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Abstract: Grassland ecosystems cover around 40% of the entire Earth’s surface. Therefore, 

it is necessary to guarantee good grassland management at field scale in order to improve its 

conservation and to achieve optimal growth. This study identified the most appropriate 

statistical strategy, between partial least squares regression (PLSR) and narrow vegetation 

indices, for estimating the structural and biochemical grassland traits from UAV-acquired 

hyperspectral images. Moreover, the influence of fertilizers on plant traits for grasslands was 

analyzed. Hyperspectral data were collected from an experimental field at the farm Haus 

Riswick, near Kleve in Germany, for two different flight campaigns in May and October. 

The collected image blocks were geometrically and radiometrically corrected for surface 

reflectance. Spectral signatures extracted for the plots were adopted to derive grassland traits 

by computing PLSR and the following narrow vegetation indices: the MERIS Terrestrial 

Chlorophyll Index (MTCI), the ratio of the Modified Chlorophyll Absorption in Reflectance 

and Optimized Soil-Adjusted Vegetation Index (MCARI/OSAVI) modified by Wu, the Red-

edge Chlorophyll Index (CIred-edge), and the Normalized Difference Red Edge (NDRE). PLSR 

showed promising results for estimating grassland structural traits and gave less satisfying 
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outcomes for the selected chemical traits (crude ash, crude fiber, crude protein, Na, K, 

metabolic energy). Established relations are not influenced by the type and the amount of 

fertilization, while they are affected by the grassland health status. PLSR is found to be the 

best strategy, among the approaches analyzed in this paper, for exploring structural and 

biochemical features of grasslands. Using UAV-based hyperspectral sensing allows for the 

highly detailed assessment of grassland experimental plots. 

Keywords: grassland traits; spectroscopy; unmanned aerial vehicle (UAV); vegetation 

indices; partial least squares regression (PLSR) 

 

1. Introduction 

Grassland covers roughly 40% of the total world land area and this extension corresponds to 

approximately 52.5 million km2 [1]. Moreover, grassland ecosystems have extremely variable features, 

since they are strongly influenced by environmental conditions, such as topographic location, and by 

anthropogenic effects, such as (in)organic fertilizer application [2]. Therefore, efficient management plans 

of grasslands require insight into the health status and spatial variation in order to improve conservation 

and to achieve optimal growth. The planning of grassland management is even more important if 

investigated at the field scale, since the farmers need a guide for identifying the optimal time for fertilizer 

application and for predicting the ideal time of harvest [3]. Up until now, the schedule of grassland 

management was mainly organized according to qualitative information deducted from farmers’ 
experiences. The integration of quantitative and spatial data into the already existing management plans 

could significantly improve the health status of grasslands and the feeding quality of the final harvest. 

Currently, traditional field-based methods are usually preferred, even if their application is strongly 

restricted because they are time-consuming, destructive, and cannot be repeated often enough for high 

spatial resolution investigations over large areas [3,4]. Over the years, alternative techniques have been 

developed, and, nowadays, remote sensing is recognized as a suitable technique thanks to its ability to 

characterize the land surface in a fast and relatively cheap way. For these reasons, it has been widely 

used for estimating various biophysical and biochemical vegetation variables in grasslands, such as the 

Leaf Area Index (LAI) or chlorophyll [5–11]. The subsequent introduction of hyperspectral sensors has 

allowed researchers to improve the retrieval of grassland traits considerably [3–5]. Based on its narrow 

contiguous wavebands, hyperspectral sensors are more sensitive to vegetation variables since they provide a 

continuous reflectance spectrum of the vegetation target [4,12–16]. Nevertheless, the hyperspectral 

images include hundreds of spectral bands, many of which are strongly correlated. Consequently, it has 

been necessary to select a subset of data in order to decrease the dimensionality of the dataset and reduce 

redundant information. Therefore, the selection of the subsets can be carried out by taking into account 

the sensitivity of the vegetation variables to the spectral bands [17]. 

Further improvements could be achieved by adapting the spatial resolution to the size of the object 

investigated. In this way, the image captures the spatial detail needed to resolve important patterns in the 

field. Given the fine spatial scale of grassland biophysical traits, Unmanned Aerial Vehicles (UAV) can 

provide the necessary fine spatial scales because they can be flown at a low altitude. In order to analyze 
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biophysical traits of grassland plants, it is necessary to have the smallest possible resolution. Therefore, 

the application of Unmanned Aerial Vehicles (UAV) could provide a useful support, as they permit us 

to drastically reduce altitude in order to increase the spatial resolution and determine it based on the 

object size under examination and the aim of the research [18–20]. Furthermore, UAVs can provide 

improved access to more remote targets and can be deployed flexibly, eliminating problems due to 

clouds. For these reasons, the utility of hyperspectral cameras mounted on UAVs has been explored in 

a few papers [21]. Indeed, although the application of hyperspectral imaging and of UAVs is significantly 

widespread for quantitatively the Earth system, their combination is still rather limited. 

Two different statistical approaches are commonly used to analyze the relationship between spectral 

measurements and vegetation traits: univariate and multivariate regression models. The first approach is 

mainly based on a regression model between a so-called spectral vegetation index, a limited set of 

combined spectral bands, and the vegetation trait of interest, while the multivariate approach is based on 

the application of regression modeling between all observed spectra variables and a vegetation trait [22]. 

Depending on the spectral resolution of the sensor applied, the calculation of vegetation indices  

can be based on both narrow or broad spectral bands, obtaining different values for the same index. 

Nevertheless, when comparing the results of the two different approaches for computing the same index, 

some studies have shown that the use of narrow-band indices results in improved statistical relationships 

between biochemical and biophysical traits and vegetation indices [15,23]. Moreover, earlier studies 

have shown that narrow-band information of hyperspectral images is important for providing 

information for the estimation of biochemical and biophysical vegetation variables by applying the 

vegetation indices [14,15,23–28]. However, in this way, it is not possible to fully exploit the hyperspectral 

data potential of the large number of spectral bands available. For this reason, numerous researchers 

have focused their attention on Stepwise Multiple Linear Regression (SMLR), which takes advantage of 

almost all of the hyperspectral information available [7,29–34]. However, SMLR suffers from multi-

collinearity problems and the extensive spectral overlap of individual biochemical properties [35]. 

Partial least squares regression (PLSR) has been recognized as an alternative technique to SMLR, and it 

has been used earlier in the spectral data analysis for wheat [8] and heterogeneous grasslands [36,37]. 

Several studies have dealt with validity and accuracy in the analysis of grasslands using the  

two statistical methods described. However, no studies have been published on the evaluation of these 

techniques for estimating grassland variables relevant for forage quality assessment, such as crude ash 

or metabolic energy. In addition, grassland traits such as sodium are also relevant to assess the taste for 

feeding cattle. Thus, the utility of the two statistical methods for estimating biochemical traits  

in grasslands from spectral datasets and the potential influence of the type and amount of fertilization on 

these grasslands needs investigation. 

