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stimating primaries by sparse inversion and application
o near-offset data reconstruction
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ABSTRACT

Accurate removal of surface-related multiples remains
a challenge in many cases. To overcome typical inaccuracies
in current multiple-removal techniques, we have developed
a new primary-estimation method: estimation of primaries
by sparse inversion �EPSI�. EPSI is based on the same pri-
mary-multiple model as surface-related multiple elimination
�SRME� and also requires no subsurface model. Unlike
SRME, EPSI estimates the primaries as unknowns in a multi-
dimensional inversion process rather than in a subtraction
process. Furthermore, it does not depend on interpolated
missing near-offset data because it can reconstruct missing
data simultaneously. Sparseness plays a key role in the new
primary-estimation procedure. The method was tested on 2D
synthetic data.

INTRODUCTION

Although correct elimination of surface-related multiples is pos-
ible theoretically �Berkhout, 1982; Berkhout and Verschuur, 1997;
eglein et al., 1997�, in practice it has many hurdles. Often, the sur-

ace-related multiple elimination �SRME� method is implemented
s a prediction and subtraction process �Verschuur and Berkhout,
997� in which the subtraction process is assumed to compensate for
he prediction errors. However, in real situations, many factors limit
he success of SRME, such as limited sampling, 3D effects �Dra-
oset and Jeričević, 1998�, and distortion of primaries during sub-
raction �Guitton and Verschuur, 2004�. Therefore, we propose
voiding the prediction and subtraction process and considering the
rimaries as unknowns in an inversion process.

A similar approach is described by van Borselen et al. �1996�, but
t estimates primaries under the assumption of known source proper-
ies and with a minimum-energy constraint. Biersteker �2001� esti-

ates shallow primary reflections from multiples, again under a
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inimum-energy constraint. Hargreaves �2006� and van Groenes-
ijn and Verschuur �2006� further elaborate on Biersteker’s work by
stimating missing offsets in the seismic data. However, in all of
hese cases, the minimum-energy constraint limits the quality of the
stimated data.

Herrmann et al. �2007� propose estimating the primaries using the
parse curvelet domain but still rely on predicted multiples to guide
he separation process. Alternatively, Amundsen �2001� redefines
RME as a multidimensional division of the upgoing and downgo-

ng wavefields. The disadvantage is that a multidimensional deter-
inistic division is not trivial for field data because of edge effects

nd stabilization issues. Wang �2004� introduces a primary-estima-
ion method based on explicit matrix inversions, so that missing
ear-offset data do not pose a problem. However, it remains a predic-
ion and subtraction process.

We introduce estimation of primaries by sparse inversion �EPSI�,
hich, like all of the above-mentioned methods, is based on the pri-
ary-multiple relationship. We propose a solution through an itera-

ive inversion process and introduce a sparseness constraint to the
btained primary impulse response.

We discuss the primary-multiple model behind SRME and EPSI
nd recapitulate iterative SRME. Then we explain the algorithm of
PSI. Small modifications are made to this algorithm to reconstruct
issing near-offset data.

THE PRIMARY-MULTIPLE MODEL AND SRME

In the detail-hiding operator notation for 2D data �Berkhout,
982�, a bold quantity represents a prestack data volume for one fre-
uency, columns represent monochromatic shot records, and rows
epresent monochromatic common-receiver gathers. Using this no-
ation, we can express the upgoing data at the surface P as

P � X0S � X0RP , �1�

here the primary impulse responses X0 multiplied by the source
roperties S equals the primaries, P0�X0S. Note that what is called
primaries” in this paper refers to all events that do not reflect at the

d 2 November 2008; published online 27April 2009.
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A24 van Groenestijn and Verschuur
urface, including internal multiples. The matrix multiplication of
0 by the reflection operator at the surface R and the total data yields

he surface multiples M�X0RP.
From equation 1, one can derive that surface multiples can be pre-

icted by a convolution of the primaries with the data:

M � P0AP , �2�

here surface operator A�S�1R. Iterative SRME estimates the
rimaries with the aid of �Berkhout and Verschuur, 1997�

P̂0,i�1 � P � Âi�1P̂0,iP , �3�

here i represents the iteration number, A is replaced by an angle-in-
ependent approximation A���I, and P̂0,1�P. To avoid the use of
n obliquity factor �Weglein et al., 1997�, no source deghosting is
one. The assumed dipole characteristic of the source thus includes
he obliquity factor �see Berkhout, 1982�. Because equation 3 con-
ains more unknowns �P̂0,i�1 and Âi�1� than knowns �P�, an extra
onstraint is needed. Typically, the primaries are assumed to have
inimum energy �the L2-norm�. This constraint is used when Âi�1 is

stimated as a filter that matches the predicted multiples M̂i� P̂0,iP
o the data in the time domain, resulting in the new primary estima-
ion P̂0,i�1 �Verschuur and Berkhout, 1997�.

The minimum-energy norm often leads to the satisfactory sub-
raction result, but it does not work properly in all cases �Nekut and
erschuur, 1998�. Guitton and Verschuur �2004� and van Groenes-

ijn and Verschuur �2008� show that other minimization norms, such
s the L1-norm or a sparseness norm, can lead to different and some-
imes better subtraction results.

