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The standard estimate of prevalence is the proportion of positive results obtained from the application of a diagnostic test to a
random sample of individuals drawn from the population of interest. When the diagnostic test is imperfect, this estimate is biased.
We give simple formulae, previously described by Greenland (1996) for correcting the bias and for calculating confidence intervals
for the prevalence when the sensitivity and specificity of the test are known. We suggest a Bayesian method for constructing credible
intervals for the prevalence when sensitivity and specificity are unknown. We provide R code to implement the method.

1. Introduction

The prevalence, θ, of a disease is the proportion of subjects in
the population of interest who have the disease in question
[1, page 46]. A standard way to estimate prevalence is to
apply a diagnostic test to a random sample of n individuals
and use the estimator

θ̂ =
T

n
, (1)

where T is the number of individuals who test positive.
The sensitivity, se, of a diagnostic test for presence/ab-

sence of a disease is the probability that the test will give a
positive result, conditional on the subject being tested having
the disease, whilst the specificity, sp, is the probability that the
test will give a negative result, conditional on the subject not
having the disease. An imperfect test is one for which at least
one of se and sp is less than one. An imperfect test may give
either or both of a false positive or a false negative result, with
respective probabilities 1−sp and 1−se. A similar issue arises
in individual diagnostic testing. In that context, prevalence
is assumed to be known and the objective is to make a dia-
gnosis for each subject tested. Important quantities are then
the positive and negative predictive values, defined as the con-
ditional probabilities that a subject does or does not have the
disease in question, given that they show a positive or nega-
tive test result, respectively. Even when both se and sp are
close to one, the positive and negative predictive values of a

diagnostic test depend critically on the true prevalence of the
disease in the population being tested. In particular, for a rare
disease, the positive predictive value can be much smaller
than either se or sp.

2. Estimation of Prevalence

Suppose that an imperfect test is applied to a random sample
of n subjects, T of whom give a positive result. The standard

estimator θ̂ given by (1) is now biased for θ. Let φ denote the

expectation of θ̂. Then, the relationship between θ and φ is
linear, and given by

φ = se × θ +
(
1− sp

)
× (1− θ) =

(
1− sp

)
+
(
se + sp − 1

)
θ.

(2)

[2]. Under the reasonable assumption that se + sp > 1, that
is, that the test is superior to the toss of a coin and φ is an
increasing function of θ. It follows that if the values of se and
sp are known a confidence interval, (a, b) say, for φ can be
converted straightforwardly to a confidence interval (c,d) for
θ by applying the pair of transformations

c = max

[
0,

{
a−

(
1− sp

)}

se + sp − 1

]
,

d = min

[
1,

{
b−

(
1− sp

)}

se + sp − 1

]
.

(3)

See Figure 1 for an illustration.
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Typically, when the true prevalence is low, φ > θ and the
effect of the bias correction is to shift the interval estimate of
prevalence towards lower values. For example, if se = sp =
0.9 and θ = 0.01, then φ = 0.108. As the true prevalence
increases, the relative difference between φ and θ decreases;
for example, if se = sp = 0.9 as before but now θ = 0.2, then
φ = 0.26.

3. Unknown Sensitivity and Specificity

If se and sp are unknown, θ can still be estimated, albeit with
reduced precision, using a Bayesian approach. This requires
us to specify a prior distribution for θ and informative prior
distributions for se and sp (informative, because the data
give essentially no information about se or sp). Assume
temporarily that se and sp are both known. The sampling
distribution of T , the number of positive test results out of n
individuals tested, given θ is binomial, with number of trials
n and probability of a positive outcome φ = c1 + c2θ, where
c1 = 1− sp and c2 = se+ sp−1. A convenient, uninformative
prior for θ is the uniform distribution on (0, 1). The marginal
distribution of T is then obtained as

h(t) =

∫ 1

0

⎛
⎝n
t

⎞
⎠(c1 + c2θ)2(1− c1 − c2θ)n−tdθ

= c−1
2

⎛
⎝n
t

⎞
⎠
∫ c1+c2

c1

φ2
(
1− φ

)n−t
dφ

= c−1
2

⎛
⎝n
t

⎞
⎠{B(c1 + c2; t + 1,n− t + 1)

