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Abstract:  Accurate and efficient estimation of forest growth and live 

biomass is a critical element in assessing potential responses to forest 

management and environmental change. The objective of this study was 

to develop models to predict longleaf pine tree diameter at breast height 

(dbh) and merchantable stem volume (V) using data obtained from field 

measurements. We used longleaf pine tree data from 3,376 planted trees 

on 127 permanent plots located in the U.S. Gulf Coastal Plain region to 

fit equations to predict dbh and V as functions of tree height (H) and 

crown area (CA). Prediction of dbh as a function of H improved when 

CA was added as an additional independent variable. Similarly, predic-

tions of V based on H improved when CA was included. Incorporation of 

additional stand variables such as age, site index, dominant height, and 

stand density were also evaluated but resulted in only small improve-

ments in model performance. For model testing we used data from 

planted and naturally-regenerated trees located inside and outside the 

geographic area used for model fitting. Our results suggest that the 

models are a robust alternative for dbh and V estimations when H and 

                                                 
Project funding: This research was supported by the U.S. Department of 

Defense, through the Strategic Environmental Research and Develop-

ment Program (SERDP). 

The online version is available at http://link.springer.com 

C.A. Gonzalez-Benecke ( ) • Salvador A. Gezan 

Wendell P. Cropper Jr. • Timothy A. Martin 

School of Forest Resources and Conservation, P.O. Box 110410, Uni-

versity of Florida, Gainesville, FL 32611, U. S. A.  

Tel.: 352-8460851; Fax: 352-8461277; E-mail: cgonzabe@ufl.edu  

Lisa J. Samuelson  

School of Forestry and Wildlife Sciences, 3301SFWS Building, Auburn 

University, Auburn, AL 36849, U. S. A 

Daniel J. Leduc 

USDA Forest Service, Southern Research Station, Alexandria Forestry 

Center, 2500 Shreveport Hwy, Pineville, LA 71360, U. S. A 

Corresponding editor: Chai Ruihai 

 

CA are known on planted stands with potential for naturally-regenerated 

stands, across a wide range of ages. We discuss the importance of these 

models for use with metrics derived from remote sensing data. 

Keywords: Longleaf pine, diameter-height relationships, crown area, 

individual-tree stem volume, growth and yield modeling 

 

 

Introduction 
 
Forests are a significant proportion of the terrestrial biosphere 
and are important not only economically, but also for the ecosys-
tem services associated with forested landscapes (Thompson et al. 
2011; Goldstein et al. 2012). One important ecosystem service is 
carbon sequestration (McKinley et al. 2011). Forest biomes are a 
significant sink for sequestration of atmospheric CO2 with a 
potentially important role in climate change mitigation (Luys-
saert et al. 2008; Fahey et al. 2010). A standard method for as-
sessing forest productivity and carbon sequestration in pine 
dominated forests has been the use of growth and yield models 
(e.g. Gonzalez-Benecke et al. 2010, 2011). These models are 
typically applicable to closed canopy forests, but may be more 
difficult to apply to savannas and woodlands, particularly those 
with un-even aged tree populations.  

Individual tree biomass, stem volume and carbon content can 
be estimated with field measurements of stem diameter and 
height coupled with the application of allometric equations. The 
equations used for field-based tree biomass estimation typically 
include height and diameter as independent prediction variables 
(Satoo and Madgwick 1982). However, direct field measurement 
of a large number of individual trees is an expensive and time-
consuming process. LiDAR (light detection and ranging) is a 
technique well suited to characterizing trees and other measure-
ments through remote sensing (Lefsky et al. 2002; Roberts et al. 
2005; Andersen et al. 2006; Popescu 2007; Dean et al. 2009; Lee 
et al. 2009, 2010). In addition, satellite interferometry (Ulander 
et al. 1995) may also be used to characterize tree height profiles.  

Given a good algorithm for individual tree detection (Lee et al. 
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2010; Kaartinen et al. 2012; Li et al. 2012), remote sensing 
techniques, such as LiDAR, can be used to provide accurate tree 
height and crown area estimates (Nelson et al. 1988; Nakai et al. 
2010), and individual tree diameter in some cases (Popescu 2007; 
Dalponte et al. 2011). Here, LiDAR estimation of tree height can 
efficiently feed equations used to calculate biomass of a large 
number of trees. 

Longleaf pine savannas in the southern Coastal Plain are fire-
dependent ecosystems characterized by large canopy gaps (Jose 
et al. 2006). Remote sensing-based methods for individual tree 
volume estimates are particularly useful for savannas or wood-
lands that are far from canopy closure. Estimates of savanna 
biomass have included direct harvesting (Menaut and Cesar 1979) 
or measurements of individual tree diameters and heights applied 
to allometric equations (Chen et al. 2003; Sawadogo et al. 2010).  