The overall objective of the present study is to investigate the utility of hyperspectral images acquired 

using an unmanned airborne platform for predicting vegetation traits in grasslands. Specific sub-objectives 

can be summarized as follows: 

1. Compare two regression methods based on vegetation indices and the PLSR approach in order 

to choose the best strategy for predicting bio-physical and bio-chemical plant traits of grasslands; 

2. Investigate the influence of the amount and the type of fertilization on grassland traits and the 

resulting spectral curve; 
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3. Evaluate the influence of the phenology of grasslands and the timing of spectral data collection 

on the established regression relations. 

2. State of the Art of UAVs Applications 

In the last few years, UAV applications in the civil field have become increasingly popular. Their use 

is becoming widespread in many scientific disciplines, such as earth observation and precision 

agriculture [38–39], in which high temporal frequency and detailed spatial resolution are necessary in 

order to improve the health status of soil and crops [40–42]. 

This has resulted in the development of suitable instrumentation for such purposes. With the recent 

technical electronic and optical improvements for aerial platforms and the devices mounted on them, the 

field has developed fast. Indeed, thanks to the evolution of the integrated circuits and radio-controlled 

systems, it is possible to adopt the use of UAVs [43]. They can fly at lower flight altitudes than traditional 

airborne platforms, allowing an increase in spatial resolution, reaching difficult-to-access areas and 

acquiring images in flexible data, eliminating cloud cover problems. Moreover, their large market 

penetration and continuous development have led to a drastic reduction in their cost [19]. 

Furthermore, the size and weight of electronic devices, used for capturing images, have been modified, 

and strongly decreased overall, so that they can be mounted on the UAVs [44]. Also, the introduction of 

small digital multispectral sensors has further allowed us to expand the areas investigated and to improve 

the results obtained [45], as shown in several previous studies for grassland monitoring. 

After comparing and assessing the potential of several multispectral sensors and small RGB digital 

cameras, the authors of [46] has shown the limitations of RGB cameras and the superiority of 

multispectral sensors in grassland traits estimation. In the same way, the authors of [47] has shown that 

there is a strong relationship between vegetation indices, calculated from multispectral images, and 

grassland bio-physical parameters, useful for temporal changes and, consequently, future crop growth 

monitoring. Subsequently, the introduction and the miniaturization of hyperspectral sensors has allowed 

us to obtain further improvements in grassland analysis [21]. 

For these reasons, various studies have applied the combination of UAVs and hyperspectral sensors in 

grassland mapping and monitoring and have documented its great potential for detecting water stress [48] 

and for estimating grassland biophysical traits [14,15,23–28,36,37]. 

3. Material and Methods 

3.1. Study Area and Field Data Collection 

The study area consisted of a grassland fertilization experiment located on the experimental farm 

Haus Riswick near Kleve in Germany (51°47′12.5″N, 6°10′08.7″E). The experiment consists of  

60 grassland plots with different levels of organic and inorganic fertilizer (Figure 1). Each plot had  

an area of 12 m2 with a length of 8 m and a width of 1.5 m. The plots were split in four groups and for 

each of them different types and levels of fertilization were applied (Figure 2). In particular, a comparison 

was made between an inorganic fertilization (calcium ammonium nitrate) with six different levels (0, 

85, 115, 170, 230, and 340 kgN/ha) and an organic fertilization with three different levels (170, 230, and 

340 kgN/ha). The choice of the fertilizer levels was planned based on the customs of German farmers. 
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In Germany, farmers normally are allowed to apply 170 kg·N·ha−1 in the form of organic manure and 

only the maximum of 230 kg·N·ha−1 under special conditions (no grazing). Therefore, these two levels 

were tested in the grassland experiment, with an additional inflated level of 340 kg·N·ha−1. This high level 

of 340 kg·N·ha−1 is the maximal amount of inorganic nitrogen that can normally be taken up by grassland 

during a year in this countryside. To control the efficiency of the organic fertilizer, nitrogen-equivalent 

levels of inorganic nitrogen increasing from 0 up to 340 kg·N·ha−1 (by steps: 0, 85, 170, 230, 340 

kg·N·ha−1) were tested. Moreover, in order to study the effect of slurry on a grassland experiment, 

different amounts of slurry were applied for one (2012), two (2012 and 2013), and three (2012, 2013, 

and 2014) years. 

 

Figure 1. RGB ortho-mosaic of the experimental grassland plots on 15 May 2014, acquired 

using the Panasonic GX1 camera of the Wageningen UR Hyperspectral Mapping  

System (HYMSY). 

Two flight campaigns with a UAV-based system were carried out on 15 May 2014 and 14 October 2014. 

After the flights, the grassland height (H) was determined in the field using a grass height meter 

(Eijkelkamp, The Netherlands). Every plot was completely harvested using the Haldrup C-65 plot combine 

(Haldrup, Denmark) and vegetation traits were analyzed based on the harvested grassland material. The 

selection of the grassland traits was based on their relevance for the analysis of grassland forage quality 

(including nutrition and taste) and to which extent this can already be determined in situ in the field. 

First of all, the vegetation fresh biomass (FB) was determined, after which the samples were dried for 

24 h at 105 °C and the dry weight and dry matter (DM) were determined. Subsequently, the bio-chemical 

composition of the grassland was determined. Analysis of the collected material was carried out by 

Landwirtschaftliche Untersuchungs- und Forschungsanstalt Nordrhein-Westfalen (LUFA NRW) using the 
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following methods of the Verband der Landwirtschaftlichen Untersuchungs- und Forschungsanstalten 

(VDLUFA) [49]. The following grassland traits were determined: 

 Crude ash (CA): VDLUFA method book III, method No. 8.1.1 

 Crude protein (CP): VDLUFA method book III, No.4.1.1 

 Crude fiber (CF): VDLUFA method book III, No. 6.1.1 

 Sodium (Na): VDLUFA method book III/6, No. 10.8.3 

 Potassium (K): VDLUFA method book III/6, No. 10.8.3 

 Metabolic energy (ME): ME was calculated from CA, CP, and CF as follows [50]: 

 for harvest dates before 1 July: 

CACPCFkgMJME *0098.0*00483.00137.006.14)/(   (1) 

 for harvest dates after 30 June: 

CACPCFkgMJME *01335.0*00388.000686.047.12)/(   (2) 

 

Figure 2. Map of different types and levels of fertilization applied on the experimental 

grassland plots. The 60 plots were split into four groups of 15 plots and for every group the 

treatments were applied as indicated in the table. The black line is a measurement rail which 

is also shown in Figure 1. 

