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ABSTRACT

This paper develops a nonparametric approach to examine how portfolio and con-
sumption choice depends on variables that forecast time-varying investment op-
portunities. I estimate single-period and multiperiod portfolio and consumption
rules of an investor with constant relative risk aversion and a one-month to 20-
year horizon. The investor allocates wealth to the NYSE index and a 30-day Trea-
sury bill. I find that the portfolio choice varies significantly with the dividend
yield, default premium, term premium, and lagged excess return. Furthermore,
the optimal decisions depend on the investor’s horizon and rebalancing frequency.

HOW DOES PORTFOLIO AND CONSUMPTION CHOICE depend on variables that fore-
cast time-varying investment opportunities? Prior studies that address this
question assume a statistical model relating returns to forecasting variables
and solve for an investor’s portfolio and consumption choice using estimates
of the implied conditional distribution of returns. As a result, their answers
are shaped as much by modeling assumptions as by the data. An incorrect
model of how returns relate to forecasting variables can yield inconsistent
portfolio and consumption choice estimates and invalid inferences. This pa-
per develops and implements an econometric approach that is robust to such
model misspecification. Sample analogues of the conditional Euler equa-
tions, the first-order conditions of the investor’s expected utility maximiza-
tion, yield consistent estimates shaped by the data.

I modify the method of moments approach of Hansen and Singleton ~1982!.
I fix the parameters of an individual investor’s utility function and estimate
the optimal wealth and consumption process, and thereby the investor’s port-
folio and consumption rules, from sample analogues of the conditional Euler
equations. In contrast, Hansen and Singleton use observations of the aggre-
gate wealth and consumption process to estimate the parameters of the rep-
resentative investor’s utility function from otherwise identical moment
conditions.
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When investment opportunities are time-varying, an investor follows de-
cision rules that map the state of nature, characterized by observable fore-
casting variables, into the portfolio and consumption choice in that state. To
infer the decision rules without parameterizing how the decisions depend on
the forecasting variables, I separately estimate the portfolio and consump-
tion choice in every state. I use Hansen and Singleton’s approach conditional
on a given state, and hence for some realization of the forecasting variables,
to infer the portfolio and consumption choice in that state. Repeating this
for every state, one state at a time, yields consistent pointwise estimates of
the decision rules. In other words, I nonparametrically estimate the decision
rules in a method of moments framework.

To understand the main ideas of this paper, consider the following stylized
single-period portfolio choice. An investor with preferences u~W ! decides on
the fraction a of wealth to allocate to a portfolio of equities. Any remaining
wealth is invested in a riskless security. Equities yield an uncertain return
ERt11
e in excess of the risk-free rate R f. Investment opportunities, meaning the

distribution of returns, may vary through time. If they do, they are correlated
with an observable forecasting variable zt . The following conditional Euler equa-
tion characterizes the portfolio choice as a function of this forecasting variable:

a~z! 5 $a : E @u '~R f 1 a ERt11
e ! ERt11

e 6zt 5 z# 5 0%. ~1!

This equation says: “the optimal portfolio choice a~z! in the state z is the
decision a that equates to zero the expectation of the investor’s marginal
utility, given that the observable forecasting variable zt is equal to z.”

With constant investment opportunities, the portfolio choice is indepen-
dent of z. This implies the decision rule is constant: a~z! 5 a. Then, by the
law of iterated expectations, the portfolio choice is also identified by the
unconditional expectation of equation ~1!. Replacing this unconditional ex-
pectation with a sample average yields a consistent estimator of a:

[aT 5 Ha :
1
T (

t51

T

u '~R f 1 aRt11
e !Rt11

e 5 0J. ~2!

The simplest form of time-varying investment opportunities is having two
states of nature. Suppose one state is identified by zt # Sz and the other state
by zt . Sz. The decision rule consists of the portfolio choice in each state. The
portfolio choice when z is less than Sz, or when z is greater than Sz, equates to
zero the expected marginal utility conditional on being in the respective
state. Replacing each conditional expectation with a sample average com-
puted only with returns realized in the given state yields a consistent esti-
mator of the decision rule:

[aT ~z! 5 5a :
1
T (

$t:zt# Sz%
u '~R f 1 aRt11

e !Rt11
e 5 0 if z # Sz

a :
1
T (

$t:zt. Sz%
u '~R f 1 aRt11

e !Rt11
e 5 0 if z . Sz6 . ~3!
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This example illustrates the conditional method of moments. I estimate
pointwise the decision rules by replacing conditional population moments
with conditional sample moments.1 This idea extends to continuously vary-
ing investment opportunities. In that case, I replace conditional expecta-
tions with sample averages computed not only with returns realized in a
given state, but also with returns realized in states “similar” to it. This
modification is necessary because in a finite sample there are not enough
repeat realizations of every possible state.

The economic motivation of this paper arises from overwhelming evi-
dence of time-varying risk premia and volatility.2 Kandel and Stambaugh
~1996! and Solnik ~1993! show that weak predictive regressions still yield
economically significant variations in the portfolio choice of a single-period
investor. Barberis ~1999! extends Kandel and Stambaugh’s analysis to long-
horizon predictability and documents even stronger effects on portfolio choice.

Merton ~1969! theorizes that if investment opportunities are time-
varying, the portfolio choice of a multiperiod investor can differ from that of
a single-period investor because of hedging demands. The investor tries to
hedge against predictable changes in future investment opportunities. Balduzzi
and Lynch ~1996! and Barberis ~1999! estimate the multiperiod portfolio
choice corresponding to standard predictive regressions. They find that multi-
period decisions differ substantially from single-period decisions. Campbell
and Viceira ~1996! confirm this result by calibrating an approximation of the
portfolio and consumption choice of an infinitely lived investor. Finally, Bren-
nan, Schwartz, and Lagnado ~1997! come to a similar conclusion for the
long-horizon asset allocation of a continuously rebalancing investor.

The above-mentioned papers model the conditional moments of returns as
functions of the forecasting variables and specify the dynamics of investment
opportunities. Then, they solve for an investor’s decisions using estimates of
the implied conditional distribution of returns. In contrast, I directly estimate
the portfolio and consumption choice from the data. I focus on how the mean-
variance ratio, which ultimately determines the portfolio and consumption
choice, depends on the forecasting variables. To avoid structural assumptions,
I develop a nonparametric approach of recovering single-period and multi-
period decision rules. My estimates and inferences are robust to model mis-
specification and provide reliable guidance for future research on this topic.

My empirical analysis focuses on single-period and multiperiod decision
rules of an investor with constant relative risk aversion ~CRRA! and a one-
month to 20-year horizon. The investor allocates wealth to the New York

1 Returns and forecasting variables must have a time-invariant Markov structure. If the
relation between returns and forecasting variables is time-varying or if investment opportuni-
ties depend on the whole history of forecasting variables, conditional expectations cannot be
estimated with conditional sample averages.

2 Campbell ~1987!, Campbell and Shiller ~1988!, Fama and Schwert ~1977!, Fama and French
~1988a, 1989!, Ferson and Harvey ~1991!, and Keim and Stambaugh ~1986!, among others,
document time-varying risk premia. Black ~1976!, Bollerslev, Chou, and Kroner ~1992!, French,
Schwert, and Stambaugh ~1987!, Schwert ~1989!, and Pagan and Schwert ~1990!, among others,
present evidence of time-varying volatility.
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Stock Exchange ~NYSE! index and a 30-day Treasury bill. Decisions are made
conditional on the dividend yield, default premium, term premium, and lagged
excess return. I estimate how the single-period portfolio and consumption
choice depends on these forecasting variables and on the investor’s horizon.
I also illustrate how the hedging demand, the difference between the multi-
period and myopic portfolio choices, depends on the forecasting variables, on
the horizon, and on the rebalancing frequency. Finally, I analyze the sensi-
tivity of consumption to the forecasting variables.

Section I sets up the portfolio and consumption choice of a finite-horizon
investor and derives the conditional Euler equations that characterize these
decisions as a function of the forecasting variables. Section II then develops
the conditional method of moments. The empirical analysis follows in Sec-
tion III. Section IV concludes the paper.

I. Portfolio and Consumption Choice

A. Expected Utility Maximization

Consider the portfolio and consumption choice of a finite-horizon investor
who maximizes the expected utility of lifetime consumption. Assume the util-
ity of lifetime consumption is additively time separable, exhibits constant rel-
ative risk aversion, and, without loss of generality, precludes bequests to future
generations. Then, an investor maximizes the conditional expectation of:

u~C0,C1, . . . ,CT ! 5 (
t50

T

b tu~Ct !, ~4!

where

u~Ct ! 5 5
Ct

12g

1 2 g
for g . 0 and g Þ 1;

ln~Ct ! for g 5 1.

~5!

Two parameters describe CRRA preferences. The discount factor b measures
patience, the willingness to give up consumption today for consumption to-
morrow. The coefficient g captures risk aversion, the reluctance to trade
consumption for a fair gamble over consumption today.

Each period t, the investor consumes a fraction ct of wealth Wt and allo-
cates savings to a risk-free security with return R f [ exp~r f ! and to N risky
securities with excess returns ERt11

e [ exp~ Irt11! 2 exp~r f !, where Irt11 and r f

are continuously compounded rates of return. In allocating fractions at of
savings to the risky securities, the investor faces the intertemporal budget
constraint:

GWt11 5 ~1 2 ct !Wt ERt11
p , ~6!

where ERt11
p

[ R f 1 at
' ERt11

e is the gross return on wealth generated by the
portfolio choice.
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For CRRA preferences the portfolio and consumption rules are only func-
tions of the current state of nature and the horizon. As a result, given a
K-dimensional vector of forecasting variables zt that captures the current
state, the decision rules are at 5 a~zt ,T 2 t! and ct 5 c~zt ,T 2 t!. Since there
are no bequests, the investor consumes everything at the end of the horizon.
This implies a~z,0! 5 0 and c~z,0! 5 1.

Unless the investor is myopic ~the log utility case! the portfolio and con-
sumption choice anticipates future changes in investment opportunities. To
formalize this idea, define the investor’s indirect utility as:

V~zt ,Wt ,T 2 t! 5 max
$at ,ct%t5t

T
EF(

t5t

T

bt2tu~Ct!*ztG
5 max

at ,ct
u~ctWt ! 1 bE @V~ Izt11, GWt11,T 2 t 2 1!6zt # ,

~7!

subject to the budget constraint. This indirect utility V is the expected util-
ity of current and future portfolio and consumption choices given the cur-
rent state, wealth, and horizon. Its definition demonstrates that the investor’s
intertemporal optimization is equivalent to a single-period portfolio and con-
sumption choice with state-, wealth-, and horizon-dependent utility u~Ct! 1
V~ Izt11, GWt11,T 2 t 2 1!.