The objective of this study was to develop models to predict 
longleaf pine tree diameter at breast height (dbh, cm) and mer-
chantable volume (V, m3). Our models are applicable to direct 
estimates of stem volume or forest carbon sequestration or as a 
component of individual-tree-based models of longleaf pine 
savannas (Drake and Weishampel 2001; Loudermilk et al. 2011) 
where tree height is the principal state variable that can be de-
rived from remote sensing or obtained from field measurements.  
 
 

Materials and methods  
 
Data description  

 
We used a dataset consisting of 127 permanent plots measured 
and maintained by the U.S. Forest Service’s Laboratory at Pine-
ville, LA (Goelz and Leduc 2001). Data were collected from 
regularly remeasured permanent plots in a combination of seven 
studies exploring the effects of spacing and thinning on longleaf 
plantations distributed through the Western Gulf Coastal Plain, 
U.S., from Santa Rosa County in Florida to Jasper County in 
Texas, representing a large portion of the current range of long-
leaf pine in the southern Coastal Plain (Goelz and Leduc 2001; 
Leduc and Goelz 2009).  

Total tree height (H, m), dbh, living crown width (CW, m) and 
V were measured on 3,420 trees. CW was measured in two 
opposite directions, and living crown area (CA, m2) was deter-
mined assuming tree crown shape as an ellipse. Tree stem vol-
ume outside bark (VOB, m3) was determined by measuring 
diameter outside bark and its height at 5.08 cm diameter taper 
steps along the bole from the stump to the 5.08 cm top. Tree 
stem volume inside bark (VIB, m3) was determined after estimat-
ing diameter inside bark at each diameter taper steps using an 
equation reported by Gonzalez-Benecke et al. (2013). Stand-
level variables including basal area (BA, m2⋅ha-1), number of 
trees per hectare (N, ha-1) and dominant height (Hdom, m) were 
determined for each plot to be used as additional independent 
variables in prediction equations. Site index (SI, m), defined as 
the Hdom at a reference age of 50 years, was calculated using an 
equation reported by Gonzalez-Benecke et al. (2012). In order to 
eliminate broken and malformed individuals, trees with form 

factor F = H/dbh (m·cm-1) less than 0.54 m·cm-1 and trees with F 
greater than 13.5 m·cm-1 were excluded. Hence, a total of 44 
trees were discarded from further analysis. 

From the whole dataset, 20 plots (16% of total) were randomly 
selected and removed to be used for model validation and the 
rest (i.e. 107 plots) were used for model fitting. The model vali-
dation and fitting datasets contained 425 and 2,951 trees, respec-
tively. In order to test the robustness of the models, an independ-
ent second source of validation data, that included stands planted 
outside the geographic range of the data was used. This dataset 
contains 469 trees measured in four stands on the U.S. Depart-
ment of Defense’s army base at Fort Benning, GA. Selected 
stands had ages of 12, 21, 64 and 87 years. The 12 year-old and 
21 year-old stands corresponded to plantations and the 64 year-
old and 87 year-old stands were naturally regenerated.  In each 
stand, four 0.04 ha inventory plots were measured and H and dbh 
recorded for all 469 trees (the total number of trees measured per 
each stand was 149, 292, 15 and 13, respectively) and CW was 
recorded in 120 trees (all trees were measured in the 64 and 87 
year-old stand and trees in younger stands were subsampled and 
included 44 and 48 trees for ages 12 and 21 year-old stands). In a 
subset of 11 trees (5 from the 21 year-old stand, three from the 
64 year-old stand and three from the 87-year-old stand), stem 
volume over bark was directly measured by destructive harvest-
ing the trees and measuring bole diameter over bark at 2 m steps 
from stump to a minimum diameter of 5 cm. Stand-level vari-
ables BA, N, Hdom and SI were also calculated for each plot. 
Details of tree and stand characteristics of the three datasets are 
shown in Table 1. General relationships between dbh and H, CA, 
dbh and VOB are shown in Fig. 1. 

 

 
 

Fig. 1. Relationships between total tree height (H) and crown area (CA) 

with stem diameter outside bark at 1.37 m height (dbh) (a, b) and stem 

volume outside bark (VOB) (c, d) for the model development dataset. 

