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Abstract—Traffic matrices are required inputs for many IP net-
work management tasks, such as capacity planning, traffic engi-
neering, and network reliability analysis. However, it is difficult to
measure these matrices directly in large operational IP networks,
so there has been recent interest in inferring traffic matrices from
link measurements and other more easily measured data. Typi-
cally, this inference problem is ill-posed, as it involves significantly
more unknowns than data. Experience in many scientific and en-
gineering fields has shown that it is essential to approach such ill-
posed problems via “regularization.” This paper presents a new
approach to traffic matrix estimation using a regularization based
on “entropy penalization.” Our solution chooses the traffic matrix
consistent with the measured data that is information-theoretically
closest to a model in which source/destination pairs are stochasti-
cally independent. It applies to both point-to-point and point-to-
multipoint traffic matrix estimation. We use fast algorithms based
on modern convex optimization theory to solve for our traffic ma-
trices. We evaluate our algorithm with real backbone traffic and
routing data, and demonstrate that it is fast, accurate, robust, and
flexible.

Index Terms—Failure analysis, information theory, minimum
mutual information, point-to-multipoint, point-to-point, regular-
ization, SNMP, traffic engineering, traffic matrix estimation.

I. INTRODUCTION

T RAFFIC matrices, which specify the amount of traffic be-
tween origin and destination in a network, are required in-

puts for many IP network management tasks, such as capacity
planning, traffic engineering and network reliability analysis.
However, it is often difficult to measure these matrices directly
in large operational IP networks. So there has been a surge of
interest in inferring traffic matrices from link load statistics and
other more easily measured data [1]–[5].

Traffic matrices may be estimated or measured at varying
levels of detail [6]: between Points-of-Presence (PoPs) [4],
routers [5], links, or even IP prefixes [7]. The finer grained
traffic matrices are generally more useful, for example, in the
analysis of the reliability of a network under a component
failure. During a failure, IP traffic is rerouted to find the new
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path through the network, and one wishes to test if this would
cause a link overload anywhere in the network. Failure of a
link within a PoP may cause traffic to reroute via alternate links
within the PoP without changing the inter-PoP routing. Thus, to
understand failure loads on the network we must measure traffic
at a router-to-router level. In general, the inference problem
is more challenging at finer levels of detail, the finest so far
considered being router-to-router.

Estimating traffic matrices from link loads is a nontrivial task.
The challenge lies in the ill-posed nature of the problem: for a
network with ingress/egress points we need to estimate the

origin/destination demands. At a PoP level is in the tens,
at a router level may be in the hundreds, at a link level
may be tens of thousands, and at the prefix level may be
of the order of one hundred thousand. However, the number of
pieces of information available, the link measurements, remains
approximately constant. One can see the difficulty—for large
the problem becomes massively underconstrained.

There is extensive experience with ill-posed linear inverse
problems from fields as diverse as seismology, astronomy, and
medical imaging [8]–[12], all leading to the conclusion that
some sort of side information must be brought in, with results
that may be good or bad depending on the quality of this infor-
mation. All of the previous work on IP traffic matrix estimation
has incorporated prior information: for instance, Vardi [1] and
Tebaldi and West [2] assume a Poisson traffic model, Cao et al.
[3] assume a Gaussian traffic model, Zhang et al. [5] assume
an underlying gravity model, and Medina et al. [4] assume a
logit-choice model. Each method is sensitive to the accuracy of
this prior: for instance, [4] showed that the methods in [1]–[3]
were sensitive to their prior assumptions, while [5] showed that
their method improved if the prior (the so-called gravity model)
was generalized to reflect real routing rules more accurately.

In contrast, this paper starts from a regularization formula-
tion of the problem drawn from the field of ill-posed problems,
and derives a prior distribution that is most appropriate to
this problem. Our prior assumes source/destination indepen-
dence, until proven otherwise by measurements. The method
then blends measurements with prior information, producing
the reconstruction closest to independence, but consistent
with the measured data. The method proceeds by solving an
optimization problem that is understandable and intuitively
appealing. This approach allows a convenient implementation
using modern optimization software, with the result that the
algorithm is very efficient.

An advantage of the approach used in this paper is that it
also provides some insight into alternative algorithms. For in-
stance, the simple gravity model of [5] is equivalent to com-
plete independence of source and destination, while the general-
ized gravity model corresponds to independence conditional on
source and destination link classes. Furthermore, the algorithm
of [5] is a first-order approximation of the algorithm presented
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here, explaining the success of that algorithm, and suggesting
that it also can be extended to measure point-to-multipoint de-
mand matrices. Our method opens up further opportunities for
extensions, given the better understanding of the importance of
prior information about network traffic and how it can be incor-
porated into the process of finding traffic matrices. For instance,
an appealing alternative prior generation procedure is suggested
in [4]. Alternatively, the Bayesian method of [2] can be placed
into the optimization framework here, with a different penalty
function, as could the methods of [1], [3].

Our approach also allows us to estimate both point-to-point
traffic matrices and point-to-multipoint demand matrices. Prior
work on estimating traffic matrices from link data has concen-
trated on the point-to-point traffic, i.e., the traffic from a single
source to a single destination. While point-to-point traffic ma-
trices are of great practical importance, they are not always
enough for applications (as shown in [7]). Under some fail-
ures the traffic may actually change its origin and destination;
its network entry and exit points. The point-to-point traffic ma-
trix will be altered, because the point-to-point traffic matrix de-
scribes the “carried” load on the network between two points.
In contrast, the demand matrix describes the “offered” traffic
demands on the IP network and is therefore invariant under a
much larger class of changes. The demand matrix is inherently
point-to-multipoint in the sense that traffic coming into the net-
work from a customer, may often depart the network via mul-
tiple egress points in order to reach its final destination. To un-
derstand this, consider a packet entering a backbone ISP through
a customer link, destined for another backbone ISP’s customer.
Large North-American backbone providers typically are con-
nected at multiple peering points. Our packet could reach its
final destination through any of these peering links; the actual
decision is made through a combination of Border Gateway Pro-
tocol (BGP) and Interior Gateway Protocol (IGP) routing pro-
tocols. If the normal exit link fails, then the routing protocols
would choose a different exit point. In a more complicated sce-
nario, the recipient of the packet might be multi-homed—that is,
connected to more than one ISP. In this case the packet may exit
the first ISP through multiple sets of peering links. Finally, even
single homed customers may sometimes be reached through
multiple inter-AS (Autonomous System) paths.

We test the estimation algorithm extensively on network
traffic and topology data from an operational backbone ISP
(AT&T’s North American IP network). The results show that
the algorithm is fast, and accurate for point-to-point traffic
matrix estimation. We also test the algorithm on topologies
generated through the Rocketfuel project [13]–[15] to resemble
alternative ISPs, providing useful insight into where the algo-
rithm will work well. One interesting side result is that there
is a relationship between the network traffic and topology that
is beneficial in this estimation problem. We also test the sensi-
tivity of the algorithm to measurements errors, demonstrating
that the algorithm is highly robust to errors and missing data in
the traffic measurements.

