration using 15.93% oxygen 

and 4.92% carbon dioxide, 3) flow turbine calibration using a 3.00 L syringe (Hans-

Rudolph), and 4) a delay calibration to adjust for the lag time that occurs between the 

expiratory flow measurement and the gas analyzers.

ActiGraph accelerometer

The ActiGraph GT3X (3.8 × 3.7 × 1.8 cm; 27 grams) and ActiGraph GT3X+ (4.6 × 3.3 × 

1.5 cm; 19 grams) tri-axial accelerometers were used for activity measurement. The GT3X 

was used in the first study (structured activity routines 1–3) and prior to starting the second 

study (structured routine 4 and unstructured PA) the GT3X+ was released and was used for 

the second study. The GT3X and GT3X+ measure accelerations in the range of 0.05 to 2 G’s 

and ± 6 G’s, respectively. The acceleration data is digitized by a 12-bit analog-to-digital 

converter and the data is filtered using a band limited frequency of 0.25 to 2.5 Hz. These 

values correspond to the range in which most human activities are performed. Once the raw 

data are downloaded, the ActiLife software can be used to convert the raw data to a user 

specified epoch (e.g. 10 sec). During all testing the GT3X or GT3X+ was worn on the 

dominant wrist, attached using a nylon belt designed specifically for the wrist. The GT3X 

and GT3X+ were initialized using 1-second epochs and 30 Hz, respectively, and the low 

frequency extension turned on. The accelerometer was positioned on top of the wrist, 

proximal to the ulnar styloid process, so that the vertical axis (VA; x-axis) of the ActiGraph 

was parallel to the longitudinal axis of the lower arm. The accelerometer time was 

synchronized with a digital clock so the start time could be synchronized with the Cosmed 

K4b2. At the conclusion of the test the accelerometer data were downloaded for subsequent 

analysis.

Data analysis

Breath-by-breath data were collected using the Cosmed K4b2, which was averaged over a 

one minute period for the structured activities and a 15-sec period for the unstructured PA. 

The VO2 (ml·min−1) was converted to VO2 (ml·kg−1·min−1). To account for higher resting 

metabolic rates in children compared to adults (11,19) child-METs were calculated by 

dividing the VO2 (ml·kg−1·min−1) for each by the participant’s supine resting VO2 

(ml·kg−1·min−1). For each structured activity, the child-MET values for minutes 4 to 7 were 

averaged and used for the subsequent analysis. The entire unstructured PA measurement 

period was used with the exception of times when the mask was removed for water or 

bathroom breaks. The raw ActiGraph accelerometer data for each axis and the mean vector 

magnitude (VM; square root of the sum squared activity counts from each axis) were 

converted to counts per 5 seconds.

Statistical treatment

Statistical analyses were carried out using IBM SPSS version 21.0 for windows (IBM, 

Armonk, NY). For all analyses, an alpha level of 0.05 was used to indicate statistical 

significance. All values are reported as mean ± standard deviation.
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Using the structured physical activities (routine 1–4), two statistical approaches were 

utilized for the development of the prediction models. First, cut-points were developed using 

receiver operating characteristic (ROC) curve analysis. ROC was used to determine the best 

threshold for detecting SB, LPA, MPA, and VPA. For SB, MPA, and VPA cut-points the 

ROC curve was developed by coding the measured child-MET values as zero or one. The 

SB and MPA cut-points were used as the lower and upper cut-point for LPA. Second, 

regression analyses were used to develop regression equations relating activity counts and 

energy expenditure (child-METs). The regression analyses used the VM and VA to relate 

the accelerometer 5-sec counts to measured child-METs. In addition, the mean counts and 

percentile distribution were used to determine an inactivity threshold for SB (e.g., lying, 

reading, and video watching).

One-way repeated measures ANOVAs were used to compare measured (Cosmed) and 

predicted child-METs (regression models only) for the unstructured PA. One-way repeated 

measures ANOVAs were also used to compare measured and predicted (regression models 

and cut-points) time spent in SB, LPA, MPA, VPA, and MVPA during the unstructured PA. 

Pairwise comparisons with Bonferroni adjustments were performed to locate significant 

differences, when necessary.

Measured and predicted child-METs were used to calculate root mean squared error 

(RMSE; square root of the mean of the squared differences between the prediction and the 

criterion measure), mean bias, and 95% prediction intervals (95%PI) for the unstructured PA 

measurement PA outcomes. The use of RMSE allows for the examination of the precision of 

a prediction equation, with a lower RMSE indicating a more precise estimate.

RESULTS

Data for four participants who performed the structured activities and two participants who 

completed the unstructured PA were excluded due to accelerometer malfunction resulting in 

data loss.