A convenient feature of CRRA preferences is that its indirect utility sep-
arates into two terms, functions of next period’s consumption choice and of
next period’s utility of wealth:

V~zt ,Wt ,T 2 t! 5 c~zt ,T 2 t!u~Wt !, ~8!

where

c~zt ,T 2 t! 5 Hc~zt ,T 2 t!2g for g . 0 and g Þ 1;

1 for g 5 1.
~9!

Equation ~8! follows from the homotheticity of CRRA preferences and equa-
tion ~9! from solving the envelope condition ?V0?W 5 ?u0?C for c.

B. Conditional Euler Equations

CRRA utility and indirect utility are globally concave. As a result, there
exists an interior solution to the portfolio and consumption choice. This im-
plies that the decision rules are characterized by the following N 1 1 con-
ditional Euler equations, the first-order conditions of the investor’s expected
utility maximization:

Fa~zt ,T 2 t!

c~zt ,T 2 t!G 5 HFa

cG : E @mt11~a,c,T 2 t!6zt # 5 0J , ~10!
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where

mt11~a,c,T 2 t! 5 3
c~ Izt11,T 2 t 2 1!u '~ GWt11! ERt11

e

bc~ Izt11,T 2 t 2 1!
u '~ GWt11!

u '~cWt !
ERt11

p
2 14 , ~11!

and Wt11 and c are given by equations ~6! and ~9!, respectively.

II. Econometric Approach

A. Method of Moments

To illustrate how sample analogues of the Euler equations generate consis-
tent estimates of the portfolio and consumption decisions, assume investment
opportunities are constant. Constant investment opportunities imply that the
CRRA portfolio and consumption choice is independent of both the forecasting
variables and the horizon. This means in equation ~10! the $a,c% that set the
conditional expectation of mt11 to zero also set their unconditional expecta-
tion to zero. As long as returns are stationary, replacing this unconditional ex-
pectation with an historic average yields a consistent estimator:

F [aT

[cT
G 5 HFa

cG :
1
T (

t51

T

mt11~a,c,t! 5 0J. ~12!

Of course, the premise of this paper is that investment opportunities are
time-varying and that the CRRA portfolio and consumption choice is a func-
tion of the observed state. To extend this traditional method of moments
approach, we need to parameterize the decision rules. Unfortunately, unless
we know exactly how returns relate to forecasting variables, there is no
theoretically correct parameterization of the portfolio and consumption choice.3

B. Conditional Method of Moments

The basic idea of the conditional method of moments is that sample ana-
logues to the conditional, not to the unconditional, expectation of mt11 gen-
erate consistent estimates of the decisions under time-varying investment
opportunities. To understand this point, consider first the case of discretely
varying investment opportunities.

Suppose investment opportunities assume only one of S states: z 5
$z1, z2, . . . , zS% . The portfolio and consumption rules are the S sets of deci-
sions $a~zs ,t!,c~zs ,t!%s51

S that equate to zero the conditional expectations

3 For some return generating processes the implied parameterization of the decision rules
can be derived. For example, Campbell and Viceira ~1996! show that if returns are homoske-
dastic log-normal with a risk premium that is linear in an AR~1! state variable, the portfolio
~consumption! choice of an infinitely lived investor with CRRA utility is approximately linear
~quadratic! in the state variable.
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E @mt116z 5 zs# . Replacing these conditional expectations with historic av-
erages, each constructed only with returns observed in state s, gives the
estimator:

F [aT ~z,t!

[cT ~z,t!G 5 5
Fa

c
G :

1
T1

(
$t:zt5z1%

mt11~a,c,t! 5 0 if z 5 z1

Fa

c
G :

1
T2

(
$t:zt5z2%

mt11~a,c,t! 5 0 if z 5 z2

J

Fa

c
G :

1
TS

(
$t:zt5zS %

mt11~a,c,t! 5 0 if z 5 zS .

~13!

where Ts is the number of times state s is observed in the sample of size T 5

(s51
S Ts .
This example illustrates how the conditional method of moments works. I

consider the portfolio and consumption choice in each state s as independent
of the others and apply the traditional method of moments, equation ~12!,
only to returns observed in state s. This yields consistent estimates of the
portfolio and consumption choice in state s. Collectively, the S estimates
reveal how the investor’s decisions depend on the forecasting variables. In
other words, the conditional method of moments yields a pointwise, or non-
parametric, estimate of the portfolio and consumption rules.

In principle, the same approach applies when investment opportunities
vary continuously. The only problem is that for any state z, the finite sample
at hand may not contain enough observations from state z to reliably com-
pute a historic average of mt11 with only returns observed in that state. An
intuitive solution to this problem is to estimate the portfolio and consump-
tion choice in state z not only with returns observed in state z, but also with
returns observed in states “similar” to z. The remainder of this section for-
malizes this solution.

Define a weighting function v~~z 2 zt!0hT ! to measure how similar an
observed state zt is to some reference state z. Then, to estimate the portfolio
and consumption choice in state z, simply replace the conditional expecta-
tion of mt11 with an v-weighted average of mt11:4

F [aT ~z,t!

[cT ~z,t!G 5 HFa

cG :
1

ThT
K (

t51

T

vS z 2 zt

hT
Dmt11~a,c,t! 5 0J. ~14!

4 Luttmer ~1997! uses a similar econometric approach to estimate transaction cost bounds
that reconcile consumption asset pricing models with historic data on aggregate consumption
and returns.
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The parameters hT , so-called bandwidths, scale the difference between the
observed state zt and the reference state z. The scaled differences determine
how similar these two states are. The factor ThT

K ensures that the weighted
sum is a nondegenerate average as hT r 0.

One way to understand the estimator is to think of the weighting function
as a data window centered on z and of the bandwidth as the window’s width.
Such an estimator uses an observation t only if zt falls within the data win-
dow. If zt falls outside the data window, the state is judged too “dissimilar”
from z and the estimator ignores this observation.

A more sophisticated weighting scheme uses all observations, but places
greater emphasis on data from states that are very similar to the reference
state. One weighting function that accomplishes this is the product of K
standard normal densities:

v~u! 5 )
i51

K

k~ui ! 5 (
i51

K 1

%2p
expS2

1
2

ui
2D. ~15!

The bandwidths can still be interpreted as window widths. On one hand,
a greater hT means an observation from state zt Þ z is weighted downward
less for being different from the z. On the other hand, a smaller hT means
that this observation is weighted downward more. At the extremes, hT 5 `
corresponds to the unconditional estimator, equation ~12!, and hT 5 0 cor-
responds to the discrete state estimator, equation ~13!. Interpreting band-
widths as window widths also helps clarify how the optimal hT varies with
the sample size and across forecasting variables. Suppose a window must
contain at least 10 observations. A small sample or widely dispersed fore-
casting variable requires a wider window than does a large sample or less
dispersed forecasting variable.5

Like any statistical approach, the conditional method of moments has its
advantages and its disadvantages. The advantage is being nonparametric.
The estimator is less biased than incorrectly specified parametric estima-
tors, and at least it is consistent. However, this comes at the cost of losing
observations. As a result, the variance of the estimator exceeds the variance
of a correctly specified parametric estimator. hT is set to achieve a mean
squared error optimal balance between the bias and variance for a sample of
size T.

Up to this point, the discussion implicitly assumes that we can construct
mt11 from the data. However, because the indirect utility function is sepa-
rable and recursive, mt11~a,c,t! in equation ~11! depends on the unknown
consumption choice c~zt11,t 2 1!, for all t . 1. To understand the extent of

5 Consistency of the estimator only requires that hT r 0 fast enough as T r `. This means
that, without loss of generality, the cross-sectional subscripts on the bandwidths can be ignored
for ease of notation. However, in practice the optimal bandwidths in a sample of size T are
different across forecasting variables.
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this problem, consider the two-period portfolio and consumption choice.
If we want to estimate $a~z,2!,c~z,2!% we need $mt11~a,c,2!%t51

T , each of
which depends on $c~zt11,1!%t51

T . In turn, to estimate any c~zt11,1! we need
$mt11~a,c,1!%t51

T , which we can construct because c~z,0! 5 1.
Fortunately, this problem appears more serious than it actually is. Be-

cause the portfolio and consumption choice is only forward looking, we can
estimate the t-period decision rules two ways: either jointly estimate $a~zt , j !,
c~zt , j !% , for t 5 1,2, . . . ,T and j 5 1,2, . . . ,t, by stacking the tT sets of moment
conditions E @mt11~a,c, j !6z 5 zt# , or recursively estimate the decision rules
starting with a~z,0! 5 0 and c~z,0! 5 1. The resulting estimates and their
properties are identical.

C. Asymptotics

Intuitively, the conditional method of moments yields consistent estimates
of the decision rules because the weighted average of mt11 converges to the
conditional expectation of mt11 uniformly for all $a,c% , t, and z. This fact,
and the features of CRRA utility, are the key ingredients to establishing the
following asymptotic result.

Assume $Rt11
e , zt %t51

T are realizations of a strictly stationary process, the
weighting function v~u! is the product of K univariate continuous and bounded
functions k~ui! with:

E
IR

k~u! du 5 1, E
IR

uk~u! du 5 0, and E
IR

u2k~u! du , `, ~16!

the bandwidths hT satisfy:

hT r 0, ThT
K14 r 0, and ThT

K r ` as T r `, ~17!

the function c~z,t 2 1! is known, and the regularity conditions in the Ap-
pendix apply, then:

%ThT
KSF [aT ~z,t!

[cT ~z,t!G 2 Fa~z,t!

c~z,t!GD ~18!

converges in distribution to a multivariate normal random vector with zero
mean and variance-covariance matrix:

S~z,t! 5
D~z,t!21V~z,t!D~z,t!21

fz~z!
E

IRK
v2~u! du, ~19!
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where fz~z! is the unconditional density of z,

D~z,t! 5 EF ?mt11~a,c,t!

?@a ',c# *zG, ~20!

and V~z,t! 5 E @mt11~a,c,t!mt11~a,c,t!' 6z# . ~21!

The Appendix sketches a proof of this result.
The asymptotics resemble those of the traditional method of moments,

except for a slower rate of convergence in ~18! and the fact that the expec-
tations in equation ~20! are conditional on the forecasting variables.6 The
slower convergence rate of %ThT

K , instead of the parametric convergence
rate of %T, is the asymptotic cost of being nonparametric. This cost increases
exponentially with the number of forecasting variables K. As a result, this is
often referred to as the “curse of dimensionality” of nonparametric estimators.

A subtle difference between the limiting distribution above and that of the
traditional method of moments is that in the latter V 5 (j52`

` E @mt11 mt1j
' # .