We further examine some alternative measurement strategies
that could benefit our estimates. We examine two possibilities:
the first (suggested in [4]) is to make direct measurements of
some rows of the traffic matrix, the second is to measure local
traffic matrices as suggested in [16]. Both result in improve-
ments in accuracy, however, we found in contrast to [4] that
the order in which rows of the traffic matrix are included does
matter—adding rows in order of the largest row sum first is
better than random ordering.

Finally, the results of our evaluation of the algorithm for
point-to-multipoint demand matrices are interesting in that
these estimates are less accurate than the corresponding
point-to-point results, for the very good reason that this esti-
mation problem contains more ambiguity. However, we also
show in this paper that the results are far more accurate (than
point-to-point results) when used in real applications such as
link failure analysis. In fact, the point-to-multipoint estimates
produce astoundingly accurate link failure estimates. Likewise,
in [17], we have also demonstrated that the resulting accuracy
is well within the bounds required for another operational task,
IGP route optimization.

To summarize, this paper demonstrates a specific tool that
works well on large scale point-to-point and point-to-multipoint
traffic matrix estimation. The results show that it is important
to add appropriate prior information. Our prior information
is based on independence-until-proven-otherwise, which is
plausible, computationally convenient, and results in accurate
estimates.

The paper begins in Section II with some background:
definitions of terminology and descriptions of the types of data
available. Section III describes the regularization approach
used here, and our algorithm, followed by Section IV, the
evaluation methodology, and Section V, which shows the al-
gorithm’s performance on a large set of measurements from
an operational tier-1 ISP. Section VI, examines the algorithm’s
robustness to errors in its inputs, and Section VII shows the
flexibility of the algorithm to incorporate additional informa-
tion. Section VIII shows the results for point-to-multipoint
estimation, and Section IX demonstrates the utility of the
point-to-multipoint results in reliability analysis. We conclude
the paper in Section X.

II. BACKGROUND

A. Network

An IP network is made up of routers and adjacencies between
those routers, within a single AS or administrative domain. It is
natural to think of the network as a set of nodes and links, as-
sociated with the routers and adjacencies, as shown in Fig. 1.
We refer to routers and links that are wholly internal to the net-
work as Backbone Routers (BRs) and links, and refer to others
as Edge Routers (ERs) and links.

One could compute traffic matrices with different levels of ag-
gregation at the source and destination end-points, for instance,
at the level of PoP to PoP, or router to router, or link to link [6].
In this paper, we are primarily interested in computing router
to router traffic matrices, which are appropriate for a number of
network and traffic engineering applications, and can be used
to construct more highly aggregated traffic matrices (e.g., PoP
to PoP) using topology information [6]. We may further specify
the traffic matrix to be between BRs, by aggregating up to this
level.

In addition, it is helpful for IP networks managed by In-
ternet Service Providers (ISPs) to further classify the edge links.
We categorize the edge links into access links, connecting cus-
tomers, and peering links, which connect other (noncustomer)
ASs. A significant fraction of the traffic in an ISP is inter-do-
main and is exchanged between customers and peer networks.
Today traffic to peer networks is largely focused on dedicated
peering links, as illustrated in Fig. 1. Under the typical routing
policies implemented by large ISPs, very little traffic will transit
the backbone from one peer to another. Transit traffic between
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Fig. 1. IP network components and terminology.

peers may reflect a temporary step in network consolidation fol-
lowing an ISP merger or acquisition, but should not occur under
normal operations.

In large IP networks, distributed routing protocols are used to
build the forwarding tables within each router. It is possible to
predict the results of these distributed computations from data
gathered from router configuration files, or a route monitor such
as [18]. In our investigation, we employ a routing simulator such
as in [19] that makes use of this routing information to compute
a routing matrix (defined in Section III-A). Note that this simu-
lation includes load balancing across multiple shortest paths.

B. Traffic Data

In IP networks today, link load measurements are readily
available via the Simple Network Management Protocol
(SNMP). SNMP is unique in that it is supported by essentially
every device in an IP network. The SNMP data that is available
on a device is defined in a abstract data structure known as
a Management Information Base (MIB). An SNMP poller
periodically requests the appropriate SNMP MIB data from a
router (or other device). Since every router maintains a cyclic
counter of the number of bytes transmitted and received on
each of its interfaces, we can obtain basic traffic statistics for
the entire network with little additional infrastructure.

The properties of data gathered via SNMP are important for
the implementation of a useful algorithm SNMP data has many
limitations. Data may be lost in transit (SNMP uses unreliable
UDP transport; copying to our research archive may also intro-
duce loss). Data may be incorrect (through poor router vendor
implementations). The sampling interval is coarse (in our case
5 minutes). Many of the typical problems in SNMP data may
be mitigated by using hourly traffic averages (of five minute
data), and we shall use this approach. The problems with the
finer time-scale data make time-series approaches to traffic ma-
trix estimation more difficult.

We use flow level data in this paper for validation purposes.
This data is aggregated by IP source and destination address, and
port numbers at each router. This level of granularity is sufficient
to obtain a real traffic matrix [7], and in the future such mea-
surement may provide direct traffic matrix measurements, but
at present limitations in vendor implementations prevent collec-
tion of this data from the entire network.

C. Information Theory

Information theory is of course a standard tool in communica-
tions systems [20], but a brief review will set up our terminology.
We begin with basic probabilistic notation: we define to

mean the probability that a random variable is equal to . We
shall typically abuse this notation (where it is clear) and simply
write . Suppose that and are independent
random variables, then

(1)

i.e., the joint distribution is the product of its marginals. This
can be equivalently written using the conditional probability

(2)

In this paper we shall typically use the source and the desti-
nation of a packet (or bit), rather than the standard random
variables and . Thus, is the conditional probability
of a packet (bit) exiting the network at , given that it en-
tered at , and is the unconditional probability of a
packet (bit) going to .

We can now define the Discrete Shannon Entropy of a discrete
random variable taking values as

(3)

The entropy is a measure of the uncertainty about the value of
. For instance, if with certainty, then ,

and takes its maximum value when is uniformly dis-
tributed, when the uncertainty about its value is greatest.

We can also define the conditional entropy of one random
variable with respect to another by

(4)

where is the probability that conditional on
. can be thought of as the uncertainty re-

maining about given that we know the outcome of . Notice
that the joint entropy of and can be shown to be

(5)

We can also define the Shannon information

(6)

which therefore represents the decrease in uncertainty about
from measurement of , or the information that we gain about

from . The information is symmetric,
and so we can refer to this as the mutual information of and

, and write as . Note that , with equality
if and only if and are independent—when and are
independent gives us no additional information about . The
mutual information can be written in a number of ways, but here
we write it

(7)

where is the Kullback–Leibler
divergence of with respect to , a well-known measure of
distance between probability distributions.

Discrete Entropy is frequently used in coding because the en-
tropy gives a measure of the number of bits required to
code the values of . That is, if we had a large number of
randomly-generated instances and needed to
represent this stream as compactly as possible, we could repre-
sent this stream using only bits, using entropy coding
as practiced, for example, in various standard commercial com-
pression schemes.