 

Model description 

 
Data from permanent plots with repeated measures, such as the 
one used in this study, often suffer from within-plot and temporal 
correlation (Gregoire et al. 1995). In order to address this poten-
tial problem of autocorrelation, linear mixed models were fitted 
to the data by including in the model a random effect of plot (to 
model spatial correlation) and by specifying an autoregressive 
error structure (to model temporal correlation). The models fitted 
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to estimate dbh and V corresponded to a modified version of the 
model proposed by Nakai et al. (2010), as shown below: 
 

1321 1
CA)ln()37.1Hln()dbhln( ε++⋅+−⋅+=

j
paaa         (1) 

 

2321 2
CA)ln(H)ln()Vln( ε++⋅+⋅+=

j
pbbb                       (2) 

  
where a1 to a3 and b1 to b3 are curve fit parameters. The random 
effects  

1j
p  and 

2j
p  are effects associated to the jth plot, with 

pji ~ N(0, σpi
2), where σpi

2 corresponds to the variance between 
plot effects for the dbh and the V models. The error terms ε1 and 
ε2 were modeled assuming and autoregressive error structure of 
order one, with εi ~ N(0, σi

2·ρi
d), where σi

2 is the residual vari-
ance, ρi is the year-to-year temporal correlation and d is the lag 
(in years) between consecutive measurements. 

In addition to the explanatory variables H and CA, stand-level 
variables were included as covariates into the model in order to 
improve the general equation. The general model used was: 

36dom54
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 where, a1 to a6 and b1 to b6 are curve fit parameters, and as 
before, 

3j
p  and 

4j
p  are the random plot effect terms 

associated to plot measurements, and ε3 and ε4 were modeled 
using an autoregressive error structure of order one as indicated 
earlier. 

Stand age was not included as a stand-level covariate as it was 
highly correlated with Hdom. Also, BA was not included as its 
calculation depends on dbh values, which are assumed to be 
unknown. For the same reason other stand parameters that de-
pend directly on BA, as do stand density index and quadratic 
mean diameter, were not considered in the general model. For 
comparison, we also fitted the models presented in Eq. 1 and 2 
without CA as a predicting variable, resulting in local models for 
dbh and V that only rely on H as the predictive variable.  

 

Table 1. Summary of individual-tree and stand-level characteristics for measured longleaf pine 

Model development dataset 

(n = 2,951) 

Model validation dataset inside geo-

graphical range (n = 425) 

Model validation dataset outside geographi-

cal range (Fort Benning) (n = 469) 

Variable 

Mean SD Min. Max.  Mean SD Min. Max.  Mean SD Min. Max.

Age  31.9   8.2   20.0   45.0    31.6  7.9  20.0  45.0  28.7 25.5 12 87

dbh  21.3   8.3   4.1   46.5    21.1  7.7  4.3  40.4  16.1 12.1 2.5 57.4

H  18.5   4.2   4.3   27.4    18.4  4.1  4.6  25.9  12.4 7.0 2.4 32.4

CW  3.9   1.8   0.6   11.0    3.8  1.6  0.6  9.3  3.6 268 0.8 15.0

CA  14.4   13.6   0.3   94.3    13.3  11.1  0.3  67.9  15.0 28.2 0.4 175.0

VOB  0.45   0.37   0.00   2.01    0.43  0.32  0.00  1.33  0.82 0.97 0.03 2.95

N  923   495   49   2,056    899  506  204  2,145  819 795 50 2,150

BA  24.7   6.9   6.7   47.6    25.1  6.2  11.9  39.6  14.2 6.3 4.5 24.2

Hdom  20.7   3.0   14.9   26.9    20.5  2.9  15.5  26.4  18.3 8.5 8.7 32.4

SI  27.0   2.2   21.3   33.6    26.8  2.4  21.5  33.3  22.2 3.3 13.5 27.4

Age: stand age (yr.); dbh: average diameter at 1.37 m height (cm); H: average tree height (m); CW: average tree crown width (m); CA: average tree crown area 

(m2); VOB: average stem volume outside bark (m3); N: trees per hectare (ha-1); BA: stand basal area (m2 ha-1); Hdom: average height of dominant and codominant 

trees (m); SI: site index at base age of 50 yrs. (m);  SD: standard deviation; n: number of trees.  Note: At Fort Benning, n = 120 for CA and n = 11 for VOB. 

 

Model validation 
 
The predictive ability of the equations previously described, 
including the reduced local model without CA, was compared 
against the data from the plots selected from the validation data-
base. The models were also evaluated against the data from the 
four stands in Fort Benning, GA. In all cases, four measures of 
accuracy were used to evaluate the goodness-of-fit between 
observed and predicted (simulated) values for each variable from 
the model validation dataset. These were: (1) mean absolute error 
(MAE); (2) root mean square error (RMSE); (3) mean bias error 
(Bias); and (4) coefficient of determination (R2) (Fox 1981; 
Loague and Green 1991; Kobayashi and Salam 2000).   

All statistics were obtained using SAS 9.3 (SAS Inc., Cary, 

NC, USA). The procedure MIXED was used in order to model 
spatial and temporal correlations, and statistical comparison of 
fitted models was done using a likelihood ratio test. The variance 
inflation factor (VIF) was calculated to detect multicollinearity 
between predicting variables, discarding all variables included in 
the model with VIF larger than 5 (Neter et al. 1996).   
 