This expression simplifies to V 5 E @mt11 mt11
' # only if marginal utility is

serially uncorrelated. By taking weighted averages of mt11 that are increas-
ingly more focused on a single state z as T r `, the conditional method of
moments asymptotically eliminates the effect of serial dependence in the
data. Although this feature is common to other nonparametric methods and
conveniently simplifies the asymptotics here, Robinson ~1983! warns about
exploiting such extreme results to draw inferences in finite samples.

The above result assumes that the function c is known. Of course, for
t . 1 this is not the case. However, the asymptotics of the estimator
extend to the case of an unknown c. Recall that one way to estimate the
t-period decision rules is to jointly estimate $a~zt , j !,c~zt , j !%, for t 5 1,2, . . . ,T
and j 5 1,2, . . . , t, by stacking the tT sets of moment conditions
E @mt11~a,c, j !6z 5 zt# . As a result, it is straightforward to alter the above
result to state that jointly $a~zt , j !,c~zt , j !%, for t 5 1,2, . . . ,T and j 5 1,2, . . . ,t,
are consistent and asymptotically normally distributed.

To understand how the conditional method of moments relates to other
nonparametric methods, the asymptotics suggest an alternative and insight-
ful interpretation of the estimator. Suppose we observe at time t 1 1 a noisy
measure of the CRRA portfolio and consumption choice at time t:

F Iat11

Ict11
G 5 Fa~zt ,t!

c~zt ,t!G 1 Tnt11, ~22!

6 The estimator inherits the standard asymptotic bias of a nonparametric regression. How-
ever, conditions ~16! and ~17! guarantee that this bias is negligible as T r `. Alternatively, one
could explicitly account for the bias by modifying the moment conditions. Such bias corrections
are suggested by Fan, Heckman, and Wand ~1995! and by Gozalo and Linton ~1994! in different
contexts.
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where n 5 D~zt ,t!21mt11~a~zt ,t!,c~zt ,t!,t! is a zero mean measurement er-
ror. Then, the asymptotics of the conditional method of moments are the
same as those of a nonparametric regression of the observed portfolio and
consumption choices $at11,ct11% on the forecasting variables zt .7 This implies
that standard results for nonparametric regression carry over to this inter-
pretation of the conditional method of moments.

D. Weighting Function and Bandwidth

The product of normal densities, equation ~15!, is not the only weighting
function that yields consistent estimates. Admissible weighting functions come
in a variety of shapes. Their common feature is that the weighted average of
mt11 converges uniformly to the conditional expectation of mt11. Although
the estimator’s efficiency depends on the shape of the weighting function,
simulation studies for other nonparametric estimators show that the shape
of the weighting function is far less important to the asymptotics than choos-
ing the bandwidths as a function of the sample size.8 Using a product of
standard normal densities as weighting function is convenient because it is
symmetric, uniformly positive, and computationally efficient.

Choosing the bandwidths is the real obstacle to applying the conditional
method of moments. To appreciate the importance of bandwidth choice, con-
sider how the properties of the estimator change as I vary the bandwidths.
On one hand, if I increase hT and thereby widen the spread of the weighting
function, the estimator uses more data on the whole but differentiates less
between data from different states. This decreases the variance of the esti-
mator, but increases the potential bias by averaging across observations that
are less “similar.” On the other hand, if I decrease hT , and thereby narrow
the spread of the weighting function, the estimator differentiates more be-
tween data from different states but uses fewer data on the whole. This
decreases the potential bias of the estimator, but it increases the variance.
Optimal bandwidths achieve a desirable balance between bias and variance.

The conventional metric for trading off bias against variance is to mini-
mize the mean squared error ~MSE! of the estimates. Applying standard
results from the nonparametric regression literature to the transformed re-
gression interpretation, equation ~22!, the bandwidths that minimize the
average MSE of the estimates are of the form

hT 5 ls~z!T 2~10~K14!!, ~23!

7 Tsybakov ~1982! and Härdle ~1984! establish that robust nonparametric regressions have
this dual interpretation. Both estimators have a limiting normal distribution with the same
asymptotic bias and variance.

8 Silverman ~1986! and Härdle ~1990! summarize the literature on optimal weighting func-
tions for nonparametric regression estimators. They conclude that over a large class of admis-
sible weighting functions, differences in the mean squared error of the estimators are small.
The asymptotic consequences of choosing a substantially suboptimal weighting function are
less serious than misspecifying the optimal bandwidths by only 10 percent.
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where s~z! is the vector of unconditional standard deviations of the fore-
casting variables. The constant l depends on S~z,t!, the first and second
derivatives of $a~z,t!,c~z,t!% with respect to z, and fz~z!. Unfortunately, none
of these quantities are known.

There are many ways to choose l in practice. I use “leave-one-out” cross-
validation, which is a data-driven approach. It minimizes the average squared
error in out-of-sample prediction. In this case, leave-one-out cross-validation
works as follows: For every observation $Rt11, zt% , use the remaining obser-
vations $Rj11, zj %j51, jÞt

T to estimate $a~zt ,t!,c~zt ,t!% and compute an out-of-
sample predictive error nt11 5 $at11 2 [a~zt ,t!, ct11 2 [c~zt ,t!% . Although the
observation $at11,ct11% does not exist, the predictive error can alternatively
be constructed from n 5 D21mt11 with an estimate of D~z,t!. Then, choose
l to minimize the sum of squared predictive errors (t51

T nt11
' nt11.

Following Stone’s ~1976! introduction of cross-validation for model selec-
tion, Clark ~1975! first uses this technique to choose bandwidths for non-
parametric estimators. Härdle and Marron ~1985! prove that leave-one-out
cross-validation yields asymptotically optimal bandwidths in a standard non-
parametric regression. Härdle ~1984! extends this result to a nonparametric
regression on pseudo-data, such as that defined by equation ~22!. This last
paper formally justifies the above-described leave-one-out cross-validation
procedure and guarantees its asymptotic optimality for the conditional method
of moments.

E. Finite-Sample Properties

Although the conditional method of moments is consistent, its finite-
sample properties are unknown.9 The accuracy of the estimator can be judged
in two ways: compare my results to other consistent estimates or conduct
controlled experiments. I use the second approach because other estimates
of portfolio and consumption rules may themselves be inconsistent.

Table I compares the finite-sample properties of the conditional method of
moments to that of the traditional regression approach. The results are based
on 5000 independent samples of T 5 300, 600, or 1200 observations. Returns
are generated by the regression:

ln~1 1 Rt11
e ! 5 0.059 1 0.016 ln~zt ! 1 et11, where et11 ; N~0,0.001!. ~24!

In Panel A the forecasting variable is distributed as ln~zt! ; N~23.455,0.125!.
In Panel B it is generated by the autoregression

ln~zt11! 5 20.023 1 0.993 ln~zt ! 1 jt11, where jt11 ; N~0,0.002!. ~25!

9 Pritsker ~1998! illustrates that persistence in financial data can substantially deteriorate
the finite-sample properties of nonparametric estimators. Then, asymptotic results are unreli-
able even in samples of several thousand observations.
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Table I

Finite-Sample Properties of the Conditional Method
of Moments

This table shows average conditional method of moments and regression approach estimates of
the single-period portfolio choice of an investor with constant relative risk aversion g 5 5. The
results are based on 5000 independent samples of T 5 300, 600, or 1200 excess returns Rt11

e and
realizations of a forecasting variable zt . Returns are generated by the regression:

ln~1 1 Rt11
e ! 5 0.059 1 0.016 ln~zt ! 1 et11, where et11 ; N~0,0.001!.

In Panel A the forecasting variable is distributed as ln~zt! ; N~23.455,0.125!. In Panel B it is
generated by the autoregression:

ln~zt11! 5 20.023 1 0.993 ln~zt ! 1 jt11, where jt11 ; N~0,0.002!.

The estimates represent the fraction of savings allocated to equities when the forecasting
variable is equal to its 10th, 25th, 50th, 75th, and 90th percentiles. Standard deviations of
the estimates are in parentheses. p-values of the difference between two portfolio choice
estimates are below the underbraces. The results for T 5 ` correspond to the true portfolio
choice.

Conditional Method of Moments Regression Approach

Percentile of z Percentile of z
Sample

Size 10% 25% 50% 75% 90% 10% 25% 50% 75% 90%

Panel A: Average Estimates for an Independent Forecasting Variable

T 5 300 0.10 0.25 0.40 0.56 0.72 0.11 0.27 0.44 0.61 0.76
~0.45! ~0.45! ~0.46! ~0.49! ~0.53! ~0.33! ~0.31! ~0.29! ~0.30! ~0.32!

T 5 600 0.11 0.25 0.41 0.58 0.73 0.11 0.27 0.44 0.61 0.76
~0.34! ~0.34! ~0.34! ~0.36! ~0.39! ~0.22! ~0.21! ~0.20! ~0.21! ~0.22!

0.09
0.12

0.02
0.02

asssssssssdsssssssssg asssssssssdsssssssssg
0.08 0.01

T 5 1200 0.11 0.26 0.42 0.59 0.74 0.12 0.27 0.44 0.61 0.76
~0.25! ~0.25! ~0.26! ~0.27! ~0.29! ~0.16! ~0.15! ~0.14! ~0.15! ~0.16!

T 5 ` 0.12 0.27 0.44 0.61 0.76 0.12 0.27 0.44 0.61 0.76

Panel B: Average Estimates for a Persistent Forecasting Variable

T 5 300 0.29 0.40 0.53 0.63 0.71 0.20 0.32 0.49 0.64 0.78
~0.35! ~0.37! ~0.38! ~0.36! ~0.35! ~0.41! ~0.44! ~0.44! ~0.45! ~0.45!

T 5 600 0.18 0.30 0.45 0.59 0.72 0.14 0.28 0.45 0.63 0.78
~0.26! ~0.28! ~0.29! ~0.25! ~0.26! ~0.27! ~0.28! ~0.30! ~0.30! ~0.29!

0.07
0.09

0.01
0.01

asssssssssdsssssssssg asssssssssdsssssssssg
0.06 0.01

T 5 1200 0.13 0.27 0.43 0.60 0.74 0.11 0.26 0.44 0.61 0.77
~0.21! ~0.22! ~0.23! ~0.25! ~0.26! ~0.18! ~0.19! ~0.20! ~0.20! ~0.19!