Entropy has also been advocated as a tool in the estimation of
probabilities. Simply put, the maximum entropy principle states
that we should estimate an unknown probability distribution
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by enumerating all the constraints we know it must obey on
‘physical’ grounds, and searching for the probability distribu-
tion that maximizes the entropy subject to those constraints. It is
well known that the probability distributions occurring in many
physical situations can be obtained by the maximum entropy
principle. Heuristically, if we had no prior information about a
random variable , our uncertainty about is at its peak, and
therefore we should choose a distribution for which maxi-
mizes this uncertainty, or the entropy. In the case where we do
have information about the variable, usually in the form of some
set of mathematical constraints , then the principle states that
we should maximize the entropy of conditional
on consistency with these constraints. That is, we choose the
solution which maintains the most uncertainty while satisfying
the constraints. The principle can also be derived directly from
some simple axioms which we wish the solution to obey [21].

D. Ill-Posed Linear Inverse Problems

Many scientific and engineering problems can be posed as
follows. We observe data which are thought to follow a system
of linear equations

(8)

where the by 1 vector contains the data, and the by 1
vector contains unknowns to be estimated. The matrix is
an by matrix. In many cases of interest , and so
there is no unique solution to the equations. Such problems are
called ill-posed linear inverse problems. In addition, frequently
the data are noisy, so that it is more accurate to write

(9)

In that case any reconstruction procedure needs to remain stable
under perturbations of the observations. In our case, are the
SNMP link measurements, is the traffic matrix written as a
vector, and is the routing matrix.

There is extensive experience with ill-posed linear inverse
problems from fields as diverse as seismology, astronomy, and
medical imaging [8]–[12], all leading to the conclusion that
some sort of side information must be brought in, producing
a reconstruction which may be good or bad depending on the
quality of the prior information. Many such proposals solve the
minimization problem

(10)

where denotes the norm, is a regularization
parameter, and is a penalization functional. Proposals of
this kind have been used in a wide range of fields, with consider-
able practical and theoretical success when the data matched the
assumptions leading to the method, and the regularization func-
tional matched the properties of the estimand. These are gen-
erally called strategies for regularization of ill-posed problems
(for a more general description of regularization see [22]).

A general approach to deriving such regularization ideas is
the Bayesian approach (such as used in [2]), where we model the
estimand as being drawn at random from a so-called ‘prior‘
probability distribution with density and the noise is
taken as a Gaussian white noise with variance . Then the
so-called posterior probability density has its maximum

at the solution of

(11)

Comparing this with (10) we see the penalized least-squares
problems as giving the most likely reconstructions under a given

model. Thus, the method of regularization has a Bayesian in-
terpretation, assuming Gaussian noise and assuming

. We stress that there should be a good match between
the regularization functional and the properties of the esti-
mand—that is, a good choice of prior distribution. The penal-
ization in (10) may be thought of as expressing the fact that re-
constructions are very implausible if they have large values of

.
Regularization can help us understand approaches such as

that of Vardi [1] and Cao et al. [3], which treat this as a max-
imum likelihood problem where the are independent random
variables following a particular model. In these cases they use
the model to form a penalty function which measures the dis-
tance from the model by considering higher order moments of
the distributions.

III. REGULARIZATION OF THE TRAFFIC ESTIMATION PROBLEM
USING MINIMUM MUTUAL INFORMATION

The problem of inference of the end-to-end traffic matrix is
massively ill-posed because there are so many more routes than
links in a network. In this section, we develop a regularization
approach using a penalty that seems well-adapted to the struc-
ture of actual traffic matrices, and which has some appealing in-
formation-theoretic structure. Effectively, among all traffic ma-
trices agreeing with the link measurements, we choose the one
that minimizes the mutual information between the source and
destination random variables.

Under this criterion, absent any information to the contrary,
we assume that the conditional probability that a source

sends traffic to a destination is the same as , the proba-
bility that the network as a whole sends packets or bytes to des-
tination . There are strong heuristic reasons why the largest-
volume links in the network should obey this principle—they
are so highly aggregated that they intuitively should behave sim-
ilarly to the network as a whole.

On the other hand, as evidence accumulates in the link-level
statistics, the conditional probabilities are adapted to be consis-
tent with the link-level statistics in such a way as to minimize the
mutual information between the source and destination random
variables.

This Minimum Mutual Information (MMI) criterion is
well-suited to efficient computation. It can be implemented
as a convex optimization problem; in effect one simply adds
a minimum weighted entropy term to the usual least-squares
lack of fit criterion. There are several widely-available software
packages for solving this optimization problem, even on very
large scale problems; some of these packages can take advan-
tages of the sparsity of routing matrices.

A. Traffic-Matrix Estimation

Let denote the traffic volume going from source to
destination in a unit time. Note that is unknown to us;
what can be known is the traffic on link . Let
denote the routing matrix, i.e., gives the fraction of
traffic from to which crosses link (and which is zero if the
traffic on this route does not use this link at all). The link-level
traffic counts are

(12)

where is the set of backbone links. We would like to recover
the traffic matrix from the link measurements , but
this is the same as solving the matrix equation (8), where is
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a vector containing the traffic counts is a vectorization
of the traffic matrix, and is the routing matrix. is a matrix
which is # by # # , where there are # link measure-
ments, # sources, and # destinations.

B. The Independence Model

We propose thinking about in probabilistic terms, so
that if a network carries end-to-end packets (or bits) total
within a unit time then the number of packets sent from source

to destination say, is a random variable with mean
, with the joint probability that a randomly

chosen one of the packets (or bits) goes from to . We
consider the marginal probabilities

(13)

the chance that a randomly-chosen packet (bit) enters the net-
work at , and the chance that a randomly chosen packet (bit)
departs at , respectively. We can expand this notation to mea-
sure sets:

(14)

for all sets of source and destination links , and similarly
for the marginal probabilities and .

We let be the random variable obtained looking at the
source of a random packet (or bit), and let denote the
destination. Suppose for sake of discussion that and are
independent random variables. Then (2) means that, given
that a packet (bit) originates at , it is no more likely
to go to than would a randomly-chosen packet (bit)
originating anywhere in the network. For networks containing
a few extremely high volume links carrying very large fractions
of the packets, the assumption (2) should work well for the very
largest circuits, since they have been so highly aggregated that
their behavior may be very similar to the network as a whole.

Note that the independence of source and destination is equiv-
alent to the simple gravity model [4], [5], with the form

(15)

where is the traffic entering at , and is the traffic
exiting at . While there is experience with the gravity model
above and some success in its application, it is also known that
it gives results that are not as accurate as may be obtained using
additional information [4], [5].

Section II suggests that regularization is a way of using
prior information in conjunction with link measurements to
help decide which traffic matrices from the set satisfying (8)
are more plausible. We propose using a regularization func-
tional that uses the independence/gravity model as a point of
departure, but which considers other models as well. Recall
from our discussion of information theory that independence
of source and destination is tantamount to the statement that
the mutual information vanishes: . Recall also
that . It follows that the penalty functional on
traffic matrices , is given by , with
equality if and only if and are independent.