In order to take into account the influence of fertilizer type and amount, the datasets acquired during 

the two field work campaigns were integrated and three datasets were prepared: 

(1) all plots prepared with different levels of inorganic fertilizer for both May and October campaigns; 
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(2) all the data of all plots arranged with both inorganic and organic fertilizer for both May and 

October campaigns; 

(3) this dataset takes into account all the May campaign data related to all plots arranged with 

different levels of inorganic and organic fertilizer. 

The subsequent regression analysis was performed on all three datasets and then compared. Comparison 

of the datasets allows us to investigate the influence of fertilizer type (comparison of 1 and 2) and 

differences due to the growing season (comparison 2 and 3). 

3.2. UAV and Its Equipment 

The study area was surveyed using an octocopter UAV (Aerialtronics Altura AT8 v1A) equipped 

with a ground station for planning and control of the flight paths and all necessary hardware and software 

tools for its flight programming (Figure 3). 

 

Figure 3. The octocopter UAV Aerialtronics Altura AT8 v1A equipped with all necessary 

hardware and software tools for its control and programming. 

In order to acquire hyperspectral images, the Wageningen UR Hyperspectral Mapping System 

(HYMSY) was mounted under the octocopter [51]. HYMSY is a lightweight hyperspectral pushbroom 

system (2.0 kg) specifically designed for small UAVs and developed at Wageningen University and 

Research Centre. The sensor consists of a photogrammetric camera (Panasonic GX1), a global position 

system, and a hyperspectral camera, combining the PhotonFocus SM2-D1312 industrial camera and  

the Specim ImSpector V10 2/3 spectrograph. HYMSY operates over the wavelength range of 400–950 nm 
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with a spectral resolution of 9 nm. After processing of the imagery, HYMSY can deliver a RGB  

ortho-mosaic, Digital Surface Model (DSM), and a hyperspectral dataset. 

3.3. Hyperspectral Data Collection and Pre-Processing of Spectra 

Two flights with the Unmanned Aerial Vehicle (UAV) were made over the experimental grassland 

plots on 15 May 2014 and 14 October 2014. For both days, flights were carried out under clear sky 

conditions and with the same flight pattern, altitude, and speed. The flights were prepared by defining  

a set of way-points which covered the grassland experiment with three flight lines over the three rows 

of experimental plots (Figure 1). 

For the mapping flights, the UAV altitude and speed were programmed to obtain a Ground Sampling 

Distance (GSD) of 200 mm for the hyperspectral data (cross-track) and 20 mm for the aerial photos. 

Flights were made at a height of 70 m with a flight speed of 5 m/s. 

The acquired raw dataset was subsequently radiometrically calibrated, converted to surface reflectance, 

and geometrically corrected. Hyperspectral processing was divided into the following steps: conversion 

of the digital numbers into radiance spectra using laboratory calibration; conversion of the radiances into 

reflectance factor spectra using Spectralon panel data; and georeferencing the scanlines using ReSe 

PARGE software, produced by ReSe Applications Schläpfer and Remote Sensing Laboratories (RSL) 

of the University of Zurich [52]. Radiance was converted to reflectance in several steps. First, the scan 

lines were calibrated to the illumination conditions by taking ground-based HYMSY measurements  

of a 25% Spectralon reference panel acquired before and after the flight. These reference panel radiance 

spectra constituted two different datasets, which are separately analyzed. Both reference sets were used 

to transform all radiance values of the scan lines to reflectance values using a linear interpolation. This 

procedure allows us to linearly interpolate the radiance values through time in order to correct the 

irradiance changes, depending on the atmospheric conditions, during the UAV image acquisition. At this 

point, the two datasets of reflectance values are merged into one file in 16-bit ENVI BSQ format. The 

georectification and ortho-mosaicing of the aerial photos was carried out using PhotoScan Pro software 

(v1.0.0, Agisoft, St. Petersburg, Russia,) which involves the image orientation by extracting the tie point 

followed by the alignment of photos using block bundle adjustment [53–55]. In order to improve the 

georeferencing and tie point extraction, during the alignment step, it was essential to insert the 

coordinates of the ground control points (GCPs), measured with an RTK-GPS. More details on the 

calibration and processing procedures can be found in [52]. 

From the processed hyperspectral images of the two datasets, complete reflectance factor spectra were 

extracted for every plot of the grassland experiment by selecting the pixels within a region of interest 

(ROI). For every plot the ROI was defined according to the plot dimensions but taking into account a 

buffer of two pixels from the edge in order to exclude boundary effects. The selected spectra for each 

grassland plot at the two measurement dates were averaged, integrated, and analyzed in the following 

steps when computing the vegetation indices and the partial least squares regression technique. The 

average operation allowed us to minimize the noise in the reflectance spectra. 
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3.4. The Narrow-Band Vegetation Indices 

The use of vegetation indices is the most common method to predict vegetation variables, drastically 

reducing the dimensionality of the hyperspectral data set. For this study, it was preferred to compute 

narrow-band vegetation indices and not broad vegetation indices, in order to take into account the 

sensitivity of vegetation indices to the narrow spectral bands [15,23]. 

Narrow-band vegetation indices were calculated from the average reflectance spectra of each plot. 

Although additional vegetation indices present in previous studies [5,12–15,24–28,37] were analyzed, 

in this paper, only the indices that gave the best results are shown. In particular, the MERIS Terrestrial 

Chlorophyll Index (MTCI) [56], the ratio of the Modified Chlorophyll Absorption in Reflectance  

and Optimized Soil-Adjusted Vegetation Index (MCARI/OSAVI) modified by Wu [57], the Red-edge 

Chlorophyll Index (CIred-edge) [58,59] and the Normalized Difference Red Edge (NDRE) [60] were 

selected for the estimation of structural and biochemical traits. The equations and wavelengths of  

the selected four vegetation indices are shown in Table 1. 

Table 1. Equations and wavelengths of the selected vegetation indices. 