T 5 ` 0.12 0.27 0.44 0.61 0.76 0.12 0.27 0.44 0.61 0.76

asssssdsssssg
asssssdsssssg

asssssdsssssg
asssssdsssssg

asssssdsssssg
asssssdsssssg

asssssdsssssg
asssssdsssssg

Estimating Portfolio and Consumption Choice 1621



Together, equations ~24! and ~25! are a restricted form of the vector auto-
regression assumed by Balduzzi and Lynch ~1996!, Barberis ~1999!, Brennan
et al. ~1997!, Campbell and Viceira ~1996!, Kandel and Stambaugh ~1996!,
and Solnik ~1993!.10 The first equation implies that the single-period port-
folio choice is approximately linear in ln~zt!. The second equation makes the
forecasting variable highly persistent.

The left half of Table I shows average conditional method of moments
estimates of the single-period portfolio choice for g 5 5 and z equal to the
10th, 25th, 50th, 75th, and 90th percentiles of its stationary distribution.11

To abstract from bandwidth selection, I set l 5 1 and hence h 5 s~z!T 2105.
This yields a lower bounds on the finite-sample properties. The right half of
the table shows average regression approach estimates. Like the above au-
thors, I regress ln~1 1 Rt11

e ! on ln~zt! and solve for the optimal decision
given the implied conditional distribution of returns. Finally, T 5 ` gives
the true portfolio choice implied by the model.

The standard deviations of the estimates are in parentheses. For T 5 600
the fraction of estimated decision rules for which the portfolio choice for the
lower percentile exceeds that for the higher percentile is reported below the
underbraces. This statistic is a p-value of the slope of the decision rule be-
tween two percentiles.

Panel A of Table I shows that the estimator captures the shape of the
decision rule on average. The average estimates nearly match the true port-
folio choices, regardless of the sample size. The panel also shows that for T 5
600 the estimator is reasonably accurate. The p-values are high, although,
not surprisingly, they are lower than those of the regression approach. Com-
paring the results in Panel A to those in Panel B illustrates that for T 5 600
or 1200 the finite-sample properties of the estimator do not deteriorate if
the forecasting variable is persistent.12

III. Empirical Results

A. Preferences, Assets, and Forecasting Variables

The empirical results are for an investor with relative risk aversion g
ranging from one ~the log utility case! to 10. The horizon ranges from one
month to 20 years, and the rebalancing period, the time that elapses

10 The parameter values are least-squares estimates of the model from monthly data on
NYSE index returns, 30-day Treasury bill rates, and aggregate dividend yields. Section III.A
describes this data set.

11 The conditional method of moments cannot estimate the portfolio choice for an unobserved
level of the forecasting variable. Therefore, I compute the results for percentile z only from
samples for which z lies between the 5th and 95th percentiles of the observations. I apply the
same rule to the regression approach.

12 The precision of the estimator is better in Panel B than in Panel A. This is because of the
restriction in footnote 11. Given that z lies well within the range of the sample, there are more
similar observations in the sample if the forecasting variable is persistent than if it is inde-
pendent and identically distributed.
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between consecutive portfolio and consumption choices, ranges from one
month to four years. The coefficient of time preference is arbitrarily set to
b 5 0.99.

The investor has a choice between two securities, the value-weighted NYSE
index and a 30-day Treasury bill. Monthly returns for January 1947 to De-
cember 1996, a total of 600 observations, are from the Center for Research
in Security Prices ~CRSP!. Nominal returns are def lated by the rate of change
in the Consumer Price Index from CITIBASE.

Investment opportunities are described by four variables known to fore-
cast time-varying risk premia and volatility: the dividend yield, default pre-
mium, term premium, and lagged excess return. The dividend yield is the
sum of reinvested dividends paid on the NYSE index over the past 12 months,
divided by the current value of the index. It is computed with returns from
CRSP. The default premium is the annualized yield spread between Moody’s
Baa and Aaa rated bonds. The term premium is the difference in annualized
yields of a portfolio of long-term government bonds and a 90-day Treasury
bill. All bond yields are from CITIBASE. The lagged excess return is the
excess NYSE return measured over the previous rebalancing period. Table II
describes the data.

B. Unconditional Estimates

Panel A of Table III shows method of moments estimates of the single-
period portfolio choice, the fraction of savings allocated to equities. Panel B
shows estimates of the single-period consumption choice, the fraction of wealth
consumed. Across columns of Table III both the horizon and rebalancing
periods range from one month to four years.

To estimate n-month decisions I apply the unconditional estimator, equa-
tion ~12!, to n-month returns Rt1n [ exp~(j51

n rt1j ! and Rt1n
f

[ exp~(j51
n rt1j

f
!.

When n . 1, these returns overlap, and the estimator uses serially correlated
marginal utilities. Therefore, I report in parentheses the Newey and West ~1987!
estimates of the asymptotic standard errors.

The point estimates in Panel A of Table III are reasonable. Merton ~1969!
shows that with independent log-normally distributed returns and continu-
ous rebalancing, the CRRA portfolio choice is a 5 g21 E~ ERt11

e !0Var~ ERt11
e !.

Plugging in monthly sample moments from Table II yields portfolio choices
very similar to those in the first column of Table III.

This analytical solution also helps to understand the large standard er-
rors in Table III. Suppose we know Var~ ERt11

e ! and only need to estimate
E~ ERt11

e !. The standard errors of the resulting portfolio choice estimates are
10@g%T Std~ ERt11

e !# . Plugging in sample moments from Table II yields stan-
dard errors as large as those in Table III. This approximation shows that the
large standard errors are a feature of the data and are not a shortcoming of
the method of moments. Since we cannot accurately measure the uncondi-
tional equity risk premium, it is also difficult to estimate the fraction of
savings to be allocated to equities.
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Differences in estimates along any row of Panel A in Table III suggest that
the portfolio choice depends on the horizon. For example, an investor with
g 5 5 chooses a portfolio of 80 percent equities if the horizon is one month.
The same investor chooses a portfolio of 70 percent equities if the horizon is
one year and a portfolio of 100 percent equities if the horizon is four years.

Figure 1 supports this conclusion. It shows the portfolio choice as a func-
tion of the horizon for g 5 1 ~solid line!, g 5 2 ~dashed line!, g 5 5 ~dashed-
dotted line!, and g 5 10 ~dotted line!. After an initial decline, the portfolio
choice increases with the horizon. This is consistent with the regressions of
Fama and French ~1988b! and the variance ratios of Poterba and Summers
~1988!. Both studies find that long-horizon returns are negatively serially
correlated, which makes them less risky than monthly returns. Short- to
medium-horizon returns are positively serially correlated, which makes them
more risky than monthly returns.

Table II

Descriptive Statistics of Forecasting Variables and Returns
This table shows descriptive statistics of the dividend yield ~Div!, default premium ~Def!, term
premium ~Term!, and excess return ~Ret! computed with monthly observations from January
1947 to December 1996. The dividend yield is the sum of reinvested monthly dividends paid on
the NYSE index over the past 12 months divided by the current level of the index. The default
premium is the difference in annualized yields of Moody’s Baa and Aaa rated bonds. The term
premium is the difference in annualized yields of a portfolio of long-term government bonds and
the 90-day Treasury bill. The excess return is the monthly return on the NYSE index in excess
of the 30-day Treasury bill rate, def lated by the rate of change in the Consumer Price Index.
The lagged correlations are for a one-month lag.

Variables

Statistic Div Def Term Ret

Mean 3.97 0.92 1.17 0.68
Std. deviation 1.08 0.43 1.30 4.02
Skewness 0.64 1.49 20.31 20.37
Kurtosis 2.57 5.18 3.90 5.10

Percentile:
5% 2.66 0.45 21.04 25.89

25% 3.05 0.64 0.47 21.78
50% 3.81 0.77 1.17 0.92
75% 4.75 1.12 1.88 3.21
95% 6.09 1.81 3.40 6.41

Correlation with:
Div 1.00
Def 0.24 1.00
Term 20.10 0.08 1.00
Ret 20.03 0.04 0.12 1.00

Lagged Div 0.99 0.25 20.08 0.11
Lagged Def 0.22 0.98 0.11 0.07
Lagged Term 20.12 0.04 0.96 0.14
Lagged Ret 20.04 20.01 0.09 0.05
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Given the large standard errors in Table III, it is unclear whether the
portfolio choice differs statistically across horizons. To explore the accuracy
of the apparent horizon pattern, I repeat the analysis for an investor with
g 5 5 for 5000 resampled data sets of 600 monthly returns, sampled ran-
domly with replacement from the original data. As expected, the one-month
decision is statistically indistinguishable from the two- through four-year
decisions. However, in only 11 and nine percent of the resampled data sets

Table III

Single-Period Portfolio and Consumption Choice
as a Function of the Horizon

This table shows method of moments estimates of the unconditional single-period portfolio
choice a and consumption choice c of an investor with constant relative risk aversion g. Both
the horizon and rebalancing period range from one month to four years. The intertemporal
discount factor is b 5 0.99. The estimates in Panel A represent the fraction of savings allocated
to equities. The estimates in Panel B represent the fraction of wealth consumed. The method of
moments estimator $ [aT , [cT % of $a,c% is:

F [aT

[cT
G 5 HFa

cG :
1
T (

t51

T

mt11~a,c,1! 5 0J ,

where mt11 is the investor’s marginal utility, given a portfolio choice a, a consumption choice
c, and a horizon of one rebalancing period. Serial-correlation corrected asymptotic standard
errors are in parentheses. Note that the consumption choice of an investor with logarithmic
utility is deterministic: c 5 10~1 1 b!.

Horizon
Risk

Aversion 1-Month 3-Month 6-Month 1-Year 2-Year 4-Year

Panel A: Portfolio Choice

g 5 1 3.45 2.88 2.73 2.21 2.08 3.09
~0.83! ~0.72! ~0.64! ~0.49! ~0.45! ~0.63!

g 5 2 1.93 1.70 1.69 1.57 1.56 2.41
~0.45! ~0.39! ~0.36! ~0.29! ~0.25! ~0.36!

g 5 5 0.79 0.72 0.71 0.69 0.73 1.02
~0.20! ~0.17! ~0.16! ~0.15! ~0.17! ~0.24!

g 5 10 0.40 0.37 0.36 0.35 0.37 0.49
~0.10! ~0.09! ~0.08! ~0.07! ~0.09! ~0.12!

Panel B: Consumption Choice

g 5 1 0.50 0.51 0.52 0.53 0.56 0.62
na na na na na na

g 5 2 0.50 0.51 0.51 0.53 0.55 0.61
~0.09! ~0.08! ~0.08! ~0.07! ~0.06! ~0.07!

g 5 5 0.50 0.50 0.51 0.51 0.53 0.56
~0.11! ~0.10! ~0.10! ~0.09! ~0.08! ~0.09!

g 5 10 0.50 0.50 0.50 0.51 0.52 0.54
~0.11! ~0.10! ~0.10! ~0.09! ~0.08! ~0.09!
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does the one-month portfolio choice exceed the six-month or one-year deci-
sions by as much as in the real data. In other words, the initial decline in the
portfolio choice is marginally significant.