This functional has an interpretation in terms of the
compressibility of addresses in IP headers. Suppose we have a
large number of IP headers—abstracted to be simply source/des-
tination address pairs . We want to know:
what is the minimal number of bits required (per header) to rep-
resent the source/destination pair. It turns out that this is just

. Now if we simply applied entropy

compression to the and streams separately, we would
pay bits per header to represent headers. Hence
the functional measures the number of bits of addi-
tional compression possible beyond the separate compression
of source and destination based on traditional entropy com-
pression. This extra compression is possible because of special
dependencies that make it more likely to have traffic between
certain source/destination pairs than we would have expected
by independence. In fact measurements of and
(on real datasets described below) are typically around 5, while

is very small, typically around 0.1. This suggests that
the independence assumption is a reasonable fit to the real data,
at least on average. There may be some links for which it is not,
but the MMI method specifically allows for correction to these
(see below).

Suppose we adopt a Bayesian viewpoint, assigning an a priori
probability to the traffic matrix that is proportional to

. Then we are saying we regard as a priori implausible
those traffic matrices where much higher compression is pos-
sible based on joint source/destination pairs as compared to
compression of sources and destinations separately. Each bit
saved reduces our a priori likelihood by about a factor .

C. Regularization Method

We propose now to reconstruct traffic matrices by adopting
the regularization prescription (10) with the regularization func-
tional . Translating (10) into traffic-matrix no-
tation, we seek to solve

minimize (16)

Recalling the Bayesian interpretation of regularization, we
are saying that we want a traffic matrix which is a tradeoff
between matching the observed link traffic counts and having
a priori plausibility, where our measure of plausibility, as
just explained, involves the “anomalous compressibility” of
source/destination pairs. The traffic matrix obtained as the
solution to this optimization will be a compromise between
two terms based on the size of , which is a proxy for the noise
level in our measurements. Note that

(17)

where again denotes the Kullback–Leibler divergence.
Here represents the gravity model, and can
be seen as a distance between probability distributions, so that
we can see (16) as having an explicit tradeoff between fidelity
to the data and deviation from the independence/gravity model.
Note also that the Kullback–Leibler divergence is the negative
of the relative entropy of with respect to , and
so this method also has an interpretation as a maximum entropy
algorithm.

Both terms in the above tradeoff are convex functionals of the
traffic matrix . Hence, for each given , they can be rewritten
in constrained optimization form:

minimize subject to

(18)

Here is chosen appropriately so that the solution
of this problem and the previous one are the same, at the given
value of . The problem is saying: among all traffic matrices
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adequately accounting for the observed link counts, find the one
closest to the gravity model.

Note that in all these optimization problems, there are addi-
tional constraints (as on any probability distribution): nonnega-
tivity, normalization, and (13). We leave these implicit.

D. Algorithm

The problem we attack in this paper is the BR-to-BR traffic
matrix. While this problem is an order of magnitude more com-
plex than a PoP-to-PoP traffic matrix, a router-to-router traffic
matrix is absolutely necessary for many network engineering
tasks. A PoP-to-PoP traffic matrix is useful when designing a
network from scratch, but typically, in a real network changes
are incremental, and so we need to see how these changes affect
traffic at the router level. We use techniques from [5] to reduce
the size of the problem initially, by removing redundant infor-
mation, and a large number of traffic matrix elements that we
know to be zero from routing information. This processing does
not improve accuracy, but does speed up later computations.

To make the exact formulation explicit, we define

(19)

traffic counts (20)

(21)

where

total traffic in network (22)

total traffic originating at (23)

total traffic departing at (24)

and we define the column vectors , and with elements
and , respectively. Note that if or , then
both and , so we exclude these from the penalty
function. The problem formulation is then given by

subject to (25)

The additional constraints (normalization, etc.) on the marginal
distributions are satisfied by supplementing the routing matrix
and measurements to ensure that they include these constraints.

This penalized least-squares formulation has been used in
solving many other ill-posed problems, and so there exist pub-
licly available software in Matlab (such as routine MaxEnt in
Hansen’s Inverse Problems Toolbox [23], [24]) to solve small-
scale variants of such problems. Our problems are, however,
large in scale and not suited to such basic implementations. The
problem of solving such large-scale traffic matrices is only pos-
sible if we can exploit one of the main properties of routing ma-
trices: they are very sparse—the proportion of exact zero en-
tries in each column and row is overwhelming. Accordingly, we
use PDSCO [25], a MATLAB package developed by M. Saun-
ders of Stanford University, which has been highly optimized to
solve problems with sparse matrices. PDSCO has been used (see
e.g., [25]) to solve problems of the order 16 000 by 256 000 effi-
ciently. We have found that its performance is very good (taking
no more than a few seconds) on the largest problems we consider
here.

In principle, the choice of depends on the noise level in the
measurements, but we show later that the method’s performance
is highly insensitive to this parameter.

An interesting point is that if one were to have additional
information such as used in the choice model of [4] then this
could also be incorporated by conditioning the initial model

on this information (for an example of this type
see Section III-E). Alternatively, such information could be
included in the constraints underlying the optimization (as
shown in Section VII).

E. Inter-Domain Routing

1) Zero Transit Traffic: The above algorithm assumes that
independence of source and destination is a reasonable starting
model. However, there are good reasons we may want to
modify this starting model. In real backbone ISPs, routing is
typically asymmetric due to hot-potato routing—traffic from
the customer edge to peers will be sent to the “nearest” exit
point, while traffic in peer networks will do likewise resulting
in a different pattern for traffic from peering to customers.
Also there should be no traffic transiting the network from peer
to peer [5]. Both these factors demand departures from the
gravity/independence model.

Suppose we assume there is zero transit traffic. We suggest
that conditional independence of source and destination, given
appropriate side information, will be more accurate than pure
independence. More specifically, suppose we have available as
side information, the source and destination class (access or
peering). We would then model the probabilities of a packet (bit)
arriving at and departing at as conditionally independent
given the class of arrival and destination link. In Appendix I,
we prove that this results in the following model. Define and

to be the sets of access and peering links, respectively, then
conditionally-independent is

for

for

for
for

(26)

to which we can naturally adapt the algorithm above (by mod-
ifying ).

2) Point to Multipoint: As noted in the introduction a
point-to-point traffic matrix is not suitable for all applications.
Sometimes we need a point-to-multipoint demand matrix, for
instance, when we want to answer questions about the impact
of link failures outside the backbone, e.g., “would a peering
link failure cause an overload on any backbone links?” In this
case, traffic would reroute to an alternate exit point, changing
the point-to-point traffic matrix in an unknown way. However,
the point-to-multipoint demand matrix would remain constant.

Ideally such a matrix would be at the prefix level, but a
number of operational realities make an approximation to
router level useful for many engineering tasks. The first such
reality is that backbone networks that exchange large traffic
volumes are connected by private peering links as opposed to
Internet Exchange Points. This allows us to see the proportion
of traffic going to each individual peer using only SNMP link
measurements, so we can partition traffic per peer. The second
such reality is that the BGP policies across a set of peering links
to a single peer are typically the same. Therefore, the decision
as to which peering link to use as the exit point is made on the
basis of shortest IGP distance. This distance is computed at the
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link level, as opposed to BGP policies, which can act at the
prefix level. While we cannot test that this property is true for
all large ISPs (and in general it is not always true even on the
network from which we have measurements), the methodology
above does not need this, because the algorithm above only
uses this as a prior, to be corrected through the use of link (and
other) information.