Index Formulation 

MTCI 
681709

709754

RR

RR




 

MCARI/OSAVI (Wu) 
  

)16.0/())(16.01(

)/()(2.0

705750705750

705750550750705750




RRRR

RRRRRR
 

CIred edge 
1

710

780 
R

R
 

NDRE 
720790

720790

RR

RR




 

Linear regression was performed in order to analyze the relationship between grassland traits and the 

vegetation indices. The choice of the pattern is strongly influenced by the distribution of data and, 

consequently, by the type of relationship between vegetation index and trait. Consequently, the assessment 

of the quality of the relationship was achieved by calculating the coefficient of determination (R2) and 

the root mean square error (RMSE). According to classification suggested by [27], we distinguish three 

classes: (1) strong correlation: R2 > 0.7; (2) moderate correlation: 0.5 < R2 < 0.7; and (3) weak 

correlation: R2 < 0.5 

3.5. Partial Least Squares Regression (PLSR) 

Partial least squares regression (PLSR) is a useful statistical multivariate regression technique  

for explaining the relationship between hyperspectral data variables, the independent variables (X), and 

grassland traits, the dependent variables (Y). Indeed, its goal is to predict the dependent variables (Y), 

selecting a limited number of new orthogonal factors (T) and a set of specific loadings (P) able to 

simultaneously both X and Y, in order to reduce the high dimensionality of the input  

dataset [8,22,33,36,61–64]. Thus, X is calculated by applying the following equation: 
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T
PTX *  (3) 

T is called the “score matrix” and it is composed by the latent variables (LVs), while P is called the 

“loading matrix”. It is important to underline that P is not orthogonal while T has to maximize the 

covariance between X and Y with the following property (Equation (4)): 

ITT
T *  (4) 

where I is the identify matrix. 

Finally, Y is estimated by applying the following equation: 

* * T
T B CY



  (5) 

where B is a diagonal matrix, which has regression weights as diagonal elements, and C is the “weight 
matrix” of the dependent variables. 

The goodness of fit of the PLSR model depends on the number of selected LVs. Typically, it increases 

until it reaches a certain number of LVs before declining again. For that reason, it is fundamental to 

select the optimal number of LVs for each model, which allow us to obtain the best quality [64–66]. In 

this study, the optimal number of LVs for each PLSR model per grassland trait was estimated based on 

the root mean square error (RMSE) for the leave-one-out cross-validation (LOOCV). The criterion to 

add an additional LV to the model was that it had to reduce the RMSE of LOO cross-validation  

with >2%. The RMSE of the LOO (RMSELOO) was computed using the following equation: 

 
n

yy
RMSE

ii

LOO

 


2

 (6) 

where 𝑦�̅� and yi represent the leave-one-out predictions and observed values of the traits under investigation, 

respectively. Indeed, the model was fine-tuned without taking into account the observations i. Subsequently, 

the values of these observation were predicted by applying this model. 

Although recent studies have shown that the optimal use of PLSR can be achieved by splitting  

the original dataset into a training dataset and an independent test set [67], in this work, the use of LOOCV, 

applied to a single calibration dataset, was necessary because we did not have a large enough experimental 

dataset to divide the samples into separate training and validation subsets. The assessment of the quality 

of the model was estimated using R2 between measured and predicted values from the LOO cross-

validation and the RMSELOO, while the usefulness and goodness-of-fit of calibration models were 

performed by residual predictive deviation (RPD), calculated as the ratio between the standard deviation 

of the reference dataset and the RMSE. On the contrary, there is not a specific statistical rule for setting 

the RPD thresholds and, for these reasons, in this paper, the commonly used classification in literature 

was adopted [51–52]. It involves three levels of classification: RPD < 3 is not useful because it means low 

predictive power; RPD > 3 is suitable for screening; RPD > 5 is suitable for detecting the accurate analysis 

(laboratory analysis). 

All regression analysis was done using R (R_Core_Team 2013), by applying the pls package [68] to 

the three sub-datasets defined before. 
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4. Results 

4.1. Grassland Traits 

As a first step, the correlation between the grassland traits under study was investigated for the analyzed 

traits of the May campaign (Table 2). Only the values for May are reported because the Pearson 

coefficients of the two analyses are nearly similar. The results show that the structural variables (height, 

fresh and dry biomass) are significantly correlated to each other because the Pearson correlation values 

are higher than 0.89. In contrast, the biochemical characteristics show a substantially lower correlation 

which is trait-dependent. For example, Na shows a low correlation with metabolic energy and crude 

fiber, a moderate correlation with K and crude ash, and a high correlation with crude protein. The 

correlation between structural traits and biochemical traits is moderate, except for Na and crude protein 

which show a low correlation. In addition, all traits are positively correlated except for metabolic energy 

which shows an inverse correlation with the other traits. 

Table 2. Pearson coefficient of selected structural and biochemical traits of grassland in the 

May survey. 

Traits Height 
Fresh 

Biomass 

Dry Matter 

Yield 

Crude 

Ash 

Crude 

Protein 

Crude 

Fibre 
Na K 

Metabolic 

Energy 

Height 1 0.92 0.89 0.59 0.32 0.76 0.19 0.68 −0.72 

Fresh Matter yield 0.92 1 0.94 0.59 0.34 0.79 0.22 0.66 −0.75 

Dry Matter 0.89 0.94 1 0.413 0.15 0.76 0.03 0.52 −0.74 

Crude Ash 0.59 0.59 0.41 1 0.81 0.45 0.70 0.89 −0.36 

Crude Protein 0.32 0.34 0.15 0.81 1 0.10 0.89 0.74 0.046 

Crue Fibre 0.76 0.79 0.76 0.45 0.10 1 −0.017 0.059 −0.98 

Na 0.19 0.22 0.03 0.70 0.89 −0.017 1 0.57 0.14 

K 0.68 0.66 0.52 0.89 0.74 0.059 0.57 1 −0.50 

Metabolic Energy −0.72 −0.75 −0.74 −0.36 0.04 −0.98 0.14 −0.50 1 

Harvest statistics of the structural and biochemical traits related to the May harvest are shown in Table 3. It 

shows that grassland biochemical characteristics have low variability, with the exception of Na. Metabolic 

energy shows the lowest coefficient of variation (CV) while K, crude fiber, and crude ash are also 

characterized by a small variability. 

Table 3. Summary statistics of the selected grassland parameters for the May harvest. (SD: 

Standard Deviation; CV: Coefficient of Variation). 

Statistics 
Height 

(cm) 

Fresh 

Biomass 

(kg/Plot) 

Dry Matter 

Yield  

(dt/ha) 

Crude Ash 

(g/kg) 

Crude Protein 

(g/kg) 

Crude 

Fibre (g/kg) 

Na 

(g/kg) 

K 

(g/kg) 

Metabolic 

Energy 

(MJ) 

Min 23.9 11.4 24.1 79 88 200 0.2 21.9 10.2 

Max 40.9 28.1 50.7 101 164.3 247.5 1.5 28.1 10.9 

Mean 33.9 20.9 37.8 89.1 112.4 232.3 0.5 25.5 10.5 

SD 4.8 5 7.4 6.5 22.6 14.9 0.4 1.7 0.2 

CV 0.1 0.2 0.2 0.07 0.2 0.06 0.6 0.06 0.02 
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Table 4 illustrates the harvest statistics of all traits from the October harvest. It shows that especially 

the variability of the biochemical grassland characteristics is relatively small, with the exception of Na. 

Analyzing more in depth, it is possible to see that the metabolic energy shows the lowest variability next 

to K, crude fiber, and crude ash. For the structural traits, grassland height has the lowest variation. 