 
Results 
 
Model Fitting 
 
The covariance structure estimated from the analysis indicated a 
significant spatial and temporal correlation for all dbh, VOB and 
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VIB models. The year-to-year residual correlation values ranged 
from 0.85 to 0.99 where the largest values were obtained, as 
expected, for dbh (Table 2). The average relative magnitudes of 
the plot variance components (in relation to the error component) 
showed moderate levels of the spatial component but important 
changes across models. The largest relative plot components 
were found on models that did not depend on CA or any stand-
level variable (i.e. models dbh1, VOB1 and VIB1), reflecting the 

effect of these extra factors on explaining additional between 
plot variability. 

The prediction equations and parameter estimates for planted 
longleaf pine trees are presented in Table 3. All parameter esti-
mates were significant at p <0.001. Parameter estimates for 
intercepts in all equations (a1, b1 and c1) include the correction 
proposed by Snowdon (1991) for logarithm transformation of the 
response variable.  

 
Table 2. Variance components and correlation estimates from fitted models of dbh and stem volume predicted from tree height and stand characteristics 

for planted longleaf pine trees (n = 2,951) 

Model 
Covariance 

Component 

Parameter 

Estimate 
SE p-value 

dbh1 σp
2 0.031549 0.004655 < 0.0001 

 ρ 0.988316 0.000776 < 0.0001 

 

 

)37.1Hln()dbhln( 21 −⋅+= aa  

σ2 0.037139 0.001473 < 0.0001 

dbh2 σp
2 0.002741 0.000635 < 0.0001 

 ρ 0.905937 0.008053 < 0.0001 

 

  

CA)ln()37.1Hln()dbhln( 321 ⋅+−⋅+= aaa  

σ2 0.013623 0.000463 < 0.0001 

dbh3 σp
2 0.007011 0.001860 < 0.0001 

 ρ 0.954079 0.005971 < 0.0001 

 

 
(SI)ln)Hln(

N)ln(CA)ln()37.1Hln()dbhln(

6dom5

4321

⋅+⋅
+⋅+⋅+−⋅+=

aa

aaaa
 

σ2 0.015963 0.000818 < 0.0001 

VOB1 σp
2 0.094202 0.014834 < 0.0001 

 ρ 0.974914 0.001870 < 0.0001 

 

 

H)ln()Vln( 21OB ⋅+= bb  

σ2 0.125801 0.005271 < 0.0001 

VOB2 σp
2 0.006006 0.001363 < 0.0001 

 ρ 0.849064 0.011258 < 0.0001 

 

 CA)ln(H)ln()Vln( 321OB ⋅+⋅+= bbb  

σ2 0.050265 0.001521 < 0.0001 

VOB3 σp
2 0.002819 0.000975 0.0019 

 ρ 0.875927 0.009473 < 0.0001 

 

 
(SI)ln)Hln(

N)ln(CA)ln(H)ln()Vln(

6dom5

4321OB

⋅+⋅
+⋅+⋅+⋅+=

bb

bbbb
 

σ2 0.049234 0.001584 < 0.0001 

VIB1 σp
2 0.108387 0.017007 < 0.0001 

 ρ 0.976026 0.001762 < 0.0001 

 

H)ln()Vln( 21IB ⋅+= bb  

σ2 0.141412 0.005899 < 0.0001 

VIB2 σp
2 0.006982 0.001592 < 0.0001 

 ρ 0.852428 0.011022 < 0.0001 

 

  

CA)ln(H)ln()Vln( 321IB ⋅+⋅+= bbb  

σ2 0.055810 0.001698 < 0.0001 

VIB3 σp
2 0.003301 0.001141 0.0019 

 ρ 0.879683 0.009257 < 0.0001 

 
(SI)ln)Hln(

N)ln(CA)ln(H)ln()Vln(

6dom5

4321IB

⋅+⋅
+⋅+⋅+⋅+=

bb

bbbb
 

σ2 0.055202 0.001793 < 0.0001 

dbh: diameter outside-bark at 1.37 m height (cm); H: total tree height (m); CA: average tree crown area (m2); VOB: stem volume outside-bark up to 5.08 cm diame-

ter limit (m3); VIB: stem volume inside-bark up to 5.08 cm diameter limit (m3); N: trees per hectare (ha-1); Hdom: average height of dominant and codominant trees 

(m); SI: site index at base age of 50 yrs. (m). σp
2 is the plot variance component; ρ is the year-to-year residual temporal correlation; and σ2 is the error variance.  