−B(c1, t + 1,n− t + 1)},

(4)

where

B
(
x;α,β

)
=

∫ 1

0
xα−1(1− x)β−1dx, (5)

is the incomplete beta function. The posterior distribution
for θ given se and sp follows as

g
(
θ | T = t, se, sp

)
=

( n
t )(c1 + c2θ)2(1− c1 − c2θ)n−t

h(t)
, (6)

where h(t) is given by (4). Finally, to allow for the uncertainty
in se and sp, we substitute c1 = 1 − sp and c2 = se + sp − 1
on the right-hand-side of (6) and integrate with respect to
the joint prior, p(u, v) say, for se and sp, to give the posterior
distribution for θ as

f (θ | T = t) =

∫∫ 1

0
g(θ | T = t,u, v)p(u, v)dudv. (7)

4. Example

Suppose that we sample n = 100 individuals, of whom T =
20 give positive results. The uncorrected estimate of preva-

lence (1) is 0.2. Solving the quadratic equation (0.2− θ)2
=

0
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Figure 1: Converting an interval estimate of φ, the probability
of a positive test result, into an interval estimate of θ, the true
prevalence, for a test with sensitivity 0.9 and specificity 0.75. The
vertical and horizontal arrows denote the interval estimates of φ and
θ, respectively.

0 0.1 0.2 0.3 0.4

0

2

4

6

8

θ

p
(θ

)

Figure 2: Posterior distributions of prevalence θ for a sample of 100
individuals of whom 20 tested positive, using a test with (a) known
sensitivity and specificity each equal to 0.9 (solid line); (b) unknown
sensitivity and specificity with prior expectations each equal to 0.9
(dashed line, see text for details of prior specification).

1.962θ(1 − θ) gives a 95% confidence interval for θ as
(0.122, 0.278). If we assume that se = sp = 0.9, inversion of

(2) gives the corrected estimate θ̂ = (0.2 − 0.1)/0.8 = 0.125,
whilst (3) gives the corresponding 95% confidence interval
as (0.042, 0.236).

We now assume that se and sp are unknown and specify
independent beta prior distributions, each with parameters
α = β = 2 but scaled to lie in the interval (0.8, 1); hence,
the prior for each of se and sp is unimodal wit prior expec-
tation 0.9. A 95% Bayesian credible interval for θ is (0.003,
0.246), wider than and shifted to the left of the classical con-
fidence interval. Incidentally, the corresponding 95% Bay-
esian credible interval for θ assuming known se = sp = 0.9 is
(0.038, 0.230). This is much closer to the classical confidence
interval, which is as expected since we have specified an
uninformative prior for θ. Figure 2 shows the posterior
distributions for θ assuming known or unknown se and sp.
The greater spread of the latter represents the loss of preci-
sion that results from not knowing the sensitivity and speci-
ficity of the test.
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#

# R function for Bayesian estimation of prevalence using an

# imperfect test.

#

# Notes

#

# 1. Prior for prevalence is uniform on (0,1)

# 2. Priors for sensitivity and specificity are independent scaled

# beta distributions

# 3. Function uses a simple quadrature algorithm with number of

# quadrature points as an optional argument "ngrid" (see below);

# the default value ngrid=20 has been sufficient for all examples

# tried by the author, but is not guaranteed to give accurate

# results for all possible values of the other arguments.

#

prevalence.bayes<-function(theta,T,n,lowse=0.5,highse=1.0,
sea=1,seb=1,lowsp=0.5,highsp=1.0,spa=1,spb=1,ngrid=20,coverage=0.95) {

#

# arguments

# theta: vector of prevalences for which posterior density is required

# (will be converted internally to increasing sequence of equally

# spaced values, see "result" below)

# T: number of positive test results

# n: number of indiviudals tested

# lowse: lower limit of prior for sensitivity

# highse: upper limit of prior for sensitivity

# sea,seb: parameters of scaled beta prior for sensitivity

# lowsp: lower limit of prior for specificity

# highsp: upper limit of prior for specificity

# spa,spb: parameters of scaled beta prior for specificity

# ngrid: number of grid-cells in each dimension for quadrature

# coverage: required coverage of posterior credible interval

# (warning message given if not achieveable)

#

# result is a list with components

# theta: vector of prevalences for which posterior density has

# been calculated

# post: vector of posterior densities

# mode: posterior mode

# interval: maximum a posteriori credible interval

# coverage: achieved coverage

#

ibeta<-function(x,a,b) {

pbeta(x,a,b)∗beta(a,b)