The step required to generate a point-to-multipoint demand
matrix requires consideration of the control ISPs have over in-
terdomain routing. Interdomain routing gives an ISP little con-
trol over where traffic enters its network, so we shall not make
any changes to (26) for access-to-access, and peering-to-access
traffic. However, a provider has considerable control over where
traffic will leave their network across the peering edge. Traffic
destined for a particular peer may be sent on any of the links to
that peer.

The result is that we must modify (26) for access-to-peer
traffic. We do so by not specifying which link in the set of
links to peer (i.e., ) is used for traffic leaving the network
to peer . We can do this formally by not specifying
for but rather for all peers . This
simple point-to-multipoint model can then be used in the esti-
mation through using

(27)

for , in place of the access-to-peering equation from (26).
We do not determine the exit point in the estimates. The algo-
rithm can then proceed by minimizing the mutual information
of the final distribution with respect to (26) and (27). The exit
points are implicit in the routing matrix used in the optimization
(25), but are left undetermined in the estimate, and can therefore
be fixed when applied to a particular case.

We should also note that this is a quite general extension. We
use it here on sets of peering links , but in a network with
different policies, we can partition the peering links in some
different fashion (even through a nondisjoint partition) to reflect
some particular idiosyncrasies in routing policy.

F. Relationship to Previous Algorithms

The work in this paper presents a general framework, within
which we can place a number of alternative methods for es-
timating IP traffic matrices. For instance, by taking a linear
approximation to the log function in the Kullback–Leibler
information distance information and exploiting the fact that

we get

(28)

From this we can see that the MMI solution may be approx-
imated by using a quadratic distance metric with square root
weights. This explains the success of the approach in [5], as well
as why square root weights give the best performance (which
was unknown in [5]). The conditional independence of Sec-
tion III-E explains the use of the generalized gravity model as
an initial condition in [5].

The quadratic optimization is convenient, because it can be
simply solved using the Singular Value Decomposition (SVD)
[5], with nonnegativity enforced by a second step using Iterative

Proportional Fitting (IPF) [3]. In this paper we will compare the
performance of the pure MMI approach, its quadratic approx-
imation, and the method of [5] (referred to here as SVD-IPF),
and we see that the approximation works well in the cases con-
sidered. We defer the comparison with maximum likelihood
approaches [1], [3], [4] to future work, because scaling these
methods to the size of problem described here requires addi-
tional techniques (for instance, see [26] and [27]) that have only
recently been developed.

The point of interest here is that the MMI principle above pro-
duces (an approximation of) the algorithm previously derived
from an initial gravity model solution. However in the case of
the MMI solution, the principle precedes practice—that is, the
decision to regularize with respect to a prior is not an arbitrary
decision, but a standard step in ill-posed estimation problems.
The close approximation has a practical impact in that we can
use the fact that [5] already demonstrated that the conditional
independence of Section III-E to be a better prior than complete
independence. We use this fact here by using (26) and (27) in
the remainder of the paper.

IV. EVALUATION METHODOLOGY

In this paper, we apply the traffic matrix benchmarking
methodology developed in [5] and [28] to real Internet data
to validate different algorithms. One major advantage of the
methodology is that it can provide a consistent data set that
is as realistic as practically possible. Below we provide an
overview of this methodology, followed by a summary of the
performance metrics we use.

A. Validation Methodology

In [5] sampled flow-level data were used, as well as topology
and routing information as derived in [19]. Flow level data
contains details of numbers of packets and bytes transferred
between source and destination IP addresses, and also gives
information such as the interface at which the traffic entered
our network. Combining these datasets one may derive a traffic
matrix [7].

The resulting traffic matrix in our experiments covers around
80% of the real network traffic (including all the peering traffic)
on the real topology of a large operational tier-1 ISP. Following
[5], we compute the traffic matrices on one hour time scales
to deal with the limitations of the measurements. Given these
traffic matrices and the network topology and routing informa-
tion, we only need a consistent set of link load measurements to
proceed.

The work in [5] solves the problem of providing a consistent
set of traffic, topology and link measurement data as follows.
Simulate the network routing using the available topology and
routing information. From this we may compute a routing ma-
trix , and then derive a set of link measurements from (8).
Thus, the traffic matrix , the routing matrix , and the mea-
sured link loads are all consistent. We can then perform the
estimation procedure to compute , the traffic matrix estimate.

The validation approach allows us to work with a problem
for which we know the “ground truth”—the real traffic matrix.
It can also be extended in several different ways. For example,
it allows one to take a traffic matrix and apply it on an arbi-
trary topology, for instance, a simulated network such as a star,
or a measured topology such as those produced by Rocketfuel
[13], [14]. Thus, we can gain insight into the effect of different
topologies on the performance of the algorithm. We may also
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Fig. 2. The relative errors for the quadratic and MMI algorithms for a given value of �. (a) Quadratic optimization (specific case). (b) MMI (specific case).
(c) Quadratic optimization (average over all data). (d) MMI (average over all data).

introduce controlled measurement errors to assess the algo-
rithm’s robustness, or simulate alternative measurements to see
their impact in a rigorous manner.

B. Performance Metrics

In this paper we use two basic methods for assessing and com-
paring the results. The first method is to estimate the relative
error (that is, the average of the absolute value of the errors, rel-
ative to the average traffic matrix element). The second method
is to plot the Cumulative Distribution Function (CDF) of the
errors relative to the average traffic matrix element. However,
many elements of a router to router traffic matrix are zero due
to routing constraints, and these constrained elements are easy
to estimate. This results in a large number of entries to the traffic
matrix with near zero error. To more accurately indicate the er-
rors on the positive elements we separate the zero and nonzero
elements and compute their errors separately. The errors on the
zero elements are very small (99% of the errors are below 1%),
and so we shall not display these separately here. We shall re-
port the relative errors of the positive elements.

V. PERFORMANCE

A. Sensitivity to the Choice of

The choice of the parameter determines how much weight is
given to independence, versus the routing constraint equations.
One typically wants to find a such that ,
where specifies the desired level of accuracy to which the
linear constraints should be satisfied. This can be done
by applying a line search process exploiting the fact that we are
optimizing with respect to a unimodal function.

In our experiments, however, we find that the algorithm’s per-
formance is not sensitive to the choice of . Fig. 2 shows the
relative error in the estimates for varying . Fig. 2(a), and (b)
show the results for the quadratic and MMI algorithms respec-
tively, for a single-hour data set given different levels of error in
the input measurements (see below for details of the introduced
measurement errors). Fig. 2(c) and (d) show the average results
over a month of data.

Most notably, in each graph there is a distinct region where
the curves are all quite flat, and that this region is largely the
same regardless of the error level. Thus, the choice of is insen-
sitive to the level of noise in the measurements, and it is easy to

Fig. 3. Comparison of the relative errors for the methods.

choose a good value. We choose a fixed value from the middle
of the insensitive range, throughout the rest of the
paper, with a result that is at worst only a few percent off that
for the optimal choice of .