 
The model that estimates dbh using H as the only dependent 

variable (local model dbh1) had a coefficient of variation (CV, 
RMSE as a percentage of observed mean value) of 18.4% and R2 
of 0.77 (Table 3). When CA was included into the model (local 
model dbh2), the fit of the model was improved considerably 
reducing CV to 12.1% and increasing R2 to 0.90. When stand 
parameters N, Hdom and SI were also included into the model 
(general model dbh3) all variables were significant in the final 
model (Eq. 3). This final general model showed little 
improvement when compared with the local model dbh2 (CV of 
11.1% and R2 of 0.92 (Table 3). The parameter SI had a positive 

effect on dbh (positive value of parameter estimate): as site 
productivity increased, trees had larger dbh for any given H and 
CA. Contrary, the parameters N and Hdom had a negative effect 
on dbh (negative value of parameter estimates): in stands with 
higher stand density or in older stands, trees had smaller dbh for 
any given fixed value of H, CA and SI. In all cases 
multicollinearity between explanatory variables was small (VIF 
< 3.37; data not shown). 

The models that estimate VOB and VIB using H as the only 
independent variable (local models VOB1 and VIB1, respectively) 
had an R2 of 0.78 and 0.77, respectively (Table 3). The fit of 
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both models improved when CA was included (local models 
VOB2 and VIB2), reducing CV by about 38% compared to models 
VOB1 and VIB1, and increasing R2 to 0.91 and 0.92, respectively. 
Similar to the dbh3 model, all stand-level variables were 
significant in the final general model (Eq. 4). These final general 
models VOB3 and VIB3 showed little improvement when 

compared with local models VOB2 and VIB2 (Table 3). The 
parameters N, Hdom and SI had a negative effect on VOB and VIB: 
as stand density and site productivity increased, likely due to 
tapering changes, trees had smaller V for any given fixed value 
of H and CA. In all cases multicollinearity between explanatory 
variables was small (VIF < 3.54; data not shown). 

 
Table 3. Parameter estimates and fit statistics of equations for predicting dbh and stem volume from height and stand characteristics for planted longleaf 

pine trees (n = 2,951) 

Model Parameter
Parameter

estimate 
SE R2 RMSE 

CV 

(%)

dbh1 a1 * 0.403079 0.032711 0.771 3.93 18.39

 
)37.1Hln()dbhln( 21 −⋅+= aa  

a2 0.970048 0.009821    

dbh2 a1 * 0.342191 0.027786 0.901 2.59 12.11

 a2 0.804174 0.011660    

 

  

CA)ln()37.1Hln()dbhln( 321 ⋅+−⋅+= aaa  

a3 0.185289 0.003761    

dbh3 a1 * 0.288848 0.204670 0.916 2.38 11.11

 a2 0.930729 0.015051    

 a3 0.132246 0.004031    

 a4 -0.065363 0.005838    

 a5 -0.337178 0.026633    

 

  

(SI)ln)Hln(

N)ln(CA)ln()37.1Hln()dbhln(

6dom5

4321

⋅+⋅
+⋅+⋅+−⋅+=

aa

aaaa
 

a6 0.393273 0.058204    

VOB1 b1 * -9.944543 0.078449 0.784 0.17 38.21

 

 

H)ln()Vln( 21OB ⋅+= bb  b2 3.123691 0.024536    

VOB 2 b1 * -9.686492 0.062915 0.909 0.11 24.84

 b2 2.661325 0.025422    

 

  

CA)ln(H)ln()Vln( 321OB ⋅+⋅+= bbb  

b3 0.372844 0.007370    

VOB 3 b1 * -6.480444 0.308427 0.919 0.10 23.38

 b2 2.953958 0.031336    

 b3 0.327533 0.008107    

 b4 -0.092607 0.011486    

 b5 -0.820639 0.053347    

 

 
(SI)ln)Hln(

N)ln(CA)ln(H)ln()Vln(

6dom5

4321OB

⋅+⋅
+⋅+⋅+⋅+=

bb

bbbb
 

b6 -0.259927 0.087629    

VIB1 b1 * -10.531556 0.082652 0.768 0.14 41.48

 
H)ln()Vln( 21IB ⋅+= bb  

b2 3.216861 0.025772    

VIB2 b1 * -10.270262 0.066367 0.902 0.09 27.02

 b2 2.729643 0.026808    

 

  

CA)ln(H)ln()Vln( 321IB ⋅+⋅+= bbb  

b3 0.395527 0.007778    

VIB 3 b1 * -6.960066 0.328228 0.913 0.08 25.43

 b2 3.025198 0.033191    

 b3 0.346722 0.008570    

 b4 -0.100300 0.012157    

 b5 -0.833450 0.056431    

 