Unconditional decisions are optimal if returns are independent and identi-
cally distributed or if the trade-off between risk and expected reward is con-
stant. Numerous studies document time-varying risk premia and return
volatility. They all but rule out the first scenario. Moreover, the results of Camp-
bell ~1987! and Harvey ~1989! statistically reject the second scenario. Al-
though there already exists indirect evidence that the portfolio and consumption
choice depends on the forecasting variables, I can directly test this hypothesis.

If the unconditional decisions are optimal, they are characterized by both
the conditional and the unconditional Euler equations. Additionally, they are
overidentified by the moment conditions E @mt11 J g~zt!# 5 0, which result
from multiplying the conditional Euler equations by functions g~z! of the
forecasting variables and then taking unconditional expectations. Hansen
~1982! shows how to use overidentifying moment conditions to construct a
Wald test of the assumptions used to generate them. The test statistic is:

J 5 min
a,c

TF 1
T (

t51

T

mt11~a,c,1! J g~zt !G 'S21F 1
T (

t51

T

mt11~a,c,1! J g~zt !G,

~26!
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Figure 1. Single-period portfolio choice as a function of the horizon. This figure shows
method of moments estimates of the unconditional single-period portfolio choice of an investor
with constant relative risk aversion g 5 1 ~solid line!, 2 ~dashed line!, 5 ~dashed-dotted line!,
and 10 ~dotted line!. The horizon and rebalancing period range from one month to four years.
Each portfolio choice represents the fraction of savings allocated to equities.
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where S is the asymptotic covariance matrix of mt11 J g~zt!. Under the null
hypothesis that the decisions are independent of z, this statistic is distrib-
uted Chi-square with degrees of freedom equal to the number of functions g
less the number of decisions.

Table IV presents univariate Wald tests computed with Newey and West
~1987! estimates of S. Asymptotic p-values are in parentheses. The test func-
tions in Panel A are g~z! 5 @1, z# . To increase the power of the test against
nonlinear alternatives, the test functions in Panels B and C are g~z! 5 @1,z,z2 #
and g~z! 5 @1,z,z2,z3 # , respectively. The tests decisively reject that the monthly
or annual decisions are independent of the forecasting variables. Panel A
shows that the portfolio and consumption choice is correlated with the div-
idend yield, term premium, and lagged excess return. Including squared and
cubed forecasting variables in Panels B and C further increases the evidence
against unconditional decisions.

C. Conditional Estimates

C.1. Single-Period Decision Rules

Figure 2 shows univariate decision rules of an investor with g 5 1 ~solid
line!, 2 ~dashed line!, 5 ~dashed-dotted line!, and 10 ~dotted line!.13 Both the
horizon and rebalancing period are one month. Every line represents port-
folio choices for the forecasting variable ranging from its 10th to 90th per-
centiles. In turn, each portfolio choice is computed by applying to monthly
returns the conditional estimator, equation ~14!, with the univariate weight-
ing function, equation ~15!, and cross-validated bandwidths.

As expected, the decision rules are not constant. All variables forecast
changes in investment opportunities. The portfolio choice is approximately
linear in the dividend yield and excess return. It is nonlinear in both the
default premium and term premium. However, the degree of nonlinearity in
these variables diminishes as g increases.

Table V summarizes the results from Figure 2. It reports the portfolio
choice at the 25th, 50th, and 75th percentiles of each forecasting variable. It
also gives the average portfolio choice over the sample period. Asymptotic
standard errors are in parentheses.14 The numbers confirm the visual con-
clusion from Figure 2. The investor chooses substantially different portfolios
depending on the realization of each forecasting variable.

Consider again an investor with g 5 5. At a 4.8 percent dividend yield
~75th percentile! the investor holds a portfolio of 83 percent equities, com-
pared to only 44 percent at a 3.1 percent dividend yield ~25th percentile!.
The portfolio choice is equally sensitive to the other variables. The differ-

13 The pairwise correlations between the forecasting variables are low. As a result, the mar-
ginal effect of the variables in multivariate decisions is similar to their effect in univariate
decisions. To save space, I only present univariate results here.

14 Although the asymptotics treat the data as serially uncorrelated, I follow Conley et al.
~1997! and report Newey and West ~1987! estimates of the asymptotic standard errors.
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Table IV

Wald Tests of whether the Portfolio and Consumption Choice
Is Independent of the Forecasting Variables

This table shows Wald tests of whether the single-period portfolio and consumption choice of an
investor with constant relative risk aversion g is uncorrelated with a function g~z! of the fore-
casting variable z. Both the horizon and rebalancing period are one month or one year. The in-
tertemporal discount factor is b50.99. The forecasting variables are the dividend yield ~Div!, default
premium ~Def!, term premium ~Term!, and lagged excess return ~Ret!. The test statistic is:

JT 5 min
a,c

TF 1
T (

t51

T

mt11~a,c,1! J g~zt !G ' ZS21F 1
T (

t51

T

mt11~a,c,1! J g~zt !G,

where mt11 is the investor’s marginal utility, given a portfolio choice a, a consumption choice
c, and a horizon of one rebalancing period. ZS is a serial-correlation corrected estimate of the
asymptotic covariance matrix of mt11 J g~zt!. Asymptotic p-values are in parentheses. Note
that the consumption choice of an investor with g 5 1 is deterministic: c 5 10~1 1 b!.

1-Month Horizon 1-Year Horizon
Risk

Aversion Div Def Term Ret Div Def Term Ret

Panel A: g~z! 5 @1, z#

g 5 1 5.98 0.36 2.66 4.67 14.75 0.59 24.53 0.84
~0.02! ~0.55! ~0.10! ~0.04! ~0.00! ~0.44! ~0.00! ~0.36!

g 5 2 7.89 3.67 8.83 5.28 11.77 3.30 12.82 11.96
~0.02! ~0.16! ~0.01! ~0.07! ~0.00! ~0.19! ~0.00! ~0.00!

g 5 5 7.76 3.51 8.06 5.82 11.43 2.99 9.32 11.10
~0.02! ~0.17! ~0.02! ~0.05! ~0.00! ~0.22! ~0.01! ~0.00!

g 5 10 7.74 3.48 7.90 6.09 11.38 2.93 9.06 10.88
~0.02! ~0.18! ~0.02! ~0.05! ~0.00! ~0.23! ~0.01! ~0.00!

Panel B: g~z! 5 @1, z, z2 #

g 5 1 7.17 2.81 12.42 4.76 17.41 2.35 25.09 2.11
~0.03! ~0.25! ~0.00! ~0.09! ~0.00! ~0.31! ~0.00! ~0.35!

g 5 2 19.41 15.01 20.45 5.47 12.63 4.65 11.17 18.11
~0.00! ~0.00! ~0.00! ~0.24! ~0.01! ~0.32! ~0.02! ~0.00!

g 5 5 21.25 15.20 18.52 6.37 13.54 3.72 8.26 17.16
~0.00! ~0.00! ~0.00! ~0.17! ~0.01! ~0.44! ~0.08! ~0.00!

g 5 10 21.77 15.29 17.91 6.97 13.78 3.55 8.14 16.87
~0.00! ~0.00! ~0.00! ~0.13! ~0.01! ~0.47! ~0.09! ~0.00!

Panel C: g~z! 5 @1, z, z2, z 3 #

g 5 1 7.28 4.56 18.09 4.89 19.47 3.94 25.80 4.25
~0.06! ~0.21! ~0.00! ~0.18! ~0.00! ~0.27! ~0.00! ~0.24!

g 5 2 27.56 18.70 21.88 5.15 13.16 13.61 9.94 23.78
~0.00! ~0.00! ~0.00! ~0.52! ~0.04! ~0.03! ~0.12! ~0.00!

g 5 5 28.45 18.94 20.05 6.26 15.06 11.30 9.37 22.90
~0.00! ~0.00! ~0.00! ~0.39! ~0.02! ~0.08! ~0.15! ~0.00!

g 5 10 28.72 19.06 19.51 6.90 15.52 10.78 9.38 22.64
~0.00! ~0.00! ~0.00! ~0.33! ~0.02! ~0.10! ~0.15! ~0.00!
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ences between the equity holdings at the 75th and 25th percentiles of the
default premium, term premium, and excess return are 20, 31, and 22 per-
cent of savings, respectively.

Given there is only weak statistical evidence of predictability at a monthly
frequency, the portfolio choice seems overly sensitive to the forecasting vari-
ables. This finding is explained by Kandel and Stambaugh ~1996!, who show
that even after considering estimation risk, a CRRA investor acts aggres-
sively to weak predictive evidence. Since my estimator abstracts from esti-
mation risk, the results in Figure 2 and Table V are not surprising.

In fact, the estimates are reasonable. The figures of Barberis ~1999! sug-
gest that, ignoring parameter uncertainty, a one-year investor with g 5 5
holds between 10 and 100 percent equities as the dividend yield ranges from
3.0 to 4.6 percent. The results of Campbell and Viceira ~1996! imply that an
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Figure 2. Single-period portfolio choice as a function of the forecasting variables. This
figure shows conditional method of moments estimates of the conditional single-period portfolio
choice of an investor with constant relative risk aversion g 5 1 ~solid line!, 2 ~dashed line!, 5
~dashed-dotted line!, and 10 ~dotted line!. The horizon and rebalancing period are one month.
Each portfolio choice represents the fraction of savings allocated to equities as a function of the
dividend yield ~Panel A!, default premium ~Panel B!, term premium ~Panel C!, or lagged excess
return ~Panel D!. Histograms of the forecasting variables are in the background.
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Table V

Single-Period Portfolio Choice as a Function
of the Forecasting Variables

This table shows conditional method of moments estimates of the conditional single-period port-
folio choice a of an investor with constant relative risk aversion g. Both the horizon and rebal-
ancing period are one month. The estimates represent the fraction of savings allocated to equities
when the forecasting variable z is equal to its 25th, 50th, and 75th percentiles. The forecasting
variables are the dividend yield ~Panel A!, default premium ~Panel B!, term premium ~Panel C!,
and lagged excess return ~Panel D!. Each panel also shows the average conditional portfolio choice
over the sample period. The conditional method of moments estimator [aT of a is:

[aT ~z,1! 5 Ha :
1

ThT
(
t51

T

vS zt 2 z

hT
Dmt11~a,0.5,1! 5 0J ,

where mt11 is the investor’s marginal utility, given a portfolio choice a, a consumption choice
c 5 0.5, and a horizon of one rebalancing period. v is a standard normal density and the
bandwidth hT is chosen by leave-one-out cross-validation. Serial-correlation corrected asymp-
totic standard errors are in parentheses. Bootstrapped p-values of the difference between two
portfolio choice estimates are below the underbraces.