Comparing Tables 3 and 4, it is apparent that the range of the grassland traits between the two harvest 

moments shows different patterns for the structural and biochemical traits. For all three structural traits, 

the range of values for October is significantly lower compared to May. In contrast, the biochemical 

traits are comparable, with the exception Na. This is also confirmed by Figure 4 presenting the effect of 

the applied fertilizer treatments on the level and variability of grassland traits. The influence of the type 

and amount of fertilization is clearly expressed and differs depending on the structural and biochemical 

traits under research and on the growth status of the grassland. The May data show the increase of 

structural trait values with the increase of the inorganic fertilization level until 230 kgN/ha; after that 

threshold, they have a small decrease again (Figure 4). The only biochemical feature with the same 

pattern of variation as the structural traits is crude fiber. On the contrary, the biochemical variables all 

increase their values with increasing amounts of inorganic fertilization. The metabolic energy pattern of 

variation deserves a separate mention. Indeed, its values decreased with the increasing inorganic 

fertilization until 230 kgN/ha, after which its value increased. Regarding the influence of organic fertilization 

treatments, all the structural and biochemical features have the same pattern, with the exception of 

metabolic energy, which shows a dip at 230 kgN/ha. 

The pattern of variation of the structural and biochemical traits of the grassland from the October 

observation under the different treatments is substantially different. Also, all of the structural traits show 

the same pattern of variation: under the influence of inorganic fertilization, structural traits increased, 

with the exception of a dip at 230 KgN/ha. Under the organic manure fertilization, they show an 

increasing pattern. On the contrary, it is not possible to identify a common pattern of variation for all the 

biochemical characteristics. The inorganic fertilizer shows the same influence on crude ash and crude 

protein, a pattern of variation which shows a decrease up to 115 kgN/ha followed by an increase. However, 

when considering the influence of the organic manure on crude ash and crude protein, it is possible to 

see that the pattern of variation is clearly different, where crude protein peaks at 230 kgN/ha while crude 

ash decreases. Metabolic energy, like potassium, is more or less constant over all treatments, while sodium 

shows variation independent of the amount of fertilizer treatment. 

Table 4. Summary statistics for the selected grassland features of the October harvest. (SD: 

Standard Deviation; CV: Coefficient of Variation). 

Statistics 
Height 

(cm) 

Fresh 

Biomass 

(kg/plot) 

Dry 

Matter 

Yield  

(dt/ha) 

Crude 

Ash 

(g/kg) 

Crude 

Protein 

(g/kg) 

Crude 

Fibre (g/kg) 

Na 

(g/kg) 

K 

(g/kg) 

Metabolic 

Energy 

(MJ) 

Min 15 6.2 11.3 88 131 270 0.1 22.6 9.7 

Max 19.7 15.2 27.1 100 183 298 0.9 26.1 9.9 

Mean 18.1 10.6 18.6 93.6 150.4 279.3 0.5 24.6 9.8 

SD 1.4 2.6 4.5 3.5 15 8.6 0.3 1.2 0.06 

CV 0.08 0.2 0.2 0.03 0.1 0.03 0.6 0.05 0.006 
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Figure 4. Influence of the type and the amount of fertilizer treatment on grassland traits and 

their standard deviations. 

The significance levels from applying a Student’s t-test between organic and inorganic fertilized plots 

in May, in October, and between May and October data are shown in Table 5. These results show that 

both grassland structural and biochemical traits are strongly influenced by the plant-growing season but 

not by the type of fertilizer. Moreover, the plant-growing season also influences the result of the 

Student’s t-test based on organic and inorganic fertilizer in May and October. 

Table 5. Significance level obtained by applying the t-test between organic and inorganic 

treatments in May, in October, and between May and October data. 

Traits 

Significance Level between 

Organic And Inorganic 

Fertilized (May) 

Significance Level between 

Organic And Inorganic 

Fertilized (October) 

Significance all Treatment 

Levels between May and 

October Data 

Height 0.35 0.67 <0.001 

Dry Matter 0.25 0.57 <0.001 

Fresh matter yield 0.31 0.62 <0.001 

Crude Ash 0.77 0.72 0.082 

Crude Protein 0.56 0.69 <0.001 

Crude Fibre 0.17 0.82 <0.001 

Na 0.69 0.62 0.82 

K 0.65 0.13 0.23 

Metabolic Energy 0.08 0.69 <0.001 
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4.2. Hyperspectral data 

For both the May and October data, the spectral variation within the acquired images is relatively 

small, especially in the visible part of the spectra, while it is more noticeable in the NIR part. The 

maximum and the minimum value of both average reflectance spectra are more or less the same  

and only in the NIR part is a small difference noticeable. Indeed, even if the red edge slopes do not show 

differences, the maximum value of the average reflectance spectra of May is slightly higher  

than the maximum value of the October profile, and this trend is confirmed in all of the NIR part expect 

for 950 nm, where the trend is reversed. In addition, in the NIR part, another difference can be observed: 

NIR reflectance increases with an increase in the wavelength in October, but it is spectrally flat in May. 

Also, the minimums of the average reflectance spectra are comparable; however, in the NIR region, the 

profile of October is slightly higher than the profile of May. Observing the spectral profile of the average 

of the three different organic levels for May and October surveys, the same trends can be recognized 

(Figure 5). Moreover, increasing the concentration of organic manure influences the overall level of 

reflectance with a maximum increase between 170 and 230 kgN/ha for the May dataset, while in 

October, this is between 230 and 340 kgN/ha. 

 

Figure 5. Average and standard deviation of the spectra for the three different levels of 

organic fertilization (170, 230, and 340 kgN/ha) of the May and October harvest. 

Figure 6 shows the correlogram between the average reflectance spectra of hyperspectral images and 

previously selected grassland traits for May. The trends of the two structural traits, height and fresh 

biomass, are highly comparable, and the NIR area is the most relevant region for these traits.  

In fact, the NIR area (700–950 nm) is sensitive to LAI, grassland structure, and canopy thickness of the 

vegetation and, therefore, the correlation with height and fresh biomass is relatively high. For the same 

reason, NIR is also the most important region for estimating metabolic energy, since it is inversely 
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proportional to the amount of green vegetation and, thus, the correlation is high but negative. Instead, 

crude protein needs a separate mention because the most interesting region of the spectra is the VIS area 

(400–700 nm), which is more sensitive to the absorption of chlorophyll at the leaf level. It turns out that 

the correlation between grassland traits and wavelengths is significantly influenced by the growth status 

of the grassland. This is also confirmed by the correlogram for the October harvest, which has lower 

correlations (<0.6) for all grassland traits. 