 
(SI)ln)Hln(

N)ln(CA)ln(H)ln()Vln(

6dom5

4321IB

⋅+⋅
+⋅+⋅+⋅+=

bb

bbbb
 

b6 -0.264805 0.093337    

dbh: diameter outside-bark at 1.37 m height (cm); H: total tree height (m); CA: average tree crown area (m2); VOB: stem volume outside-bark up to 5.08 cm 

diameter limit (m3); VIB: stem volume inside-bark up to 5.08 cm diameter limit (m3); N: trees per hectare (ha-1); Hdom: average height of dominant and codominant 

trees (m); SI: site index at base age of 50 yrs. (m); SE: standard error; R2: coefficient of determination; RMSE; root mean square error; CV: coefficient of variation 

(100·RMSE/mean). For all parameter estimates: p < 0.001.  Note: Parameters estimates for a1 and b1 include the correction proposed by Snowdon (1991). 

 
 
Model validation 
 
The relationship between predicted and observed values of VOB 
and dbh using the local models, that only depends on H (local 
models VOB1 and dbh1; Fig. 2a and 2b, respectively), showed a 

tendency to underestimate trees with VOB and dbh larger than 
about 1 m3 and 30 cm, respectively. When CA was included in 
the local models the relationship between observed and predicted 
values improved considerably (local models VOB2 and dbh2; Fig. 
2c and 2d, respectively) and there was no important departure in 
residuals. When stand parameters N, Hdom and SI were also 
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included into the local models VOB2 and dbh2, the relationship 
between observed and predicted values resulted in little 

improvement (general models VOB3 and dbh3; Fig. 2e and 2f, 
respectively).  

 

 
Fig. 2. Examples of validation of stem volume outside bark (VOB) (a, c, e) and stem diameter outside bark at 1.37 m height (dbh) (b, d, f) models using 

data inside geographical range of fitting plots. Observed v/s predicted (simulated) values for VOB and dbh using local model VOB1 (a) and dbh1 (b) (only 

use H as independent variable), local model VOB2 (c) and dbh2 (d) (use H and CA as independent variables), and general model VOB3 (e) and dbh3 (f) 

(use H, CA, N, Hdom and SI as independent variables). Grey lines represents linear regression fit. 

 
All model performance tests showed that agreement between 

dbh and V observed and estimated values improved when CA 
was included in the local model (Table 4). For example, using 
the validation dataset, MAE and RMSE for dbh estimations were 
reduced from 15 and 20% (local model dbh1) to about 9 and 
11% (local model dbh2), respectively; and R2 increased from 
0.71 to 0.90. In the case of VOB estimations, MAE and RMSE 
were reduced from 33 and 43% (local model VOB1) to 16 and 
24% (local model VOB2), respectively; and R2 increased from 
0.70 to 0.90. Bias was highly reduced when CA was included 
into the local model to estimate VOB (from 15% overestimations 
to 0.8% underestimations). Performance tests showed that dbh, 
VOB and VIB estimations that used H and CA as explanatory 

variables with little improved when stand parameters were added 
in the general models (Table 4). 

 
Model validation using external data 
 
When models to estimate dbh and VOB were evaluated using 
trees measured outside the geographical range of the model 
development dataset (i.e. Fort Benning, GA), across stand ages, 
there was no difference between observed and predicted values 
for any of the predicting models reported (p > 0.21, paired t-test). 
For dbh estimations, the model that only depended on H (local 
model dbh1; Table 4; Fig. 3a) shows a tendency to underestimate 
dbh, with larger absolute errors as tree dbh increased. Similar to 
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previous results, when CA was included the relationship between 
observed and estimated values improved considerably (local 
model dbh2; Table 4; Fig. 3c). As before, there was little im-
provement when stand parameters N, Hdom and SI were included 
in the local model dbh2 (general model dbh3; Table 4; Fig. 3e). 
Fig. 3b, 3d and 3f show plot of residuals (as a proportion of 
observed values) versus observed dbh; here, CA reduced residu-
als dispersion but stand-level parameters resulted in an increase 

in Bias for younger stands. For dbh estimations, when CA was 
included, Bias was reduced from 4.2 to 1.8% overestimations. 
For VOB estimations, the Bias reduction was from 15.3 to 5.7% 
underestimations when CA was included (Table 4). As only 11 
trees were measured for VOB at Fort Benning, the model valida-
tion was only carried out for means differences, and as stated 
previously, there was no difference between mean observed and 
predicted values for any of the models to predict VOB. 

 
Table 4. Summary of model validation statistics for dbh, VOB and VIB, estimations using validation datasets inside geographical range (n = 425) and 

outside geographical range (Fort Benning; n = 120 for dbh; n = 11 for VOB) of model development plots. 