Percentile of z Percentile of z
Risk

Aversion 25% 50% 75% Average 25% 50% 75% Average

Panel A: z 5 Dividend Yield Panel B: z 5 Default Premium

g 5 1 2.23 2.97 3.85 3.08 3.33 2.97 2.66 3.26
~1.16! ~0.93! ~0.86! ~0.93! ~0.96! ~1.04!

g 5 2 1.12 1.61 2.05 1.77 1.81 1.55 1.36 1.83
~0.66! ~0.57! ~0.65! ~0.59! ~0.57! ~0.62!

g 5 5 0.44 0.67 0.83 0.74 0.75 0.62 0.55 0.76
~0.28! ~0.26! ~0.28! ~0.25! ~0.24! ~0.27!

0.04
0.19

0.05
0.35

assssssssssssdsssssssssssg assssssssssssdsssssssssssssg

0.09 0.25
g 5 10 0.21 0.35 0.41 0.37 0.38 0.31 0.28 0.38

~0.15! ~0.13! ~0.15! ~0.13! ~0.12! ~0.14!

Panel C: z 5 Term Premium Panel D: z 5 Lagged Excess Return

g 5 1 4.13 4.31 4.24 3.71 3.24 3.60 3.90 3.54
~1.04! ~0.96! ~0.98! ~0.92! ~0.89! ~0.85!

g 5 2 2.25 2.83 2.96 2.32 1.77 2.03 2.28 2.04
~0.55! ~0.48! ~0.49! ~0.53! ~0.52! ~0.51!

g 5 5 0.91 1.20 1.32 0.99 0.73 0.84 0.95 0.85
~0.24! ~0.23! ~0.24! ~0.23! ~0.22! ~0.23!

0.01
0.22

0.08
0.09

assssssssssssdsssssssssssg asssssssssssssdssssssssssssg

0.02 0.08
g 5 10 0.46 0.62 0.69 0.51 0.37 0.43 0.48 0.43

~0.12! ~0.12! ~0.13! ~0.11! ~0.11! ~0.12!

assssssdsssssssg
assssssdsssssssg

assssssdsssssssg
assssssdsssssssg

assssssdsssssssg
assssssdsssssssg

assssssdsssssssg
assssssdsssssssg
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infinitely lived investor with g 5 4 holds a portfolio of more than 100 percent
equities at a 4.8 percent dividend yield and of almost no equities at a 3.1
percent dividend yield.

The standard errors in Table V are larger than those in Table III. This is
not surprising because the conditional method of moments uses only data
from state z and states similar to z to estimate the decisions in state z. As a
result, each estimate in Table V is based on fewer data than the estimates in
Table III. This explains the increase in standard errors.

To further explore the accuracy of the estimates, I repeat the analysis for
an investor with g 5 5 for 5000 resampled data sets in which by construction
returns are independent of the forecasting variables. Each data set consists
of 600 monthly returns and realizations of the forecasting variables, sam-
pled randomly and independently with replacement from the original data.
The results are summarized beneath the underbraces in Table V. These sta-
tistics are the fractions of “resampled data” estimates for which the slope of
the decision rule between two percentiles exceeds the slope of the “real data”
decision rule. They are bootstrapped p-values of the slope between two points
of the decision rule.

With 90 percent confidence, the slope of all decision rules is nonzero be-
tween the 25th and 50th percentiles. Between the 25th and 75th percentiles
the slope is positive for the dividend yield, term premium, and excess re-
turn. Between the 50th and 75th percentiles it is positive only for the excess
return. With 95 percent confidence, the slope between the 25th and 50th
percentiles is nonzero for the dividend yield, default premium, and term
premium. Between the 25th and 75th percentiles it is positive only for the
term premium.

Campbell and Viceira’s ~1996! standard errors are of similar magnitude.
Furthermore, the intercepts of their linear decision rules are less than one
standard deviation from zero but the slope coefficients are statistically sig-
nificant. As with the unconditional portfolio choice, we cannot estimate the
fraction of savings to be allocated to equities on average. However, we can
estimate how the portfolio choice depends on the forecasting variables.

To examine how sensitive the estimates are to the choice of bandwidths, Pan-
els A through D of Figure 3 show three sets of decision rules for an investor
with g55. The first set ~dotted lines! is computed with the cross-validated band-
widths. They are the same as the dashed-dotted lines in Figure 2. The other
two sets are computed with bandwidths 25 percent smaller ~minus symbols!
or 25 percent larger ~plus symbols! than the cross-validated bandwidths.

The panels illustrate that the above conclusions are insensitive to reason-
able variations in bandwidths. Increasing or decreasing the bandwidths by 25
percent does not change the fact that the portfolio choice depends
on the forecasting variable.15 The decisions are always less nonlinear in the
dividend yield and excess return than they are in the default premium and term
premium. Of course, the degree of nonlinearity depends on the bandwidths.

15 Also, the bootstrapped p-values in Table III are insensitive to a 25 percent increase or
decrease in bandwidths.
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Figure 4 shows the decision rules as a function of the horizon for g 5 5. The
horizon and rebalancing period range from three months to four years. Each
n-month portfolio choice is computed by applying to overlapping n-month re-
turns the conditional estimator, equation ~14!, with univariate weighting func-
tion, equation ~15!, and the same bandwidths as in Figure 2 and Table V.16

16 The MSE optimal bandwidths change with the horizon. Unfortunately, with dependent
data leave-one-out cross-validation leads to bandwidths that are too small relative to the opti-
mal. Although Hart and Vieu ~1990! claim that “leave-some-out” cross-validation eliminates
this downward bias, bandwidth selection with overlapping data is controversial. As a result, I
use the same bandwidths throughout my analysis. Of course, I make sure that my conclusions
are insensitive to reasonable variations in these bandwidths.
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Figure 3. Sensitivity of the portfolio choice estimates to the bandwidths. This figure
shows three sets of conditional method of moments estimates of the conditional single-period
portfolio choice of an investor with constant relative risk aversion g 5 5. The horizon and
rebalancing period are one month. The first set of estimates ~dotted line! is computed with
cross-validated bandwidths and hence corresponds to the dashed lines in Figure 2. The other
two sets of estimates are computed with bandwidths 25 percent smaller ~minus symbols! or 25
percent larger ~plus symbols! than the cross-validated bandwidths. Each portfolio choice rep-
resents the fraction of savings allocated to equities as a function of the dividend yield ~Panel A!,
default premium ~Panel B!, term premium ~Panel C!, or lagged excess return ~Panel D!. His-
tograms of the forecasting variables are in the background.
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In Panel A the portfolio choice increases with the dividend yield for all
horizons. More interestingly, both the level and the slope of the decision rule
increase with the horizon. At a 3.1 percent dividend yield, an investor with
g 5 5 and a three-month, two-year, or four-year horizon holds 36, 50, or 76
percent of savings in equities. At a 4.8 percent dividend yield, the same
investor holds 100, 153, or 172 percent of savings in equities.

This horizon pattern matches that of Barberis ~1999!. It is also consistent
with the results of Fama and French ~1988a!. They document that the slope
coefficient and the R2 of a regression of returns on dividend yields increase
significantly with the return horizon. Interestingly, the increase in portfolio
choice for a given dividend yield is nonlinear, even nonmonotonic for some
dividend yields, in the horizon. This finding differs from the linear relation
reported by Barberis and could be evidence of model misspecification in that
study.
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Figure 4. Single-period portfolio choice as a function of the horizon and the forecast-
ing variables. This figure shows conditional method of moments estimates of the conditional
single-period portfolio choice of an investor with constant relative risk aversion g 5 5. The
horizon and rebalancing period range from two months to four years. Each portfolio choice
represents the fraction of savings allocated to equities as a function of the horizon and the
dividend yield ~Panel A!, default premium ~Panel B!, term premium ~Panel C!, or lagged excess
return ~Panel D!.
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Overall, the average portfolio choice in Panels B through D increases with
the horizon. However, the results are less systematic than in Panel A. In par-
ticular, the slopes of the decision rules between the 25th and 75th percentiles
are of opposite signs at different horizons. This illustrates the advantage of the
conditional method of moments. It would be hard to formulate a model of in-
vestment opportunities that generates such irregular horizon patterns.

The focus has been on portfolio choice. This is because the single-period
consumption choice is surprisingly insensitive to the forecasting variables.
The conditional estimates are within a few percent of the unconditional es-
timates in Table III. For instance, with a one-month horizon the consump-
tion choice for g 5 5 increases from 50.1 to 50.4 percent of wealth as the
dividend yields ranges between 3.1 and 4.8 percent. With a one-year horizon
the consumption choice increases from 51.0 to 51.9 percent of wealth. Fur-
thermore, the estimated shapes of the consumption rules mirror those of the
portfolio rules.

C.2. Multiperiod Decision Rules

Merton ~1969! illustrates that if returns are independent and identically
distributed, investors with the same CRRA preferences and rebalancing pe-
riod hold identical portfolios, whether they live for three months or 20 years.
However, if investment opportunities are time-varying, the multiperiod port-
folio choice can diverge from the single-period or myopic portfolio choice due
to hedging demands. Hedging demands arise when the investor tries to smooth
the effects of predictable changes in future investment opportunities.

A natural place to start analyzing hedging demands is the two-period
problem. Table VI reports two-period hedging demands of an investor with
g 5 5, a six-month to four-year horizon, and a corresponding three-month
to two-year rebalancing period. It shows the difference between the esti-
mated two-period portfolio choice [aT~z,2! and the estimated myopic port-
folio choice [aT~z,1! at the 25th, 50th, and 75th percentiles of each forecasting
variable. The table also gives the average hedging demand over the sample
period.

To assess the statistical significance of the estimates, I repeat the analy-
sis using 5000 resampled data sets in which investment opportunities are
by construction time-varying but serially uncorrelated. Each data set con-
sists of 600 n-period returns and their corresponding realizations of the
forecasting variable, sampled as pairs randomly with replacement from the
original data. The fraction of “resampled data” hedging demands that ex-
ceed the “real data” hedging demand is reported in parentheses beneath
each estimate.

Panel A shows a two-period investor holds a greater fraction of savings in
equities than does an otherwise identical myopic investor. Depending on the
horizon and the dividend yield, the hedging demand in most cases exceeds one
percent and in some cases five percent of savings. Furthermore, the boot-
strapped p-values indicate that the estimates are statistically significant.
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Of the other forecasting variables, only the excess return generates sig-
nificant hedging demands. Six-month and one-year hedging demands are
negative. Two- and four-year hedging demands are positive. This pattern
corresponds to upward sloping three- and six-month and downward sloping
one- and two-year decision rules in Figure 4.