 

Figure 6. Correlogram between spectral variables of the hyperspectral dataset and height (H), 

fresh biomass (FB), crude protein (CP), and metabolic energy (ME) for the May harvest. 

4.3. Narrow-Band Vegetation Indices 

Based on the extracted average reflectance spectra for all the plots in the experiment (Figure 1), the 

selected narrow-band vegetation indices were calculated (Table 1). In order to investigate the influence 

of the fertilizer regime, the variation of the vegetation indices as a function of type and amount of 

fertilization was explored for both moments of harvest (Figure 7). The variation of the vegetation indices 

related to the different levels of inorganic fertilization is more or less the same within the same survey 

while it is different between the May and October campaigns. On the contrary, the variation of the 

vegetation indices under the influence of the organic manure is the same for all indices and for both 

campaigns. Indeed, for the May harvest, the value of the indices increases with an increase in the amount 

of fertilizer up to 170 kgN/ha, then it decreases. In contrast, all vegetation indices, computed from the 

October data as a function of inorganic fertilization, show a decreasing trend up to 115 kgN/ha and an 

increasing value after that point. Instead, the tendency of the vegetation indices as a function of the 

organic fertilization is totally different: it decreases at the value of 230 kgN/ha and then it increases 

again. The only exception is represented by MCARI/OSAVI, which shows a peak at 230 kgN/ha for the 

May campaign but not for the October survey. 

Table 6 summarizes the results of the linear relation between narrow-band vegetation indices  

and the grassland traits for two sub-datasets: (1) the integrated dataset of May and October and (2) the 

sub-dataset of May only. For both datasets, all organic and inorganic fertilization plots are included. 

Analyzing the R2 and RMSE values resulting from the linear regression models, a lot of variation 

between the grassland traits can be observed. In general, the variation in structural traits (height, fresh 

and dry biomass) could be better explained by the vegetation indices than the biochemical traits. For 

example, the R2 between height and MCARI/OSAVI was 0.599, while it was only 0.49 between crude 

fiber and NDRE. However, in general, R2 values for the biochemical grassland traits are considerably 
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lower (Table 6). For the structural traits, the highest correlation was observed for NDRE and 

MCARI/OSAVI for the May dataset. When the May and October datasets were combined, 

MCARI/OSAVI and CIred-edge produced the highest correlation. Overall, it can be stated that the relations 

are not influenced by the type of fertilization regime applied. On the contrary, the growth status of the 

grassland strongly on the R2 value. 

 

Figure 7. Scatterplot related to the influence of the type and the amount of fertilizer on 

selected narrow-band vegetation indices. 

 

Figure 8. Scatterplot of the best relationships between selected grassland traits and 

vegetation indices. The best results of the linear regression model for height, fresh matter 

yield, and crude protein were found in the integrated dataset of May and October, including 

both organic and inorganic fertilizers; the best result for Metabolic Energy was found instead 

in the May dataset, combining both organic and inorganic fertilized plots. 
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Table 6. Results of linear regression models between the selected narrow-band vegetation indices and grassland traits for the integrated  

sub-datasets of May and October and the sub-dataset of May, in both cases including all inorganic and organic levels of fertilization. 

 

Plots May Plots May and October 

Inorganic–Organic Inorganic–Organic 

MTCI MCARI/OSAVI CI RED-EDGE NDRE MTCI MCARI/OSAVI CI RED-EDGE NDRE 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2  RMSE R2 RMSE 

Height 0.45 2.62 0.56 3.32 0.39 3.90 0.58 3.25 0.4 6.52 0.599 5.38 0.598 5.40 0.4 6.40 

Dry Matter 0.47 2.94 0.51 3.86 0.43 4.35 0.57 3.85 0.36 5.19 0.57 4.29 0.53 4.66 0.38 5.06 

Fresh matter yield 0.36 3.82 0.45 5.19 0.30 5.57 0.46 4.85 0.35 8.86 0.55 7.31 0.47 7.62 0.38 8.70 

Crude Ash 0.07 4.54 0.25 5.76 0.036 6.53 0.14 6.15 0.0006 5.90 1E-05 5.90 0.040 5.78 0.0013 5.90 

Crude Protein 0.004 15.32 0.05 21.17 0.0019 21.96 0.04 21.27 0.13 24.75 0.14 24.62 0.30 22.22 0.084 25.36 

Crude Fiber 0.51 8.29 0.41 12.84 0.46 12.32 0.49 11.95 0.09 26.47 0.20 24.67 0.24 24.04 0.059 26.82 

Na 0.001 0.25 0.05 0.35 0.0024 0.36 0.13 0.36 0.001 0.33 0.015 0.32 0.0002 0.33 0.017 0.32 

K 0.18 1.18 0.31 1.53 0.12 1.73 0.28 1.56 0.27 1.39 0.32 1.35 0.20 1.46 0.31 1.36 

Metabolic Energy 0.51 0.12 0.42 1.18 0.50 0.17 0.46 0.18 0.07 0.37 0.19 0.35 0.22 0.34 0.05 0.38 
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Nevertheless, considering the classification suggested by [28], it is evident that there is a moderate 

relation between the grassland traits and the vegetation indices in both subsets, even if the results 

obtained for the structural traits of grassland are sufficiently promising. 

In reality, it is not possible to determine the best predictor, but the prediction ability of the vegetation 

indices depends on the feature investigated and the sub-dataset considered. Figure 8 illustrates the best 

results for some grassland traits, chosen as examples.  

The different shades of color are indicative of the variations: the green plots correspond to areas with 

the lowest values, while the red points are related to the regions characterized by higher values.  

 

Figure 9. Height variation within plots by applying the NDRE index on the acquired 

hyperspectral dataset of May. The plots with the lowest inorganic fertilization level (0 kgN/ha) 

are indicated with an arrow down and plots with the highest inorganic fertilization level (340 

kgN/ha) are indicated with an arrow up. 

 

Figure 10. Metabolic energy variation within plots by applying the CIred-edge index on the 

acquired hyperspectral dataset of May. 
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Two examples of grassland trait maps are presented in Figures 9 and 10, showing the vegetation 

variation within plots based on the linear regression relation for the best narrow vegetation index on the 

dataset of May for height and metabolic energy, respectively. Height is quit homogeneous over all plots 

(>34 cm), however, with clearly lower values (<30 cm) for the non-fertilized plots (see arrows down in 

Figure 9), while other lower fertilized plots also show decreased height values. However, highly 

fertilized plots can also have low height values (see arrows up in Figure 9), which can be explained by 

the falling over of grassland stems when the biomass gets too heavy for the stems to support it. For 

metabolic energy, a larger spatial variation can be observed between the plots (Figure 10). 