Validation Dataset Model Independent Variables O P MAE RMSE Bias R2 

dbh1 H 21.15  21.06  3.16 (15.0) 4.16 (19.7) -0.08 (-0.4)  0.708  

dbh2 H, CA 21.15  20.94  1.90 (9.0) 2.44 (11.5) -0.20 (-1.0)  0.900  

dbh3 H, CA, N, Hdom, SI 21.15  21.01  1.83 (8.6) 2.31 (10.9) -0.14 (-0.7)  0.910  

VOB1 H 0.428  0.493  0.139 (32.6) 0.185 (43.3) 0.065 (15.3)  0.702  

VOB2 H, CA 0.428  0.424  0.070 (16.4) 0.104 (24.3) -0.003 (-0.8)  0.896  

VOB3 H, CA, N, Hdom, SI 0.428  0.427  0.066 (15.5) 0.097 (22.6) -0.001 (-0.2)  0.913  

VIB1 H 0.312  0.363  0.109 (34.9) 0.145 (46.7) 0.051 (16.5)  0.684  

VIB2 H, CA 0.312  0.310  0.054 (17.4) 0.082 (26.3) -0.002 (-0.7)  0.890  

Inside geographical 

range 

VIB3 H, CA, N, Hdom, SI 0.312  0.311  0.052 (16.5) 0.076 (24.5) 0.000 (-0.1)  0.908  

dbh1 H 16.80 17.51 3.27 (19.5) 4.51 (26.9) 0.71 (4.2) 0.920 

dbh2 H, CA 16.80 17.10 2.05 (12.2) 3.36 (20.0) 0.30 (1.8) 0.929 

dbh3 H, CA, N, Hdom, SI 16.80 18.10 3.17 (18.8) 4.00 (23.8) 1.30 (7.8) 0.916 

VOB1 H 0.824 0.698 0.193 (23.4) 0.327 (39.7) -0.126 (-15.3) 0.947 

VOB2 H, CA 0.824 0.777 0.251 (30.5) 0.381 (46.3) -0.047 (-5.7) 0.846 

Outside geographi-

cal range (Fort 

Benning) 

VOB3 H, CA, N, Hdom, SI 0.824 0.780 0.219 (26.6) 0.328 (39.8) -0.044 (-5.3) 0.877 

dbh: diameter outside-bark at 1.37 m height (cm); H: total tree height (m); CA: average tree crown area (m2); VOB: stem volume outside-bark up to 5.08 cm 

diameter limit (m3); VIB: stem volume inside-bark up to 5.08 cm diameter limit (m3); N: trees per hectare (ha-1); Hdom: average height of dominant and codominat 

trees (m); SI: stand site index (m); O: mean observed value; P: mean predicted value; n: number of observations; MAE: mean absolute error; RMSE: root of mean 

square error; Bias: absolute bias estimator; R2: coefficient of determination. Values in parenthesis are percentage relative to observed mean. 

Note: MAE, RMSE and Bias are presented in the same units as dependent variable.  

 
 
 
Discussion 

 
The set of prediction equations for longleaf pine trees reported in 
this study represents a useful tool for the study and management 
of the species. We anticipate that the main use of the equations 
reported here will be for cases when stem diameter is unknown, 
and tree height and crown width measurement s are available, as 
is the case when data are obtained though remote sensing, such 
as LiDAR or satellite interferometry. General and local models 
are presented for dbh, VOB and VIB estimations. The user should 
decide which model to use depending on data availability (stand 
and tree level) and the desired accuracy. 

The inclusion of CA into the models greatly improved the ac-
curacy of the predictions. The relationships between dbh, H, V 
and CA, which are shown in Fig. 1, help to explain that response: 
as longleaf pines age, they continue growing in diameter and 
volume and also developing larger crowns, but they tend to 
plateau in height. When H and CA are known, small improve-
ments were found when additional stand parameters were in-

cluded, implying that CA implicitly incorporates the effects of 
stand stocking and productivity on the allometric relationships of 
longleaf pine trees.   

The additional elements incorporated to model spatial and 
temporal correlations resulted in improved fittings, where, for all 
variables and models, a significant spatial components were 
noted, and, as expected, its relative importance decreased as 
other explanatory variables where included. In addition, impor-
tant year-to-year correlations were detected reflecting the non-
independent nature of this data. 

The observed relationship between dbh and H on longleaf pine 
trees indicated that dbh continues growing when H reached its 
asymptote (see Fig. 1a) and dbh estimations from known large H 
values had low accuracy (see Tables 1 and 2). Similar observa-
tions have been reported for other pine species, such as Pinus 
sylvestris (Kalliovirta and Tokola 2005) and Pinus radiata (Bi et 
al. 2012). The final model selected for dbh estimations showed 
similar fitting to non-linear models proposed by Bi et al. (2012), 
or a linear model (after root-square transformation) proposed by 
Kalliovirta and Tokola (2005). The inclusion of CA into the 
models to estimate dbh and V greatly improved the accuracy of 
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the predictions. Similar results were reported for Pinus densi-
flora and Cryptomeria japonica by Nakai et al. (2010) and for P. 

sylvestris, Picea abies and Betula pendula by Kalliovirta and 
Tokola (2005).  