Participant descriptive characteristics are shown in table 1. Mean (SD) measured child-MET 

values, wrist ActiGraph counts per 5 seconds (VA and VM), and number of participants for 

each structured activity who have valid accelerometer data are shown in table 2.

Development of ActiGraph ROC Wrist Cut-points

The ActiGraph wrist VA (ROC-VA) and VM (ROC-VM) cut-points (counts per 5 seconds), 

area under the curve (AUC), sensitivity and specificity for the ROC curve analysis are 

shown in table 3. The ROC-VA and ROC-VM SB cut-points, in general, had the highest 

sensitivity (0.871 and 0.852, respectively), specificity (0.959 and 0.937, respectively), and 

AUC (0.944 and 0.935, respectively), except for the sensitivity for MPA cut-points which 

were higher for the ROC-VA (0.888) and ROC-VM (0.916).

Development of ActiGraph Wrist Regression Equations

For the regression equations, inactivity thresholds were developed to distinguish SB from 

LPA. Based on the examination of the mean values and percentile distribution of the 

Crouter et al. Page 6

Med Sci Sports Exerc. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sedentary activities (i.e. activities <1.5 METs) the inactivity threshold for the wrist VA 

(REG-VA) and VM (REG-VM) were ≤ 35 counts per 5 sec and ≤ 100 counts per 5 seconds, 

respectively. Thus, when the counts per 5 seconds are below the inactivity threshold the 

individual is credited with 1.0 child-MET. Shown below are the wrist VA and VM 

regression models, which consist of two parts (inactivity threshold and a single regression 

model),

Wrist VA Regression Model (REG-VA):

1. if the VA (x-axis) countsper 5 sec are ≤ 35, energy expenditure = 1.0 child-MET,

2. if the VA counts per 5 sec are > 35, energy expenditure (child-MET) = 1.592 + 

(0.0039* ActiGraph VA counts per 5 s) (R2 = 0.435; SEE = 1.678)

Wrist VM Regression Model (REG-VM):

1. if the VM countsper 5 sec are ≤ 100, energy expenditure = 1.0 child-MET,

2. if the VM counts per 5 sec are > 100, energy expenditure (child-MET) = 1.475 + 

(0.0025* ActiGraph VM counts per 5 s) (R2 = 0.409; SEE = 1.721)

Once a child-MET value was calculated for each 5-sec epoch within a minute on the 

ActiGraph clock, the average child-MET value of 12 consecutive 5-sec epochs within each 

minute was calculated to obtain the average child-MET value for that minute. Table 3 shows 

the cut-points based on the regression models.

Validation Study to Examine the ActiGraph Cut-points and Regression Equations during 
Unstructured PA

On average, children were monitored for 95.0 ± 36.5 min (range, 25–130 minutes) during 

the unstructured PA measurement period. Table 4 shows the mean measured and predicted 

child-MET, mean bias, 95% PI, and RMSE from the unstructured PA measurement. There 

were no significant differences between the mean measured child-METs and the mean 

estimates of REG-VA (−3.2% mean bias) or REG-VM (−6.1% mean bias) (P > 0.05). 

However, there were large individual errors with the 95% prediction intervals ranging from 

−2.43 to 2.64 child-METs for REG-VA and −2.55 to 2.96 for REG-VM.

Mean measured and predicted time spent in SB, LPA, MPA, and VPA during the 

unstructured PA measurement are shown in figure 1. Table 5 shows the mean bias and 95% 

prediction intervals (95%PI) for time spent in SB, LPA, MPA, VPA, and MVPA during the 

unstructured PA measurement. The REG-VA and REG-VM models were not significantly 

different from measured time spent in SB, LPA, MPA or VPA (P < 0.05) and had mean 

biases that ranged from 2.2% to 8.4%. The ROC-VA and ROC-VM models both 

significantly overestimated measured time in VPA by 94% and 107%, respectively, and 

significantly underestimated LPA by 47% and 69%, respectively (P<0.05). However, there 

were no significant differences between measured and estimated time spent in SB (22% to 

29% mean bias) or MPA (26% to 38% mean bias) (P>0.05). Both the regression and ROC 

prediction methods had large individual errors (95% PI range), which were similar across 

methods.
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DISCUSSION

The primary aim of this study was to develop ActiGraph prediction models for the wrist 

accelerometer placements in youth using both ROC analyses and regression analyses for the 

prediction of child-METs, and time spent in SB, LPA, MPA, and VPA. These models were 

then validated in an unstructured PA setting (simulated free-living). The primary finding is 

that the wrist REG-VA and REG-VM models have a lower mean bias and were not 

significantly different from measured values for prediction of child-METs or time spent in 

SB, LPA, MPA, and VPA. In contrast, the ROC-VA and ROC-VM models developed using 

ROC analysis were significantly different from measured time spent in LPA and VPA and 

had larger mean biases at the group level for all PA intensity categories compared to the 

regression models. Thus, the regression method appeared to be superior to the ROC curve 

method for estimating the mean time spent in various intensity categories. However, it 

should be noted that all models had large individual errors for prediction of child-METs and 

PA intensity categories.