4.4. Partial Least Squares Regression (PLSR) 

Partial least squares regression (PLSR) was used for modeling the relationships between grassland traits 

and the average reflectance spectra of the two integrated datasets of plots (Table 7) in order to detect its 

prediction capacity and the influence of the type and the amount of fertilizer. 

Table 7. Overview of the results for the partial least squares regression method of dataset 

investigation of the integrated sub-dataset of May and October and the sub-dataset of May, 

in both cases including all inorganic and organic levels of fertilization. (RPD: Residual 

Predictive Deviation; RMSE: Root Mean Square Error; RMSELOO: Root Mean Square Error 

of the Leave-One-Out; LF: Latent Factors). 

Traits 

Plots May Plots May and October 

Inorganic–Organic Inorganic–Organic 

R2 RPD RMSE RMSELOO LF R2 RPD RMSE RMSELOO LF 

Height 0.7 2.22 2.29 2.71 3 0.86 4.0 2.13 3.15 6 

Dry Matter yield 0.63 1.97 3.81 4.48 3 0.83 3.78 2.95 4.48 6 

Fresh Matter yield 0.72 2.29 2.31 2.73 3 0.81 3.86 1.67 2.78 7 

Crude Ash 0.62 2.01 3.36 4.04 3 0.47 1.58 3.74 4.26 4 

Crude Protein 0.56 1.79 12.28 14.38 3 0.76 2.34 11.73 12.79 4 

Crude Fibre 0.46 2.08 6.07 12.16 5 0.78 2.48 11.21 12.75 4 

Na 0.39 2.19 0.16 0.28 5 0.21 1.26 0.26 0.28 4 

K 0.68 6.08 0.3 1.02 7 0.39 1.46 1.12 1.27 4 

Metabolic Energy 0.44 2.73 0.09 0.17 5 0.80 2.59 0.15 0.17 4 

On the basis of the classifications suggested by [28], it is possible to point out in which cases and 

with which grassland features a strong, moderate, or weak correlation is verifiable. The best results  

(R2 > 0.7) were obtained on the integrated datasets of May and October, both considering the levels of 

inorganic fertilization and all treatments of organic and inorganic fertilizations. Height, fresh biomass, 

dry matter, crude protein, crude fiber, and metabolic energy show a strong correlation, while the others 

(crude ash, K, Na) show a weak correlation (R2 < 0.5). The situation is different when the subject under 

investigation is the sub-dataset related to all levels of both organic and inorganic fertilizations  

of May. In this case, only height and fresh matter yield show a high correlation; crude fiber, Na,  

and metabolic energy have a low correlation, while dry matter, crude ash, crude protein, and K are 

characterized by a moderate correlation. 
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Figure 11. Scatterplot of the measured vs. predicted values for the best PLSR models 

presented for the integrated dataset of May and October and composed by both organic and 

inorganic fertilization plots (LOO = Leave-One-Out validation). 

 

Figure 12. PLSR coefficients for height, fresh matter yield, crude protein, and metabolic 

energy for the PLSR model of the integrated dataset of May and October, including both 

organic and inorganic fertilization plots. 

These results are also confirmed by the RPD. In fact, the best results were obtained in the same  

sub-dataset which showed a high correlation. In particular, in the integrated dataset of May and October, 

including all treatments of organic and inorganic fertilizations, height, dry matter, and fresh matter yield 

show a RPD suitable for screening; instead, all the other features are characterized by a low prediction 

value. The sub-dataset related to all levels of both organic and inorganic fertilization of the May dataset 

presents a RPD value suitable for laboratory analysis regarding K prediction. However, it is important 
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to emphasize that the low RPD values are not really small because they are around 2.0 in all sub-datasets. 

Figure 11 illustrates the scatterplot of measurement and predicted values for the same four variables 

selected in Figure 8. 

The PLSR model allowed us to identify and select the most important wavelengths for the variables 

under investigation. In particular, Figure 12 shows the wavelengths which mostly influenced predictions 

of height, fresh matter, crude protein, and metabolic energy. For each trait analyzed, the most interesting 

wavelengths are located in the first part (450–545 nm) of the visible part of the spectrum, except for 

metabolic energy, where 545 nm is the central wavelength of the region of interest. For crude protein, it is 

possible to identify another area of interest around 645 nm (545 nm–765 nm). 

5. Discussion 

In this paper, the best strategy for estimating structural and biochemical traits of grasslands from  

UAV-acquired hyperspectral images and the study of the type and the amount of the fertilization 

influence on their prediction capacity was explored. The application of nitrogen (N) to grassland is one of 

the major management tools which farmers have to influence yield and quality. Currently, there are 

knowledge gaps in how organic fertilizer application affects N balances in grasslands. Especially weather 

conditions can influence nitrogen mineralization of the organic N of slurry and thus influence the long-

term efficiency of slurry application [69]. Therefore, to study this long-term effect of slurry, a grassland 

experiment was planned by applying different amounts of slurry for the years of 2012, 2013, and 2014. The 

level of fertilizer applied was chosen based on the customs of German farmers. Moreover, this data 

combination seemed especially eligible for studying the best statistical strategy for the estimation of 

structural and biochemical traits from UAV-acquired hyperspectral images as the different levels of N 

fertilization provided a wide, well-defined range of both biomass yield and N concentration at every 

flying date.  

The hyperspectral images of an experimental grassland field at the farm Haus Riswick, near Kleve in 

Germany (Figure 1), were taken by applying an octocopter UAV, equipped with the Wageningen UR 

Hyperspectral Mapping System (HYMSY) (Figure 3) [51]. Two different flight campaigns were carried 

out, one on 15 May 2014 and the other on 14 October 2014. Following from the flight campaigns, the 

structural and biochemical grassland traits analysis was also carried out. 

The results of the grassland traits analysis in both campaigns showed different values for each of  

the parameters under investigation, but similar statistical relationships (Tables 2–4). The Pearson 

correlation among the structural traits (height, fresh and dry matter yield) is significantly high (>0.89), 

while among the biochemical traits, the correlation is substantially different depending on the feature 

considered (Table 2): for example, metabolic energy and crude fiber are negatively correlated (−0.98), 

while metabolic energy and crude protein show a very low correlation (0.04). Indeed, the metabolic 

energy has not been directly measured but it has been calculated by applying Equations 1 and 2, and 

surely this influences the correlation. On the contrary, the correlation between crude protein and crude 

fiber is quite low (0.10). Normally, when the analysis is carried out on a growing plant at subsequent dates, 

they are negatively correlated [70]. In this case, however, the grassland was only analyzed at one harvest 

date and, therefore, it is not possible to find a good correlation among them. This is also confirmed by 

the analysis of the N fertilization influence. Indeed, N fertilization increases crude protein concentration 
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while normally it has little effect on the crude fiber concentration since crude fiber depends mainly on 

temperature, day length, and light intensity (Figure 4). 