ESTIMATION OF PRIMARIES BY
SPARSE INVERSION

In this section, we propose to estimate primaries through full-
aveform inversion, avoiding an explicit multiple-subtraction step.
he algorithm is based on the same primary-multiple model dis-
ussed above. If we take S����S���I �meaning a constant-source
avelet for all shots� and R��I, equation 1 becomes

P � X0S � X0P . �4�

ecause this equation has more unknowns �X0 and S� than knowns
P�, an extra constraint is needed to solve it. We use the constraint
hat X0 is sparse in the time domain. This is valid because X0 consists
f a series of spikes in the time domain, each representing a reflec-
ion event from a subsurface boundary. The objective function J is
ntroduced as
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igure 1. Synthetic salt model with water as the top layer.
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Ji � �
�

�
j,k

�P � X̂0,iŜi � X̂0,iP� j,k
2 , �5�

here i denotes the iteration, � j,k indicates a summation over all of
he elements of the matrix, and �� indicates a summation over all of
he frequencies. Unlike in SRME, the objective function will go to
ero during the iterations. Thus, primaries and their resultant multi-
les are estimated simultaneously. We set the initial values of X̂0

nd Ŝ at zero.
First, X̂0 is updated. The updated �X0 is a steepest-descent step:

�X0 � �P � X̂0,iŜi � X̂0,iP��ŜiI � P�H, �6�

here �ŜiI�P�H is the complex adjoint of �ŜiI�P�. The term �P
X̂0,iŜi� X̂0,iP� can be seen as the unexplained data or the residual.

ecause ŜiI is a diagonal matrix, a matrix multiplication �P� X̂0,iŜi

X̂0,iP��ŜiI�H will bring information from a column of the residual
o the same column of �X0. This can be interpreted as information of
he primaries in the residual that is transferred to the primary impulse
esponses. The matrix multiplication �P� X̂0,iŜi� X̂0,iP���P�H

ill bring information from all of the residual columns to a column
f �X0. This can be interpreted as multiples in the residual providing
nformation to the primary impulse responses. This mechanism is
imilar to the one described in Berkhout and Verschuur �2006�, in
hich multiples are transformed into primaries.
We use a synthetic data set based on a 2D subsurface model �Fig-

re 1� to illustrate this method. Figure 2a shows one shot gather, and
igure 2b shows the first update step �X0 for the same shot position.
ecause X̂0 and Ŝ are zero in the first iteration step, the first step
quals a multidimensional correlation of the data with itself, �PPH.

In van Groenestijn and Verschuur �2008�, a sparseness term is
dded to the objective function of equation 5 to force X̂0 to be sparse.
owever, this causes the solution to converge very slowly �more

han 1000 iterations for a 1D plane-wave example�. In this paper, we
ropose to enforce sparseness on the update of X̂0, which is achieved
n a separate step.

A window is placed over the update of X̂0 in the time domain, and
he biggest event�s� per trace is selected. Figure 2c shows the result
f this process. Increasing the size of the window in each iteration
mproves convergence. As much as possible, in each iteration, the
indow should exclude strong events in the update that are not asso-

iated with primaries �such as water-bottom multiples�.
Next, the sparse update �X̂0 is added to the primary impulse re-

ponse:

X̂0,i�1 � X̂0,i � ��X̄0, �7�

here � is a positive frequency-independent factor that scales the
pdate step. If the value of the objective function in equation 5 is in-
reased after replacing X̂0,i with X̂0,i�1, then X̂0,i�1 should be recal-

culated with a smaller �. We have chosen to halve
�. In the beginning, � should be set deliberately
too high.

Next, Ŝi�1 is estimated as a filter obtained by
least-squares matching the primary impulse re-
sponses X̂0,i�1 to �P� X̂0,i�1P� in the time do-
main. Wavelet Ŝi�1 is estimated for all shots. Fig-
ure 3 shows how the primary estimation X̂0,iŜi

builds up during the iterations.
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igure 2. �a� Shot gather for a source at x�2685 m with all multiples. �b� The corresponding update of the primary impulse response before im-
¯
osing sparseness �X0. �c� Corresponding update of the primary impulse response after imposing sparseness �X0.
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igure 3. The primary estimation X̂0,iŜi during different iterations at shot location x�2685 m. This figure has the same gain and clipping values

s Figure 2a.
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A26 van Groenestijn and Verschuur
Finally, the estimates of X̂0 and Ŝ can be used in two ways to ob-
ain a primary estimation: directly by convolving the estimated
spiky� impulse responses with the estimated wavelets, P̂0� X̂0Ŝ,
nd conservatively by creating the multiples and subtracting them
rom the total data, P̂0�P�M̂�P� X̂0P. The estimated multi-
les are subtracted from the data without any matching filter.