In recent years, the wrist accelerometer placement site has been studied in adults and 

children but most of these studies have used devices other than the ActiGraph. For example, 

Heil et al. (7) performed a laboratory-based study using the Actical accelerometer in 

children using the hip, wrist (non-dominant), and ankle (same side as wrist accelerometer) 

locations. Based on the algorithms developed using the accelerometer counts per minute, the 

study showed that all three sites yielded no significant differences from measured energy 

expenditure. This was one of the first studies to highlight the potential of the wrist as an 

alternative placement site for providing valid estimates of PA. Recently, Trost et al. (22) 

using pattern recognition models, showed that the wrist (non-dominant hand) accelerometer 

placement site performed as well as the hip accelerometer placement site using the 

ActiGraph GT3X+, for identification of structured activities; however they did not estimate 

energy expenditure. Specifically, the classification accuracy for lying, sitting, standing, 

walking, running, and basketball were ranged from 81.9% to 96.8% for the hip location and 

74.6% to 95.8% for the wrist location. Schaefer et al. (18) used ROC analyses to established 

PA cut-points for the GENEActiv wrist placement (non-dominant wrist). Results of the 

study using the calibration data identified that both SB and VPA cut-points classified well 

(83.3% and 88.7%, respectively), however, LPA and MPA cut-points only classified 27.6% 

and 41.0%, respectively, of the time spent in those categories correctly.

To our knowledge, there is only one other calibration study that developed regression 

equations to be used with wrist-worn ActiGraph data in youth. Recently, Hildebrand and 

colleagues (8) used the non-dominant wrist in 30 youth 7–11 years of age, and found a 

strong correlation (R2=0.71) between measured energy expenditure (eight structured 

activities) and raw ActiGraph acceleration (mg). They also developed cut-points using the 

raw acceleration and found high classification accuracy for intensity of SB and LPA 

(>95%); however intensity classification accuracy was lower for MPA (<50%) and VPA 

(<80%). In this study, they also placed an ActiGraph on the hip and found a slightly higher 

correlation with measured energy expenditure (R2=0.78); however, the classification 

accuracy of activity intensity was similar between the two sites. In addition, they showed 
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that the acceleration values between the wrist and hip locations are different, but when site 

specific equations are developed, the intensity outcomes are similar.

While the main purpose of the current study was to develop regression models to be used 

with the ActiGraph accelerometer worn on the dominant wrist; we can also draw some 

comparisons with previously developed hip models. Recently, our group used the exact 

same data set that was used in this study, to develop a two regression model for the hip 

location using the VA and VM (2) and then performed a validation study using the exact 

same unstructured PA data set used in this study (3). We found that during the unstructured 

PA validation study, the 2-regression models for the hip underestimated measured values by 

0.89–0.91 child-METs and had a RMSE of 1.50–1.55, which were the lowest of the hip 

models tested (3). In the current study, the wrist location had lower mean biases for 

predicting child-METs (0.11–0.21 child-METs) and lower RMSE (1.26–1.38), compared to 

the hip models we developed previously. To draw further comparisons we combined the 

previously published hip data (VA and VM hip 2-regression models) with the current wrist 

data (VA and VM wrist regression models). As shown by Hildebrand et al. (8), there were 

strong correlations between measured and predicted child-METs and time spent in SB and 

LPA, but the correlations were weak between measured and predicted time spent in MPA 

and VPA (see Table, Supplemental Digital Content 1, which shows the correlations between 

the measured and predicted values for child-METs and time spent in SB, LPA, MPA, and 

VPA during the unstructured PA measurement). When examining differences between the 

prediction methods for child-METs and time spent in SB, LPA, MPA, and VPA, the hip 

models were significantly different from the wrist models for child-METs and time spent in 

LPA and VPA (P<0.05). In addition, the wrist models yielded smaller (non-significant) 

errors than the waist models. (see Table, Supplemental Digital Content 2, which shows the 

measured and predicted values for energy expenditure and time spent in SB, LPA, MPA, 

and VPA during the unstructured PA measurement). Given that the same data sets were used 

for development and validation of the hip and wrist models we are able to directly compare 

how models develop for the wrist compared to those developed for the waist. This is an 

important and significant finding; it shows that placing the ActiGraph on the dominant wrist 

is potentially a better location than the hip for estimating child-METs and time spent in SB, 

LPA, MPA, and VPA.