B. Comparison of Algorithms

We now compare the three algorithms described above (MMI,
quadratic optimization, and SVD-IPF) applied to the problem
of computing a BR-to-BR traffic matrix. The results below are
based on 506 data sets from AT&T’s North American IP net-
work, representing the majority of June 2002, and covering all
days of the week, and times of day. Fig. 3 shows the CDF of the
relative errors for the three methods. We can see that their per-
formance is almost identical. The mean relative error is 11.3%.
Furthermore, note that more than 80% of the traffic matrix ele-
ments have errors less than 20%. The CDFs for individual data
sets are very similar, but generally less smooth. All three algo-
rithms are remarkably fast, delivering the traffic matrix in under
six seconds. The fastest algorithm is SVD-IPF, which is about
twice as fast as MMI, the slowest one. We also compare the three
algorithms for robustness. The results are very similar, and are
omitted here in the interest of brevity.

Note also that [5] showed a number of additional performance
metrics for the SVD-IPF algorithm (which we can see has very
similar performance to the MMI algorithm). Those results in-
dicated that not only are the errors on the flows reasonable, but
also that the errors on the largest flows are small, and that the
errors are stable over time, which is important if the results are
to be used to detect network events.
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C. Topological Impact

While traffic data is generally considered highly proprietary,
and is therefore hard to obtain from network operators, there has
been an effort underway recently to measure ISP topologies via
a tool called Rocketfuel [13]–[15]. Using the topological infor-
mation provides us a means of examining the impact of other
topologies on our algorithm. In this section, we investigate the
impact of different topologies on the performance of the algo-
rithm using Rocketfuel and simulated topologies. Since we also
need IGP weights, we use the maps for three North American
networks (Sprint, Abovenet, and Exodus), for which the IGP
weights have been estimated by Rocketfuel. Note that these are
not real weights from the networks of interest, but a set con-
sistent with observed routing. Nor are these the real networks,
as Rocketfuel maps are unlikely to be perfectly accurate. Fur-
thermore, the Rocketfuel data do not contain the peering rela-
tionships of a network, and so we are limited to using the same
initial conditional independence assumptions in our exploration
of topology. These issues are not a big problem here because we
are primarily concerned with the impact of varying the internal
network topology on the estimates, and as such we only need re-
alistic networks, rather than exact maps of other networks. The
results should, however, not be used in ISP comparisons.

The approach for testing the impact of topology is as follows.
We map locations (origins and destination in the original net-
work) to locations (in the Rocketfuel network) at the PoP level,
and map (26) and (27) to this new network, assuming the same
peering relationships, thus removing dependence on data we
don’t have access to. More specifically, let de-
note a mapping from the original set of locations to a set
of Rocketfuel locations . Then the mapping of demands
from one network to another is accomplished by

(29)

and we map the from (21) similarly. We consider two map-
pings, the first based on geographical location, which is pro-
vided in the Rocketfuel dataset. Geographical information does
not provide any way of mapping from router to router in the new
network, so we perform our mapping at the PoP level, and there-
fore also perform the estimation at this level, and compare to
AT&T data likewise aggregated to PoP level. The second map-
ping is a random permutation that destroys the dependency be-
tween the traffic and the network topology.

Fig. 4 shows a summary of the results (detailed results can
be found in [28]). The figure shows (as squares), the results for
the Rocketfuel networks where the mapping from location to
location is done on the basis of nearest geographical equivalent,
i.e.,

where (30)

where is the geographic distance between PoPs and
. The figure also shows PoP level results for AT&T, and two

simple simulated networks (a star and a clique with 20 nodes).
The most obvious thing to note in Fig. 4 is that there is a

direct correlation between the ratio of number of unknowns to
number of measurements, and the accuracy of the results. The
star and clique form extreme examples where we either have
complete data (in the clique we measure each origin-destina-
tion demand directly) and thus almost no measurement error; or
almost no additional data (in the star the link measurements tell
us no more than the total volumes entering and exiting at a loca-
tion) and therefore the most inaccurate results. This illustrates

Fig. 4. Results on Rocketfuel, and simulated topologies.

the basis for the MMI method. It will work best where either the
conditionally independent estimate is good to start with, or the
topology has sufficiently diverse links to allow for the results
to be accurately refined. The networks measured by Rocketfuel
appear to have such diversity, as their results are of similar or
better quality than those for AT&T.

However, there is more to the problem than this. In fact it
appears that there is a relationship between the network traffic,
and the network topology that benefits the performance of the
algorithm. Fig. 4 also shows the result of mapping the locations
in AT&T’s network to the Rocketfuel ISPs using a random per-
mutation (the figure is based on 100 random permutations of 24
data sets drawn from one day in June). The performance under a
random mapping is worse than under a geographical mapping.

This is interesting because, typically in large networks, re-
gions of the network with higher demand tend to have more
connections to the other PoPs (in the measured network the cor-
relation coefficient between node degree and traffic volume was
0.7). A higher degree at a node results in more information about
the corresponding row of the traffic matrix, and thence a better
estimate of this row. Good estimates of the larger elements make
it easier to estimate other elements elsewhere in the network,
and so we get a better overall result. This naturally leads to better
estimates when the traffic is correlated to the network degree,
but when we perform the random mapping, the correlation no
longer holds. We shall see later that this property has an impact
on the design of network measurement infrastructure to further
improve traffic matrix estimates: it is better to put measurement
infrastructure in the nodes with the largest traffic volume.

VI. ROBUSTNESS

A critical requirement for any algorithm that will be applied
to real network data is robustness. In general this refers to
the sensitivity of an algorithm to violations of the algorithm’s
assumptions (implicit and explicit). In the MMI method, the
assumptions are that the MMI criteria constitute a reasonable
approach (verified above) and that the input data are correct.
Network data are often error prone, and there can be missing
data, and so we must consider how robust the algorithm is to
such errors. In the following sections we consider the impact
of incorrect or missing link data, and incorrect routing data on
the MMI algorithm. Only the latter form of incorrect input data
has an important impact on the results of the algorithm.

A. Incorrect Link Data

All measurements, including network data, contain errors.
Therefore, we shall introduce a range of errors, and study their
impact. Comparisons with flow level data have shown that er-
rors in either source are not generally large, and the sources of
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Fig. 5. Relative errors for MMI given measurement noise.

such errors lead one to believe that they will not be strongly cor-
related. Hence we shall introduce independent Gaussian errors
to the measurements and compare with the zero error case.
More specifically, take the relative error in the traffic of link to
be , where is the normal distribution with
mean 0 and standard deviation . We vary from 0 to 0.1, with
the latter corresponding to quite large (around 20%) relative
errors in the measurements (remember the 95th percentiles of
the normal distribution lie at 1.96 .)

Also note that errors on access and peering links will have
minimal impact on a BR to BR traffic matrix because the data
from access links is aggregated across many links (to form the
traffic volumes entering and exiting the network at a router)
and so we only consider here errors in the backbone-link
measurements.

Fig. 5 shows the CDF of the results given different noise
levels. Clearly noise impacts the results, but note that the ad-
ditional errors in the measurements are actually smaller (for the
most part) than the introduced errors in the measurements. This
is likely due to the redundant link constraints, which provide an
averaging effect to reduce the impact of individual errors. The
first row of Table I presents a summary.