The use of a UAV, applied to adjust the spatial resolution to the size of the grassland field investigated, 

obtaining a GSD of 200 mm for the hyperspectral image, due to the reduced altitude (70 m) and speed (5 

m/s) compared with the traditional quotas and speed of the airplane [18–21]. Moreover, it also permits 

us to acquire images in flexible dates, exploiting the same sunny illumination conditions and eliminating 

problems due to clouds, in such a way that the imagery of two different periods can be compared. In 

addition, the possibility to mount a hyperspectral camera on it has allowed us also to fully take advantage 

of all the potentials of remote sensing, processing hundreds of narrow contiguous spectral bands to which 

the vegetation is sensitive [4,12–16]. Indeed, in general, quite homogeneous grassland vegetation cover 

has relatively small variations in reflectance properties of the canopy, which could be visible and analyzed 

only from a continuous reflectance spectrum. For these reasons, the field under investigation was analyzed 

by applying hyperspectral data. From this detailed spectral data, the variation in plant traits of grassland, 

caused by the type and the amount of fertilization (Figure 5), correspond to a relative small variability 

in reflectance values (Figure 6). Thus, in order to identify this variation, the narrow-band vegetation 

indices were calculated instead of broad vegetation indices, as shown in previous studies [14,15,24–28]. 

Narrow-band vegetation indices improve the results in processing the hyperspectral images since they 

allow us to exploit all of the information contained in the spectrum [14,15,24–28]. 

The selected narrow-band vegetation indices (Table 1) were computed separately on the three sub-datasets in 

which the original dataset was split in order to understand the influence of the type and the amount of 

fertilizer and the weight of the grassland growth status. Results showed that, although narrow vegetation 

indices detect the effects of the type and the amount of fertilization, their prediction ability is moderate. 

Indeed, the results of the two integrated sub-datasets, including both May and October data, but one 

characterized only by inorganic fertilization and the other by both organic and inorganic fertilization, are 

comparable. On the contrary, grassland health status influences the estimation ability of this technique 

(Table 6). This is perfectly in line with the results of Table 5. Indeed, the best results (higher correlation 

values) were obtained using a linear regression model on the data related to the more productive part of 

the season in May. This is justified by the distribution of the two datasets. Indeed, the distribution of data 

acquired during the two campaigns does not follow a specific linear relation, but it forms two separate 

clusters. For that reason, it is not possible to fix the best narrow vegetation index, since it depends on 

the grassland health status and the trait under analysis. In particular, the best estimator for grassland 

structural traits is MCARI/OSAVI [57], which shows a value > 0.5, while for the most biochemical 

features, it is CIred-edge [57,58] (Figure 8). Moreover, this approach shows promising results for estimating 

grassland structural traits, but not biochemical features, with the exception of metabolic energy. The UAV-

based set-up allows the delivery of spatial maps showing the spatial distribution of grassland traits following 

the application of this statistical approach (Figures 9 and 10). 

Like the narrow vegetation indices, the PLSR method was implemented on the same three sub-datasets, 

in order to analyze the consequence of the type and the amount of the fertilization and the influence of 

the grassland growing season. Also, in this case, results showed that the estimation ability of this 

approach is mainly influenced by the grassland growing season and not by the different type and the 

amount of fertilization. Indeed, the results related to the two different populations including both May 

and October, one with only the inorganic fertilization and the other with both organic and inorganic 
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fertilization, are comparable. Instead, comparing one of them with the sub-dataset related to the 

combined data of the inorganic and organic fertilization data of the May survey, it is possible to see that 

the method performs better with the integrated sub-dataset of May and October, with the exception of crude 

ash, Na, and K. Indeed, in the integrated sub-dataset of May and October, including both inorganic and 

organic fertilization, the R2 values are good (>0.7) for all characteristics, except for crude ash (0.4), Na 

(0.2), and K (0.3) (Table 7). Also, the value of the RPD is good (Table 7) while, in the sub-dataset of 

May including both inorganic and organic fertilization, the R2 values are quite high for all traits, and 

regarding the RPD, only K has a value higher than 3 (Table 7). Probably, the higher coefficient of 

determination of the May-October group is related to a higher number of LVs, which could be a sign for 

overfitting. In addition, the leave-one-out cross-validation approach as adopted in this study cannot be 

treated as a completely independent assessment of prediction quality. In order to generate a more robust 

validation and representative error estimates, a larger dataset is necessary so that a training and 

independent test dataset can be used to test the PLSR approach, as suggested in recent studies [67]. 

Therefore, for future application of the described approach, an additional evaluation using an 

independent test set would be required to assess the use of PLSR in practice. Moreover, other future 

applications could contemplate the PLSR use for integrating different vegetation indices over the whole 

spectrum in order to evaluate their performance and to compare them with the performance of the 

vegetation indices computed on pure spectral reflectance values. 

From the above results, the best strategy for detecting structural and biochemical features is 

hyperspectral remote sensing in combination with PLSR. The outcome from this study is in agreement 

with the results of previous research studies [3,13,37,38]. For example, [3] compared a vegetation index 

approach with PLSR for estimating fresh grassland biomass. In their study, PLSR gave a better retrieval 

of fresh biomass with a RMSECV of 2.10, slightly better compared to the findings from this study (Table 

7). However, for biochemical grassland traits, this finding gives new opportunities to map grassland 

quality before harvest, which is one of the requirements for the future adoption of precision farming 

practices in grassland management [3]. 

In order to confirm the results of this paper and achieve a schedule of precision grassland management, 

the approach presented in this study should be tested on other fields of different size and geographic 

position. In addition, more additional points need to be investigated. For example, a possible future 

development could consider more observations over the growing season, since this study has taken into 

account only the beginning and the end of the growth. 

6. Conclusions 

The results of this study have shown that hyperspectral data acquired from an UAV platform can be 

adopted to characterize both structural and biochemical traits of grasslands. Therefore, using the 

resulting spatial information, effective management measures can be taken to maintain the health status 

of grassland ecosystems. Moreover, the continuous reflectance spectrum of hyperspectral images has 

shown a high potentiality to describe the small variations in reflectance properties in the canopy of the 

quite homogeneous grassland vegetation cover. For these reasons, hyperspectral images have been very 

useful for detecting the small variability in reflectance values caused by the different types and the 

amounts of fertilization. 
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This study has also demonstrated that both statistical methods analyzed present promising results for 

estimating the structural traits, but not for assessing biochemical features. Indeed, only the PLSR model 

has displayed a good performance in both cases. In addition, both statistical approaches were not 

influenced by the amount and the type of fertilization. 

In conclusion, therefore, the PLSR model based on airborne hyperspectral imagery is the best strategy for 

estimating grassland traits, even if more studies are necessary to confirm the results obtained in this paper. 
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