Figure 4a shows the result of the direct approach; Figure 4b shows
ts conservative counterpart. Figure 4c shows the true primaries.
ote that for this ideal, noise-free situation, both primary results are
irtually identical. The weak events below 1.0 s are internal multi-
les, which this process is not expected to remove. Residual surface
ultiples are hardly visible.
Imposing the sparseness on the update is necessary to give the pri-
ary impulse response X0 its spiky behavior in the time domain. It

lso ensures that strong primaries — and their corresponding multi-
les — are resolved before weaker reflections are recovered. In that
espect, EPSI resembles a matching-pursuit approach. However,
PSI is robust in the sense that during iterations, it can repair errors
ade in earlier iterations.As an example, iteration artifacts in Figure
are no longer visible in Figure 4a.

RECONSTRUCTING MISSING
NEAR-OFFSET DATA

In this section, we include the reconstruction of missing near-off-
et data in EPSI. Equation 1 shows how data are built from sources,
otal data �secondary sources�, and primary impulse responses. Al-
hough the missing near-offset data are not measured, the conse-
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igure 4. �a� Direct and �b� conservative estimation of the primaries
ain and clipping values as Figure 2a.
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uences of firing the secondary sources in the near-offset data are
easured in the multiples. Therefore, the near-offset data can be re-

onstructed theoretically from the multiples. We will discuss how
he algorithm for data with missing near offsets differs from the one
or data without missing near-offsets.

The data obtained in iteration i consist of two subsets: Pi�P�

P̂i�. Subset P� is measured data outside the near-offset gap, with
atrix elements within the gap being zero. Subset P̂i� is the estimated

ear-offset data for iteration i, with matrix elements outside the gap
eing zero. In the objective function, P̂�, X̂0, and Ŝ are the unknowns:

Ji � �
�

�
j,k

�Pi � X̂0,iŜi � X̂0,iPi� j,k
2 . �8�

Initially, the values for P̂�, X̂0, and Ŝ are set to zero. The update of
ˆ

0 is the same as in equation 6, except that we use the total data Pi

with reconstructed near-offset data� instead of P:

�X0 � �Pi � X̂0,iŜi � X̂0,iPi��ŜiI � Pi�H. �9�

ote that the first update of X̂0 does not rely on information from in-
ide the missing near-offset gap because P̂i�0� �0. To obtain Ŝi�1,
ˆ

0,i�1 is least-squares matched to Pi� X̂0,i�1Pi in the time domain.
inally, the update of Pi� is given by a steepest-descent step:

�P� � ��I � X̂0,i�1�H�Pi � X̂0,i�1Ŝi�1 � X̂0,i�1Pi� .

�10�

oncausal events �t � 1.5 s� are removed from �P� in the time do-
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Primaries by sparse inversion A27
ain. The update of P̂� is scaled to ensure that the next objective
unction value of equation 8 is lower than the previous one.

To demonstrate this, we again use the data related to the model in
igure 1 and remove near-offsets. Figure 5a shows one input shot
ecord for the same source location as in Figures 2, 3, and 4. Figure
b and c shows the direct and conservative primary-estimation re-
ults. Figure 5c has missing near-offsets because it was obtained by
ubtracting the multiples from the data having missing near-offsets.
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igure 5. �a� Input data with missing near-offsets for a source at x�2
re has the same gain and clipping values as Figure 2a.
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igure 6. �a� Zero-offset section of the true data, �b� the reconstructed
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ote the excellent resemblance with the results in Figure 4a and b
nd the quality of the reconstructed near offsets in Figure 5b. Figure
a and b shows the zero-offset section of the true data and the recon-
tructed total data. Except for some minor artifacts, the reconstruc-
ion is very good. The inversion method also yields the primary esti-

ate at the near-offsets �Figure 6c�, which appears very satisfactory
s well. Especially note the accurately reconstructed diffraction
vents.
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A28 van Groenestijn and Verschuur
DISCUSSION

Although the number of iterations in EPSI �typically 60� is higher
han in SRME �typically three�, there are reasons to assume that the
alculation time does not have to be 20 times greater. First, because
0 is spiky in the time domain, its convolution with the total data can
e carried out in the time domain, eliminating the need to perform a
ourier transform. Second, the correlation PPH need be calculated
nly once.

We believe there is large scope for applying this new combined
rimary and near-offset estimation method to shallow-water situa-
ions because that is where SRME has difficulties �e.g., Verschuur,
006�. For the current implementation, we assume a constant-source
avelet for all shots. However, EPSI can be extended to include

stimation of source-to-source wavelet variations and source
irectivity.

Although all tests were performed on 2D data, we believe that
PSI can be of value for the full 3D situation because EPSI only
eeds to store the spikes of impulse responses. Furthermore, the
issing data between the streamer lines might be treated similarly to

he missing near-offsets.

CONCLUSIONS

We have presented a new primary-estimation method, EPSI. The
rimaries are considered to be unknowns in a full-waveform inver-
ion process. There are two interesting differences between SRME
nd EPSI: EPSI has no adaptive subtraction step that matches multi-
les to data, and EPSI does not need interpolated near-offsets to esti-
ate primaries. Results for a synthetic 2D data set show the feasibil-

ty of EPSI.
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