B. Missing Link Data

We next consider the impact of missing data, for instance,
missing because a link was not polled over an extended in-
terval. A few missing data points can be replaced using inter-
polation; trading missing data for data with some error. Further-
more, ERs are typically connected very simply to the backbone
(typically by sets of redundant links), and almost all % of
ER traffic is between the backbone and the edge. Thus, if data
are missing from a single edge link we may estimate the corre-
sponding traffic using measurements of the traffic between the
ER and the backbone. Thus, except in the rare case where we
miss multiple edge links, we need only consider missing back-
bone link data.

Fig. 6 shows the effect of missing the top backbone links
(rated in terms of traffic on those links). The results are shown
for the 24 data sets from each of three days in June. The re-
sults show that despite loosing the links with the largest traffic,
the results are hardly impacted at all (except in one case). This
suggests that there is often enough redundant information in the
network to compensate for the missing data.

C. Incorrect Routing Data

A third source of data in which we may find errors is the
routing matrix. Errors in this matrix can have a large impact
on the performance of estimation methods, because if we have

Fig. 6. Impact of missing data on the relative errors for three days (each
comprising 24 data sets).

errors in a significant number of routes, this corresponds to
changing many elements of the matrix from 1 (in the absence of
load sharing) to zero and vice versa. However, as in all other re-
ports on traffic matrix estimation, we assume the routing matrix
input is accurate. This assumption is reasonable because there
are good methods for reliably obtaining routing information (for
instance, see [18]).

VII. ADDITIONAL INFORMATION

One major benefit of adopting the information theoretic ap-
proach describe here is that it provides a natural framework for
including additional information. In this section, we examine
the impact of two sources of information: (i) flow level data at
some locations, and (ii) the local traffic matrix at a router [16].

A. Flow Level Data

In this section we consider the impact of having flow level
data at some locations, which gives the rows of the traffic matrix
for those locations. This inclusion was explored in [4] in a simu-
lation. They showed that the methods of [2] and [3] provided im-
provements to traffic matrix estimates roughly in proportion to
the number of rows measured, but that it did not matter whether
one selected the rows to be measured randomly, or in order of
largest row sum.

Flow level information can be included in our algorithm by
simply including additional constraint equations. Results are
presented for three separate days of data, each consisting of
twenty four, one-hour data sets. We compare the error in the
estimates as we include a variable number of known rows of
the traffic matrix, both in row sum order, and randomly. Fig. 7
shows the results. In the random-ordering case, we see an ap-
proximately linear improvement as additional information is in-
cluded, but in contrast to the results of [4] row sum order is sig-
nificantly better. In fact, once 10 rows are included, the error for
the row sum case is about half that of the random ordered case,
and this ratio improves until we have included around half of
the rows, when the error for the row sum ordered case becomes
negligible. One possible reason why these results do not agree
with [4] is that the traffic matrices used in the simulation were
not as skewed as those observed in real networks.

The result is a clear win for measuring flow, or packet level
data. Such data on a fraction of the network may provide a dis-
proportionate improvement in the estimates. The results were
similar even when errors were added to the flow level measure-
ments, and so sampled flows may also provide practical im-
provements.



ZHANG et al.: ESTIMATING POINT-TO-POINT AND POINT-TO-MULTIPOINT TRAFFIC MATRICES: AN INFORMATION-THEORETIC APPROACH 957

Fig. 7. Effect of addition of known traffic matrix rows. Dashed lines show
largest row sum ordering, and solid show random order. There are over 60 rows
in the traffic matrix.

Fig. 8. Result of including local traffic matrices, for varying error levels. Also
included as a baseline is the zero noise case from Fig. 3.

TABLE I
THE RELATIVE ERRORS GIVEN A PARTICULAR NOISE LEVEL,

WITH AND WITHOUT LOCAL TRAFFIC MATRIX DATA

B. Local Traffic Matrices

Another appealing alternative to collect additional informa-
tion with minimal cost is to collect local router traffic matrices.
That is, for the router to keep a table of traffic from in-interface
to out-interface. As shown in [16], the collection of local traffic
matrices only requires minimal changes to router hardware, and
can be included in our algorithm as constraints. Fig. 8 shows the
CDF including local traffic matrices, and Table I shows a sum-
mary of the results in comparison to those without local traffic
information. Notice that the results with a local traffic matrix,
are not only better, but also less sensitive to measurement errors.

The star topology illustrates why a local traffic matrix helps.
In that case, a local traffic matrix at the hub router provides the
traffic matrix directly. In reality the network is not a star, so
a large amount of additional information is redundant. In our
problem, the number of constraints is of the order of a factor
of 20 times the simple link measurement constraints, but the
number of independent constraints is only roughly doubled.
However, this redundant information is still useful because it
makes the algorithm more robust to noise in the measurements,
as seen in Table I.

These results show that it is quite practical to improve the
estimates above by incorporating additional information.

VIII. POINT-TO-MULTIPOINT

Up to this point we have only considered the performance of
our algorithm for estimating PTP traffic matrices. We now test
the algorithms performance on Point-To-MultiPoint (PTMP)
traffic demands. Fig. 9 shows an example of PTMP estimation
results. In each of the figures we compare the estimated results
with their true value—if the estimates were perfectly accurate
the points would all line up along the solid diagonal lines.
The dashed lines show 20%. Fig. 9(a) shows the results for
Point-To-Point (PTP) estimates. One can see that although there
are errors, the results are clustered reasonably closely around
the diagonal, particularly for the important larger traffic matrix
elements. See [5] and [28] for much more extensive assessment
of the quality of the PTP estimates—for instance, on a large
data set the average errors in the PTP estimates were 11.26%,
which is well within the bounds for operational usefulness.

Fig. 9(b) shows the results of the PTMP estimates, which are
still reasonably accurate, but not as good as the PTP estimates.
The results are more spread, and there are noticeable outliers
well outside the 20% bounds.

We have tested both PTP and PTMP estimates on consider-
ably larger data sets and these results appear to be consistent.
For instance, Fig. 10 shows average errors of the results over
the course of one day (June 6, 2003) for the PTMP estimates,
and compares them to the previously estimated errors for PTP
estimates. One sees immediately that the PTMP estimates have
errors around the 25% mark—more than twice those of the PTP
estimates. We examine the reasons for this worse performance
below.

A. Why PTMP Estimates Are Less Accurate

In order to understand why PTMP estimates are less accu-
rate, consider that given two different point-to-point demands,
the underlying routes are guaranteed to be different, because ei-
ther the source or the destination is different. For point-to-mul-
tipoint demands, however, this is no longer the case. That is, it
is possible for different point-to-multipoint demands to use ex-
actly the same route.

Specifically, let and be the
demands from to peer and , respectively, where are
the sets of possible egress routers for peer . Assume
that the BGP routing policies are the same for and . If the
router closest to in also belongs to , then

and will use the same egress point and therefore the same
route. Fig. 11 gives such an example where and

, and is the closest egress point from
within both and . As a result, both and use the
route that exits the network at .