Table VI

Two-Period Hedging Demand as a Function of the Horizon
and the Forecasting Variables

This table shows conditional method of moments estimates of the conditional two-period hedg-
ing demand of an investor with constant relative risk aversion g 5 5. The horizon ranges from
one to ten years and the rebalancing period is half the horizon. The intertemporal discount
factor is b 5 0.99. The estimates represent the difference between the two-period portfolio
choice a~z,2! and the myopic portfolio choice a~z,1!, expressed as a percentage of savings, when
the forecasting variable z is equal to its 25th, 50th, and 75th percentiles. The forecasting vari-
ables are the dividend yield ~Panel A!, default premium ~Panel B!, term premium ~Panel C!, and
lagged excess return ~Panel D!. Each panel also shows the average hedging demand over the
sample period. The conditional method of moments estimator $ [aT~z,t!, [cT~z,t!% of the t-period
portfolio choice a~z,t! and consumption choice c~z,t! is:

F [aT ~z,t!

[cT ~z,t!G 5 HFa

cG :
1

ThT
(
t51

T

vS zt 2 z

hT
Dmt11~a,c,t! 5 0J ,

where mt11 is the investor’s marginal utility, given a portfolio choice a, a consumption choice
c, and a horizon of t 5 1 or t 5 2 rebalancing periods. v is a standard normal density and the
bandwidth hT is chosen by leave-one-out cross-validation. Bootstrapped p-values are in
parentheses.

Percentile of z Percentile of z

Horizon 25% 50% 75% Average 25% 50% 75% Average

Panel A: z 5 Dividend Yield Panel B: z 5 Default Premium

6-month 0.69 0.83 1.62 1.09 20.07 20.02 0.06 20.01
~0.05! ~0.04! ~0.01! ~0.59! ~0.53! ~0.38!

1-year 1.54 1.70 2.89 2.12 0.08 0.12 0.21 0.31
~0.04! ~0.03! ~0.01! ~0.30! ~0.25! ~0.17!

2-year 2.76 2.75 5.58 3.55 20.08 20.04 0.30 0.39
~0.02! ~0.02! ~0.01! ~0.64! ~0.54! ~0.09!

4-year 5.68 4.37 4.48 4.74 0.03 0.06 0.39 0.99
~0.02! ~0.01! ~0.01! ~0.41! ~0.35! ~0.07!

Panel C: z 5 Term Premium Panel D: z 5 Lagged Excess Return

6-month 20.62 20.44 20.25 20.43 20.64 20.56 20.43 20.52
~0.74! ~0.61! ~0.21! ~0.86! ~0.82! ~0.92!

1-year 20.86 20.61 20.31 20.56 20.78 20.79 20.79 20.78
~0.87! ~0.76! ~0.18! ~0.97! ~0.98! ~0.98!

2-year 21.24 21.16 20.95 20.97 1.20 1.19 1.16 1.18
~0.92! ~0.89! ~0.86! ~0.03! ~0.02! ~0.02!

4-year 20.75 20.98 21.23 20.96 2.42 2.44 2.48 2.44
~0.79! ~0.85! ~0.89! ~0.02! ~0.01! ~0.01!
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Figure 5 takes a closer look at the multiperiod portfolio choice for the
dividend yield. It shows the hedging demand as a function of the horizon for
g 5 5. The horizon ranges from three months to 20 years, and the rebalanc-
ing period is three months ~Panel A!, six months ~Panel B!, one year ~Panel
C!, and two years ~Panel D!. Each hedging demand is the difference between
the t-period portfolio choice [aT~z,t! and the myopic portfolio choice [aT~z,1!,
where t is the number of decisions the investor makes until the end of the
horizon. Table VII reports the hedging demand for the 25th, 50th, and 75th
percentiles of the dividend yield. It also shows the average hedging demand
over the sample period.

Figure 5 and Table VII illustrate that for a given dividend yield the hedg-
ing demand increases monotonically with the horizon. This result does not
depend on the rebalancing frequency. Consider the case of annual rebalanc-
ing in Panel C in Figure 5 or Table VII. For a 3.1 percent dividend yield, a
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Panel D: 2-Years Rebalancing

Figure 5. Hedging demand as a function of the horizon, rebalancing period, and the
dividend yield. This figure shows conditional method of moments estimates of the conditional
multiperiod hedging demand of an investor with constant relative risk aversion g 5 5. The
horizon ranges from three months to 20 years and the rebalancing period is three months
~Panel A!, six months ~Panel B!, one year ~Panel C!, or two years ~Panel D!. Each hedging
demand represents the difference between the multiperiod and the myopic portfolio choice as a
function of the horizon and the dividend yield ~Div!.
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four-year, ten-year, or 20-year investor holds an additional 8, 14, or 17 per-
cent of saving in equities, relative to the one-year investor who already holds
37 percent of savings in equities. For a 4.8 percent dividend yield, the hedg-
ing demands are 16, 29, and 35 percent of savings in addition to the one-year
investor’s 100 percent of savings in equities.

The magnitude of these hedging demands matches Campbell and Viceira’s
~1996! estimates. They report that on average the percentage hedging de-
mand, the fraction of total demand for equity due to hedging motives, for an
infinitely lived investor with g 5 4 and annual rebalancing is 35 percent.
The above numbers for a 20-year horizon imply percentage hedging de-
mands of 31 and 26 percent for 3.1 and 4.8 percent dividend yields, respectively.

Table VII

Hedging Demand as a Function of the Horizon, Rebalancing Period,
and the Dividend Yield

This table shows conditional method of moments estimates of the conditional multiperiod hedg-
ing demand of an investor constant relative risk aversion g 5 5. The horizon ranges from two
to ten years and the rebalancing period is three months ~Panel A!, six months ~Panel B!, one
year ~Panel C!, and two years ~Panel D!. The intertemporal discount factor is b 5 0.99. The
estimates represent the difference between the multiperiod portfolio choice a~z,t! and the my-
opic portfolio choice a~z,1! when the dividend yield z is equal to its 25th, 50th, and 75th per-
centiles. Each panel also shows the average hedging demand over the sample period. The
conditional method of moments estimator $ [aT~z,t!, [cT~z,t!% of the t-period portfolio choice a~z,t!
and the t-period consumption choice c~z,t! is

F [aT ~z,t!

[cT ~z,t!G 5 HFa

cG :
1

ThT
(
t51

T

vS zt 2 z

hT
Dmt11~a,c,t! 5 0J ,

where mt11 is the investor’s marginal utility, given a portfolio choice a, a consumption choice
c, and a horizon of t 5 1 ~myopic! or t 5 ~horizon!0~rebalancing period! rebalancing periods. v
is a standard normal density and the bandwidth hT is chosen by leave-one-out cross-validation.
Note that a two-year portfolio choice with a two-year rebalancing period is by definition a
myopic decision.

Dividend Yield Percentile Dividend Yield Percentile

Horizon 25% 50% 75% Average 25% 50% 75% Average

Panel A: 3-Month Rebalancing Panel B: 6-Month Rebalancing

2-Year 3.63 4.84 9.19 5.78 4.26 5.05 8.61 6.00
4-Year 5.35 7.22 13.38 8.37 7.77 9.54 15.55 10.75
10-Year 6.67 9.05 16.62 10.37 11.52 14.37 23.01 15.85
20-Year 7.10 9.65 17.67 11.03 12.85 16.11 25.75 17.72

Panel C: 1-Year Rebalancing Panel D: 2-Year Rebalancing

2-Year 2.76 2.75 5.58 3.55 0.00 0.00 0.00 0.00
4-Year 7.51 7.93 15.53 9.61 5.68 4.37 4.48 4.74
10-Year 14.37 15.65 28.51 17.96 15.64 12.78 11.72 12.76
20-Year 17.47 19.24 34.75 21.93 20.95 17.39 15.34 16.92
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As t increases to `, my estimates converge to estimates of the infinite-
horizon portfolio choice. It is surprising how quickly this convergence occurs.
The graphs suggest that a 15-year, and certainly a 20-year investor acts like
an infinitely lived investor.

Another interesting finding is that for a fixed horizon, the shape of the
hedging demand as a function of the dividend yield depends on the rebal-
ancing frequency. Overall, in Panels A through C of Figure 5 the hedging
demand is greater for higher dividend yields. This implies that a 10- or
20-year investor times the market more aggressively than does a single-
period investor. In Panel D the hedging demand is higher for lower dividend
yields. This has the opposite implication and is more consistent with Siegel’s
~1994! investment advice to hold stocks for the long run.

In absolute terms, the multiperiod consumption choice is as insensitive to
the dividend yield as is the single-period consumption choice. Recall that
single-period consumption for g 5 5 increases from 51.0 to 51.9 percent of
wealth as the dividend yield ranges between its 25th and 75th percentiles.
With annual rebalancing, the 4-, 10-, and 20-year consumption choice in-
creases almost linearly from 21.9 to 23.3, from 11.6 to 12.8, and from 7.8 to
9.1 percent of wealth, respectively. However, since the level of consumption
decreases with the horizon due to consumption smoothing, the relative sen-
sitivity of the consumption choice to the dividend yield increases dramati-
cally with the horizon.

All empirical results are for b 5 0.99. Decreasing the discount factor, thereby
making the investor less patient, leads to even less responsive consumption
rules. As a result, the hedging demands in Table VII and Figure 5 are low-
ered. For instance, with b 5 0.99 and annual rebalancing, the average hedg-
ing demands for a 4-, 10- and 20-year horizon are 9.6, 18.0, and 21.9 percent
of savings, respectively. If b 5 0.95, the average hedging demands are 8.2,
14.2, and 16.4 percent, respectively. However, the shapes of the decision rules
are unaffected by the discount factor.

IV. Conclusion

This paper addresses an important question economic theory leaves un-
answered: How does portfolio and consumption choice depend on variables
that forecast time-varying investment opportunities? My research is distinct
from the existing empirical literature on portfolio and consumption choice
because it does not assume a model of how returns relate to forecasting
variables or of how investment opportunities change through time. Instead,
I develop a nonparametric approach that generates consistent estimates shaped
by the data.

I estimate single-period and multiperiod portfolio and consumption rules
of an investor with CRRA utility who allocates wealth to the NYSE index or
a 30-day Treasury bill. I find that the portfolio choice varies significantly
with the dividend yield, default premium, term premium, and lagged excess
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return. Furthermore, the optimal decisions depend on the investor’s horizon
and rebalancing frequency. The fact that the optimal multiperiod portfolio
choice differs from the myopic portfolio choice suggests that future research
on empirical anomalies in financial data must consider the multiperiod as-
pect of the investors portfolio and consumption choice.