A second outcome of the study is the comparison of cut-points developed using ROC 

analysis versus regression analysis. The current study found that the cut-points developed 

using the regression equations had lower mean biases (2.2 to 8.4%) than those developed 

using the ROC analysis (22 to 69%), for time spent in SB, LPA, MPA, and VPA. In 

addition, the ROC cut-points were significantly different from measured time spent in VPA 

and MVPA and also provided higher estimates compared to the regression model cut-points 

of VPA and MVPA, which were not significantly different from measured values. The 

choice of which cut-points to use has implications for PA researchers looking to quantify 

MVPA or estimate the prevalence of those meeting the PA recommendation. Our study is in 

agreement with Schaefer et al. (17) who used ROC and regression analyses to establish PA 

cut-points for the wrist using the Actical accelerometer. They then used a free-living sample 

to estimate the minutes of MPA and VPA and percent of participants meeting the PA 

recommendation of 60 minutes per day using both methods. They found that the cut-points 
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developed using ROC analysis gave higher values, compared to the linear regression model 

for time spent in MPA (116.6 vs 71.4 min, respectively) and VPA (24.1 vs 11.8 min, 

respectively) and the percent of individuals meeting the PA recommendation (97.8% vs 

75.8%, respectively). However, a limitation of this study was that they did not have a gold 

standard for actual time spent in intensity categories, so it is unclear from the study of 

Schaefer et al. (17), which values were correct. Based on the results of the current study, and 

those of Schaefer et al. (17) it is recommended that ROC analyses not be used for the 

development of cut-points as they appear to increase the prediction error.

The current study used the wrist location for predicting child-METs and time spent in SB, 

LPA, MPA, and VPA of youth, using the ActiGraph accelerometer. As previously 

mentioned, the 2008–2011 NHANES changed their protocol to use the (non-dominant) wrist 

location instead of the hip location. This change will allow for improved wear time 

compliance and also the ability to track sleep variables. However, one complicating issue is 

that previous studies in adults and children have not consistently used the dominant or non-

dominant wrist location. Esliger et al. (5) showed that both the right and left wrists could be 

used to predict PA intensity and the accelerometer output had similar correlations with 

measured energy expenditure (left wrist, r = 0.86 and right wrist, r = 0.83). Conversion of 

accelerometer output from the non-dominant to dominant wrist location, however, is 

probably impossible due to differences in how activities are performed between the 

dominant and non-dominant hands. Future work needs to compare the difference between 

the dominant and non-dominant wrists for prediction accuracy of energy expenditure and 

time spent in SB, LPA, MPA, and VPA. At this time, it is unclear which wrist location 

should be used, although we found promising results with the dominant wrist.

This study has several strengths. A large sample of youth was included in both the 

development and the unstructured PA validation, and both settings used indirect calorimetry 

as a criterion measure of energy expenditure. The study sample also had a wide range of 

ages, BMI levels, and racial and ethnic backgrounds. Additionally, the models developed are 

easily applied to existing data sets. Limitations of the study include limited vigorous 

intensity PA used to develop the models, and a restriction of unstructured PA activities due 

to being constrained to the college campus or school campus. Lastly, due to our use of the 

dominant wrist, the models developed here cannot be directly applied to the NHANES data; 

however other researchers using the dominant wrist can apply these methods.

In conclusion, this study highlights the use of an ActiGraph accelerometer worn on the 

dominant wrist. Compared to measured values, the VA and VM regression models, 

developed on the wrist accelerometer data, had insignificant mean bias for child-METs and 

times spent in SB, LPA, MPA, and VPA. In addition, the regression models appeared to be 

superior to the ROC cut-points developed for activity intensity classification. Lastly, the use 

of the wrist regression equations resulted in lower mean biases and RMSEs for estimates of 

child-METs and time spent in SB, LPA, MPA, and VPA, compared to previously developed 

hip models using the same structured activities and unstructured PA measurement methods. 

Future work is needed to investigate differences between the dominant and non-dominant 

wrist locations, and to explore pattern recognition models.
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Figure 1. 
Distribution of average time spent in sedentary behaviors (SB), light physical activity 

(LPA), moderate physical activity (MPA) and vigorous physical activity (VPA) during the 

unstructured PA measurement period for the Cosmed K4b2 (Measured), wrist vertical axis 

and vector magnitude Receiver Operator Characteristic cut-points (ROC-VA and ROC-VM, 

respectively), and the wrist vertical axis and vector magnitude regression models (REG-VA 

and REG-VM, respectively). *Significantly different from measured time (P<0.05).
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