 

 
 

Fig. 3. Validation of stem diameter outside bark at 1.37 m height (dbh) models using data outside geographical range of fitting plots (Fort Benning, GA), 

for stands of different ages. Observed versus predicted (simulated) values (a, c and e) and residuals (predicted-observed) versus observed values (b, d and 

f) of dbh using model dbh1 (a, b) (only use H as independent variable), local model dbh2 (c, d) (use H and CA as independent variables), and general 

model dbh3 (e, f) (use H, CA, N, Hdom and SI as independent variables). 

 
The stand parameters included in the models reported by Kal-

liovirta and Tokola (2005) for P. sylvestris showed only small 
improvements in model performance. In our general models, 
stand variables related to density (N) and site quality (Hdom and 
SI) were significant into the final model selected, but only mar-
ginally improved model fitting. 

When the equations to estimate dbh and VOB were tested in a 
dataset obtained in stands located outside the geographical zone 
of the data used for model fitting (i.e. Fort Benning, GA), the 
results support the robustness of the models that included CA, 
even in naturally-regenerated stands. When stand parameters 

were included into the general models, there were minimal fur-
ther improvements in dbh prediction for any stand age tested. 
Due to costs constrains, our validation of VOB with data from 
Fort Benning was carried out only on 11 trees with ages ranging 
from 21 to 87 years. 

Our results suggest that the fitted models are a robust tool for 
dbh and VOB estimations when H and CA measurements are 
available on planted stands (and perhaps naturally-regenerated as 
well) with non-overlapping crowns across a wide range of ages. 
One alternative for dbh and V estimation from H measurements 
consists on determining dbh by solving the inverse of an equa-
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tion fitted for H estimations from known dbh, and determining V 
by solving an individual tree-level equation fitted for V estima-
tions from dbh2 or dbh2·H, where dbh was previously solved 
from H. This option is not recommended as completely different 
response variables is the one minimized originally (i.e. H instead 
of dbh). For comparison purposes we estimated dbh and VOB 
using local and general equations reported by Gonzalez-Benecke 
et al. (2013). These estimates had similar Bias but, as expected, 
larger MAE and RMSE (data not shown). Even though in the 
general model stand-level parameters improved the fitting, the 
estimates still showed a considerable Bias for trees with dbh 
larger than about 40 cm (data not shown). Therefore, we do not 
recommend the use of this alternative estimation methodology. 
The same previous analysis applies to allometric equations to 
estimate biomass from dbh2 or dbh2·H.    

Forestry and forest ecology studies often produce estimates of 
the standing biomass or of carbon stocks and how these variables 
change over time. These estimates are relevant to assessments of 
economic value as well as non-market issues such as carbon 
sequestration. Climate change mitigation through reduced loss of 
stored carbon (Putz et al. 2008) and provision of other ecosystem 
services (Tallis and Polasky 2009) are important applications that 
require accurate stand estimations. Traditional estimates using 
allometric equations require time consuming measurements of 
large numbers of individual trees. Our models provide a straight-
forward method of estimating tree diameter, volume and later 
biomass without necessarily resorting to ground-based measure-
ments. Work is underway to develop tree-level biomass equa-
tions that use H and CA as independent variables. 

An ideal example of potential model applicability is in situa-
tions where LiDAR data have been collected for large areas of 
longleaf pine forests with no overlapping crowns (Loudermilk et 
al. 2011). In this case, a typical application of the model would 
be for estimations of stand-level volume and/or biomass. LiDAR 
techniques are now well developed for tree-level H and CA 
indirect measurements (Nilsson 1996; Popescu et al. 2003; Pope-
scu and Wynne 2004; Popescu 2007; Li et al. 2012). After apply-
ing equations 1 and 2, the dbh and V can be determined for each 
tree. To determine biomass, allometric equations, such as those 
reported by Baldwin and Saucier (1983), can be applied, as dbh 
and H, the independent variables of the biomass equations, 
would be known. After applying the appropriate scaling factor, 
stand level basal area, volume and stand- level biomass can be 
easily determined. 

In conclusion, the models reported in this study performed 
well for both independent validation datasets within and outside 
of the geographical range of the fitting dataset. The equations 
presented here provide a valuable tool for supporting present and 
future longleaf pine research and management decisions, and for 
facilitating the use of remote sensing data for quantifying long-
leaf pine stand structure and function. Work is underway to 
assess stand-level estimates using field-based and LiDAR data 
collected on the same stands. 
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