Several aspects of portfolio and consumption choice remain unexplored.
For example, Canner, Mankiw, and Weil ~1997! document and discuss anom-
alous investment advice of professionals. The following two extensions of my
empirical analysis will help clarify less stylized and more realistic portfolio
and consumption choice problems. First, I will allow the investor to allocate
wealth to more assets, such as equity portfolios that ref lect mutual fund
styles, short-term bonds, long-term bonds, and foreign equities. Second, I
will study decision rules of alternative preference specifications.

Transaction costs further complicate the multiperiod portfolio choice. Re-
balancing a portfolio every period is typically not optimal. Instead, the in-
vestor holds a portfolio until the expected gains from rebalancing outweigh
the transaction costs of trading. It is possible to modify the conditional Euler
equations to ref lect both fixed and proportional transaction costs. The con-
ditional method of moments can then be used to estimate not only portfolio
and consumption rules, but also optimal rebalancing rules.

My estimator is a conditional version of Morvai’s ~1991, 1992! investment
strategies. This author proves that for log utility and in the case of constant
investment opportunities, the strategy of equation ~12! yields an asymptot-
ically optimal portfolio choice. It achieves the optimal growth rate of wealth
in an infinite sequence of portfolio choices. Studying similar decision theo-
retic properties of the conditional method of moments is an ambitious but
interesting topic of future research.

Appendix

This appendix shows how to derive the asymptotics of the conditional method
of moments. It combines the properties of Huber’s ~1964! M-estimators with
those of nonparametric time series regressions. Robinson ~1983! first proves
the consistency and derives the asymptotic distribution of such nonparamet-
ric M-estimators for time series. Gourieroux, Monfort, and Tenreiro ~1995!
establish the same results under less restrictive assumptions. It is straight-
forward to adapt their arguments to the conditional method of moments.

Below are the assumptions and main steps sufficient to prove consistency
and derive the asymptotic distribution of the conditional method of moments.
For further details, see Gourieroux et al. ~1995! and the references cited therein.

A. Assumptions on the Data

ASSUMPTION 1: Returns and forecasting variables $Rt11
e , zt %t51

T are realiza-
tions from a strictly stationary IRN 3 IRK-valued process $Xt% .
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ASSUMPTION 2: $Xt% is geometric-mixing. This means that for every A in F1
k

and every B in Fk1n
` the following inequality is satisfied:

6P~A ù B! 2 P~A!P~B!6 # frn for all positive integers n, ~A1!

where f $ 0 , r [ ~0,1! , and Fm
n is the s-field generated by $Xt %t5n

m .

ASSUMPTION 3: $zt% has a continuous distribution that is described by a con-
tinuous and strictly positive density function fz on a compact subset Z of IRK.

ASSUMPTION 4: For all t $ 0, $z0, zt% has a continuous transition density func-
tion fzt , z0

that is uniformly bounded in a neighborhood of $z, z% .

B. Assumptions on Marginal Utility

ASSUMPTION 5: For every return and horizon, mt11 is a continuous and twice
differentiable function of the portfolio and consumption choice $a,c% on a
compact choice set A 3 C of IRN11.

ASSUMPTION 6: For every feasible portfolio and consumption choice and hori-
zon, mt11 is a measurable function of the return Rt11

e .

ASSUMPTION 7: mt11 is Lipschitz continuous. This means that for every re-
turn, horizon, any two portfolio and consumption choices $a,c% and $a ',c ' % in
A 3 C, and for some positive constant a, independent of these choices, the
following inequality is satisfied:

6mt11~a,c,t! 2 mt11~a ',c ',t!6 # a7$a,c% 2 $a ',c ' %7. ~A2!

ASSUMPTION 8: There exist constants b [ #0,1@ and d . 0, such that the fol-
lowing inequality is satisfied:

EFsup
a[A

sup
c[C
6mt11~a,c,t!620b1dG , `. ~A3!

C. Assumptions on Expected Marginal Utility

ASSUMPTION 9: M`~z,a,c,t! 5 E @mt11~a,c,t!6z# is uniformly equicontinuous.
This means that for all positive e there exists a constant d such that the
following inequality is satisfied:

sup
z[Z

sup
z ' : 7z '2z7,d

sup
a[A

sup
c[C
6M`~z,a,c,t! 2 M`~z ',a,c,t!6 , e. ~A4!

ASSUMPTION 10: For every realization of the forecasting variables and hori-
zon, there exists a portfolio and consumption choice $a~z,t!,c~z,t!% [ A 3 C
that is a unique zero of M`~z,a,c,t!.
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ASSUMPTION 11: For $a,c% 5 $a~z,t!,c~z,t!% and some constant d . 0:

E @7mt11721d # , `; ~A5!

E @mt11 mt11
' 6z# fz~z! is continuous in z; ~A6!

E @7mt11721d 6z# fz~z! is bounded in a neighborhood of z. ~A7!

ASSUMPTION 12: For $a,c% 5 $a~z,t!,c~z,t!% and some constant d . 0:

EF** ?mt11

?@a ',c# **
21dG , `; ~A8!

EF ?mt11

?@a ',c# *zG fz~z! is continuous in z; ~A9!

EF** ?mt11

?@a ',c# **
21d

*zG fz~z! is bounded in a neighborhood of z. ~A10!

D. Assumptions on the Weighting Function

ASSUMPTION 13: The weighting function v~u! is the product of K univariate,
continuous, and bounded functions k~ui! with

E
IR

k~u! du 5 1, E
IR

uk~u! du 5 0, and E
IR

u2k~u! du , `. ~A11!

ASSUMPTION 14: The weighting function is Lipschitz continuous. This means
that for any two points u and u ' in IRK and for some positive constant a,
independent of these points, the following inequality is satisfied:

6v~u! 2 v~u ' !6 # a7u 2 u ' 7. ~A12!

E. Assumptions on the Bandwidths

ASSUMPTION 15: The bandwidths hT satisfy:

hT r 0, ThT
K14 r 0, and ThT

K r ` as T r `. ~A13!

ASSUMPTION 16: For the constant b from Assumption 12,

T ~12b!02hT
K

log~T !
r ` as T r `. ~A14!
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The bandwidths Assumption 13 and the weighting function Assumption 15
are more restrictive than necessary to derive an asymptotic distribution of
the conditional method of moments. They assure that the asymptotic bias of
the estimator vanishes as T r `.

The marginal utility assumptions are general enough to be satisfied by
CRRA utility and other popular preferences. Assumptions 8 and 16 are par-
ticularly important. They distinguish Gourieroux et al.’s ~1995! arguments
from similar proofs in the literature. With these assumptions we can estab-
lish uniform consistency of the conditional method of moments for non-
bounded marginal utility.

F. Consistency

To establish consistency, it is sufficient to prove uniform almost sure con-
vergence of:

MT ~z,a,c,t! 5
1

ThT
K (

t51

T

vS z 2 zt

hT
Dmt11~a,c,t! ~A15!

to M`~z,a,c,t!. Assumption 9, that M` is continuous, Assumption 10, that
$a~z!,c~z!% exists, and the compactness of $Z, A,C% guarantee the result.

Following the arguments in Gourieroux et al. ~1995!, consider the follow-
ing decomposition of MT :

MT ~z,a,c,t! 5 ~MT ~z,a,c,t! 2 E @MT ~z,a,c,t!# !
assssssssssssssdssssssssssssssg

1 E @MT ~z,a,c,t!#.
assssssdssssssg ~A16!

Tr`
&& 0 a.s.

Tr`
&& M` a.s.

The uniform consistency of MT and uniform almost sure convergence of E @MT#
to M` imply the required uniform almost sure convergence of MT to M`.

So then, the first step is to show that:

sup
z[Z

sup
a[A

sup
c[C
6MT 2 E @MT #6 5 0 a.s. ~A17!

The proof of Proposition 1 in Mack and Silverman ~1982! illustrates one way
to establish equation ~A17! without assuming that marginal utility is bounded.
MT can be expressed as a sum of the following two terms:

MT
' ~z,a,c,t! 5

1
ThT

K (
$t:6mt116#T l %

vS z 2 zt

hT
Dmt11~a,c,t!, ~A18!

MT
''~z,a,c,t! 5

1
ThT

K (
$t:6mt116.T l %

vS z 2 zt

hT
Dmt11~a,c,t!, ~A19!

1642 The Journal of Finance



with l [ # ~20b 1 d!21, ~20b!21 @, where b and d are the constants in Assump-
tion 8. Given this choice of l and the inequality in Assumption 8, it is straight-
forward to adapt the above-mentioned proof to show that:

sup
z[Z

sup
a[A

sup
c[C
6MT

''~z,a,c,t! 2 E @MT
''~z,a,c,t!#6 5 0 a.s. ~A20!

Standard asymptotic arguments and an inequality from Bosq ~1988!, which
uses Assumption 16 to bound P~6MT

' 2 E @MT
' #6 . e!, for e . 0, ensure the

consistency of MT
' . Adding the continuity Assumptions 7, 8, and 14, together

with the bandwidths Assumptions 15 and 16, yields uniform consistency,
and hence completes the proof of equation ~A17!.

Finally, the same arguments as in the proof of Lemma 4 in Collomb and
Härdle ~1986!, the equicontinuity Assumption 9, weighting function Assump-
tion 13, the bandwidths Assumption 15, and the results of Parzen ~1962!,
imply that:

sup
z[Z

sup
a[A

sup
c[C
6E @MT # 2 M`6 5 0 a.s. ~A21!

The main result follows.

G. Limiting Distribution

Expanding MT around the portfolio and consumption choice $a~z!,c~z!%
yields

1
ThT

K (
t51

T SvS z 2 zt

hT
Dmt11 2 EFvS z 2 zt

hT
Dmt11GD

asssssssssssssssssssssdssssssssssssssssssssssssg

Tr`
&& NS0,

1
ThT

K

V~z,t!

fz~z!
E

IRK
v2~u! duD

1
1

ThT
K (

t51

T

vS z 2 zt

hT
D ?mt11

?@a ',c#
%ThT

KSF [aT ~z,t!

[cT ~z,t!G 2 Fa~z,t!

c~z,t!GD
asssssssssssdsssssssssssg

Tr`
&& D~z,t!

~A22!

1
1

ThT
K (

t51

T

EFvS z 2 zt

hT
Dmt11G . 0,

asssssssssssssdsssssssssssssg
Tr`

&& 0

where mt11 is evaluated at $a~z!,c~z!% .
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The limiting distribution of the first term follows from the central limit
theorem derived in Robinson ~1983!. The convergence of the second term to
D~z,t! can be established like the above consistency of MT . Finally, the weight-
ing function Assumption 13 and the bandwidths Assumption 15 ensure that
the the third term vanishes as T r `.
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