}

ntheta<-length(theta)
bin.width<-(theta[ntheta]-theta[1])/(ntheta-1)
theta<-theta[1]+bin.width∗(0:(ntheta-1))
integrand<-array(0,c(ntheta,ngrid,ngrid))
h1<-(highse-lowse)/ngrid
h2<-(highsp-lowsp)/ngrid
for (i in 1:ngrid) {

se<-lowse+h1∗(i-0.5)
pse<-(1/(highse-lowse))∗dbeta((se-lowse)/(highse-lowse),sea,seb)
for (j in 1:ngrid) {

sp<-lowsp+h2∗(j-0.5)
psp<-(1/(highsp-lowsp))∗dbeta((sp-lowsp)/(highsp-lowsp),spa,spb)
c1<-1-sp
c2<-se+sp-1

Algorithm 1: Continued.
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f<-(1/c2)∗choose(n,T)∗(ibeta(c1+c2,T+1,n-T+1)-ibeta(c1,T+1,n-T+1))
p<-c1+c2∗theta
density<-rep(0,ntheta)
for (k in 1:ntheta) {

density[k]<-dbinom(T,n,p[k])/f
}

integrand[,i,j]<-density∗pse∗psp
}

}

post<-rep(0,ntheta)
for (i in 1:ntheta) {

post[i]<-h1∗h2∗sum(integrand[i,,])
}

ord<-order(post,decreasing=T)
mode<-theta[ord[1]]
take<-NULL
prob<-0
i<-0
while ((prob<coverage/bin.width)&(i<ntheta)) {

i<-i+1
take<-c(take,ord[i])
prob<-prob+post[ord[i]]
}

if (i==ntheta) {

print("WARNING: range of values of theta too narrow")

}

interval<-theta[range(take)]
list(theta=theta,post=post,mode=mode,interval=interval,coverage=prob∗bin.width)

}

#

# example

#

n<-100
T<-20
ngrid<-25
lowse<-0.7
highse<-0.95
lowsp<-0.8
highsp<-1.0
sea<-2
seb<-2
spa<-4
spb<-6
theta<-0.001∗(1:400)
coverage<-0.9
result<-prevalence.bayes(theta,T,n,lowse,highse,

sea,seb,lowsp,highsp,spa,spb,ngrid,coverage)

result$mode # 0.115

result$interval # 0.011 0.226

plot(result$theta,result$post,type="l",xlab="theta",ylab="p(theta)")

Algorithm 1: R code.

5. Discussion

When both se and sp are close to one, the absolute bias of the
uncorrected estimator defined in (1) is small but the rela-
tive bias may still be substantial. Also, in some settings,
practical constraints dictate the use of tests with relatively
low sensitivity and/or specificity. An example is the use by

the African Programme for Onchocerciasis Control of a
questionnaire-based assessment of community-level preva-
lence of Loa loa in place of the more accurate, but also more
expensive and invasive, finger-prick blood-sampling and
microscopic detection of microfilariae [3].

The simple method described here to take account of
known sensitivity and/or specificity less than one is rarely
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described explicitly in epidemiology text books. For example,
[4, Section 4.2] note that it is “possible to correct for biases. . .
due to the use of a nonspecific diagnostic test” but give no
details, perhaps because their focus is on comparing efficacies
of different treatments rather than on estimating prevalence.

Exactly the same argument would apply to the estimation
of prevalence in more complex settings. For example, where
prevalence is modelled as a function of explanatory variables,
say θ = θ(x), an interval estimate for θ(x) can be calculated at
each value of x by applying (3) to the corresponding interval
estimate of φ(x).

The Bayesian method for dealing with unknown se and
sp does not yield explicit formulae for point or interval esti-
mates of prevalence, but the required computations are not
burdensome; an R function is listed in the Algorithm and
can be downloaded from the author’s web-site (http://www.
lancs.ac.uk/staff/diggle/prevalence-estimation.R/).

Appendix

For more details, see Algorithm 1.
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