Demands with the same routes manifest themselves as equal
columns in the routing matrix. This means the constraints on
link loads (8) impose restrictions on the sum of such demands
instead of each individual demand. As a result, we expect the es-
timated sum to be accurate. However, the quality of the splitting
among different demands largely depends on the conditional in-
dependence assumption, which is only an approximation to re-
ality. Therefore, we expect the estimated individual demands
to be less accurate. Note that PTP estimation problem is also
ill-posed and so the problem of ambiguity exists there also, but
it is compounded in PTMP case, with a corresponding impact
on the performance.

For some applications, it may be possible to avoid such inac-
curacy by merging and into a single demand and only
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Fig. 9. Comparison of the quality of the estimated traffic matrices. (a) PTP. (b) PTMP. (c) PTMP aggregated (customer-to-peering traffic).

Fig. 10. Comparison of the different methods for estimation over the course of
24 hours. Each data point represents the average errors for a one hour data set.
The solid line shows the errors for PTMP estimates, the dashed line those for
PTP estimates and the dot-dash line shows those for aggregated PTMP estimates
(for customer to peer traffic).

estimate the sum . Fig. 9(c) shows an example of such
aggregation. The figure shows the point-to-multipoint traffic el-
ements (those from customers to peers) aggregated by summing
where we have identical columns in the routing matrix. We can
see that the results are once again good—in fact they are very
similar to (though not exactly the same as) the PTP results.
Fig. 10 also shows the errors over the course of one day, and
we can see that these errors are now very close to those of the
PTP estimation technique.

However, for many applications like reliability analysis, we
cannot simply merge them. The two demands and may
use the same route during normal operations, but not under
failure conditions. For example, if router in Fig. 11 fails,
will exit the network at , whereas will now exit at either

or depending on which one is closer to .
Given that the estimates for individual PTMP demands are

less accurate it is tempting to say “the MMI method is intrin-
sically limited in that it can not accurately distinguish different
demands using the same route; we need better information (for
instance, from NetFlow [7]) in order to perform accurate reli-
ability analysis.” Surprisingly, we find in Section IX that the
PTMP traffic matrices obtained using MMI work remarkably
well for reliability analysis. In addition, they work considerably
better than the estimated PTP traffic matrices, which highlights
the importance of using PTMP matrices.

IX. RELIABILITY ANALYSIS RESULTS

In [17] the authors found that there is not a simple relationship
between error statistics such as those considered above, and the

Fig. 11. An example of different point-to-multipoint demands using the same
route. There are two point-to-multipoint demands here: the demand from A to
peer P : D = A! fR ;R g, and the demand from A to peer P : D =

A! fR ;R ;R g. Among fR ;R ;R ;R g; R is the closest egress point
fromA. As a result, bothD andD use the route that exits the network atR .

operational usefulness of a set of estimates. In fact the perfor-
mance of an estimate in route optimization was not even mono-
tonic in the average magnitude of its errors. So here, we shall
consider how well the PTMP estimates perform in the task for
which we required them in the first place: reliability analysis, in
particular of the peering edge of the network.

To do this, we simulate the failure of edge nodes of the AT&T
backbone, and consider the resulting loads on links in the net-
work. Under such failures traffic is rerouted, and may result in an
overload on the network unless it is carefully planned. We could
also simulate single peering link failures, but such failures are
a subset of the node failures, and so are less demanding. Under
the failure, the PTMP traffic demands will reroute to alterna-
tive exit points, as determined by the new shortest IGP distance.
However, the PTP traffic to the node in question is simply lost,
as we have no way of rerouting this traffic accurately.

In Fig. 12 we compare the link loads on the simulated network
as produced by the estimated, and true traffic matrix. Fig. 12(a)
shows the results for the PTP traffic matrices. The results are
reasonable for many links, because many are unaffected, or af-
fected only in a minor way by the routing changes. However, as
might be expected, there are a significant number of links for
which the loads are underestimated, because the traffic to the
failed edge node has been dropped, rather than rerouted. In com-
parison, Fig. 12(b), the same picture for the PTMP demands,
shows remarkably accurate results. This is in direct contrast to
the larger value of the average errors in the elements.

To extend these results we consider the failures of 14 different
edge nodes: those with the largest number of peering connec-
tions. Fig. 13 shows these results, and we can see that the errors
from the PTMP estimates remain negligible (in practice one typ-
ically uses such estimates to predict future traffic, and the pre-
diction errors are generally greater than the estimation errors
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Fig. 12. Comparison of the reliability analysis results. (a) PTP. (a) PTMP.

Fig. 13. Comparison between the average errors in the reliability analysis
using PTP (solid line), and PTMP estimates (dashed line).

found here), while the PTP estimates result in average errors up
to 8%, but note that in the worst case the PTP estimates result
in substantial underestimates of the link loads under the failures
(under-estimation is a more serious problem here than over-es-
timation).

One natural explanation for the quality of the results lies in the
insight above that sums of the traffic that use the same routes will
be accurately estimated. If such aggregates are simultaneously
moved to the same alternate route, then the resulting link loads
will be accurately estimated. The results above suggests that it
is often the case that such aggregates are shifted to new routes
as aggregates, or at least that this is a reasonable approximation.
In effect the errors are such that they mostly cancel, when the
estimates are used in this way. While such a property is not
necessarily guaranteed in general IP networks, it does appear
to be the case on AT&T’s North American backbone network,
and intuition supplied by [29] supports the idea that this is also
the case on other networks.

X. CONCLUSION

To summarize, we present a new approach to traffic matrix
estimation for IP networks. We demonstrate on real data that
the method has excellent properties: it is fast, accurate, flex-
ible, and robust. In addition, this paper provides some insight
into the problem of traffic matrix estimation itself. In partic-
ular, by testing the method on Rocketfuel topologies we provide
some measure of what aspects of a network make the problem
easier or harder: estimates on more highly meshed networks
were more accurate. Further, we found that the relationship be-
tween the traffic volumes and the topology played a significant
role in the accuracy of the estimates. Apart from this, the method

also provides additional insight into a broad range of approaches
to traffic matrix estimation.

There is still considerable work to do in this area: for instance,
the choice of priors is interesting. It is known that a better prior
results in a better estimate. While the prior used here seems
adequate, one may be able to do better (for instance, by using
[4]). Other areas of future work include, understanding why the
methods are so insensitive to the value of , and performing fur-
ther validations of the method, on alternate data sets (including
different traffic patterns).

APPENDIX I
CONDITIONAL INDEPENDENCE

In Section III-E we present a result based on conditional inde-
pendence, rather than simple independence. Zero transit traffic
makes it is more reasonable to adopt a conditionally indepen-
dent model in which the probabilities of a packet (bit) arriving
at and departing at given the class of arrival and destination
link (peering or access) are independent:

(31)

where , and are the source the destination’s link class,
respectively. We know

(32)

The source and destination links only depend on the class of the
source and destination respectively, so

(33)

(34)

Furthermore, from the definition of conditional probability

(35)

(36)

with the result

(37)

If the class of source and destination were indepen-
dent, then (37) would result in the independent model

. However, noting that all traffic
from peering must go to access, and likewise, all traffic to
peering links comes from access, and further that the four
probabilities must add to one, we get

Substituting into (37) we get (26).
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