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Abstract

We consider a method for estimating substitute and lost demand when only sales and

product availability data are observable, not all products are available in all periods (e.g.,

due to stock-outs or availability controls imposed by the seller), and the seller knows its

market share. The model combines a multinomial logit (MNL) choice model with a non-

homogeneous Poisson model of arrivals over multiple periods. Our key idea is to view the

problem in terms of primary (or first-choice) demand; that is, the demand that would have

been observed if all products were available in all periods. We then apply the expectation-

maximization (EM) method to this model, and treat the observed demand as an incomplete

observation of primary demand. This leads to an efficient, iterative procedure for estimating

the parameters of the model, which provably converges to a stationary point of the incomplete

data log-likelihood function. Every iteration of the algorithm consists of simple, closed-form

calculations. We illustrate the procedure on simulated data and two industry data sets.
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1 Introduction

Two important problems in retail demand forecasting are estimating turned away demand when

items are sold out and properly accounting for substitution effects among related items. For

simplicity, most retail demand forecasts rely on time-series models of observed sales data, which

treat each stock keeping unit (SKU) as receiving an independent stream of requests. However,

if the demand lost when a customer’s first choice is unavailable (referred to as spilled demand)

is ignored, the resulting demand forecasts may be negatively biased; this underestimation can

be severe if products are unavailable for long periods of time. Additionally, if products are un-

available, stockout-based substitution will lead to increased sales in substitute products which are

available (referred to as recaptured demand); ignoring recapture in demand forecasting leads to

an overestimation bias among the set of available SKUs. Correcting for both spill and recapture

effects is important in order to establish a good estimate of the true underlying demand for

products.

A similar problem arises in forecasting demand for booking classes in the airline industry.

A heuristic to correct for spilled demand, implemented in many airline revenue management

systems, is to assume that the percentage of demand turned away is proportional to the degree

of “closedness” of a product (an itinerary-fare-class combination).1 But this can lead to a

“double counting” problem, whereby spill is estimated on unavailable products but also counted

as recapture on alternate, available products. Empirical studies of different industries show that

stockout-based substitution is a common occurrence: For airline passengers, recapture rates are

acknowledged to be in the range of 15%-55% (e.g., Ja et al. [17]), while Gruen et al. [15] report

recapture rates of 45% across eight categories at retailers worldwide.

While spilled and recaptured demand are not directly observable from sales transactions, var-

ious statistical techniques have been proposed to estimate them. Collectively these techniques

are known as demand untruncation or uncensoring methods. One of the most popular such

methods is the expectation-maximization (EM) algorithm. EM procedures ordinarily employ

iterative methods to estimate the underlying parameters of interest; in our case, demand by

SKU across a set of historical data. The EM method works using alternating steps of computing

conditional expected values of the parameter estimates to obtain an expected log-likelihood func-

tion (the “E-step”) and maximizing this function to obtain improved estimates (the “M-step”).

Traditionally, retail forecasts that employ the EM approach have been limited to untruncating

sales history for individual SKUs and disregard recapture effects from substitute products.

Classical economic theory on substitution effects (e.g., see Nicholson [25]) provides techniques

for estimating demand shifts due to changes in prices of alternative offerings. However, an

important practical problem is how to fit such demand models when products are out of stock

or otherwise unavailable, and do so using only readily-available data, which in most retail settings

1For instance, if a booking class is open during 10 days of a month, and 20 bookings are observed, then this

heuristic approach will estimate a demand of 20 × 30/10 = 60 for this booking class.
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consists of sales transactions, product attributes (brand, size, price, etc.) and on-hand inventory

quantities by SKU. Our work helps address this problem.

A convenient and widely used approach for estimating demand for different SKUs within

a set of similar items is to use discrete choice models, such as the multinomial logit (MNL)

(e.g., see Ben-Akiva and Lerman [3] and Train [29]). Choice models predict the likelihood of

customers purchasing a specific product from a set of related products based on their relative

attractiveness. A convenient aspect of these models is that the likelihood of purchase can be

readily recalculated if the mix of available related products changes (e.g., due to another item

being sold out or restocked).

In this paper, we propose a novel method of integrating customer choice models with the

EM method to untruncate demand and correct for spill and recapture effects across an entire set

of related product sales history. The only required inputs are observed historical sales, product

availability data, and market share information. The key idea is to view the problem in terms of

primary (or first-choice) demand, and to treat the observed sales as incomplete observations of

primary demand. We then apply the EM method to this primary demand model and show that

it leads to an efficient, iterative procedure for estimating the parameters of the choice model

which provably converges to a stationary point of the associated incomplete data log-likelihood

function. Our EM method also provides an estimate of the number of lost sales – that is, the

number of customers who would have purchased if all products were in stock – which is critical

information in retailing. The approach is also remarkably simple, practical and effective, as

illustrated on simulated data and two industry data sets.

2 Literature review

There are related papers in the revenue management literature on similar estimation problems.

Talluri and van Ryzin [28, Section 5] develop an EM method to jointly estimate arrival rates

and parameters of a MNL choice model based on consumer level panel data under unobservable

no-purchases. Vulcano et al. [31] provide empirical evidence of the potential of that approach.

Ratliff et al. [26] provide a comprehensive review of the demand untruncation literature in the

context of revenue management settings. They also propose a heuristic to jointly estimate spill

and recapture across numerous flight classes, by using balance equations that generalize the

proposal of Anderson [1]. A similar approach was presented before by Ja et al. [17].

Another related stream of research is the estimation of demand and substitution effects for

assortment planning in retailing. Kök and Fisher [19] identify two common models of substitu-

tion:

1. The utility-based model of substitution, where consumers associate a utility with each

product (and also with the no-purchase option), and choose the highest utility alternative

available. The MNL model belongs to such class. The single period assortment planning
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problem studied by van Ryzin and Mahajan [30] is an example of the applicability of this

model.

2. The exogenous model of substitution, where customers choose from the complete set of

products, and if the item they choose is not available, they may accept another variant as a

substitute according to a given substitution probability (e.g. see Netessine and Rudi [23]).

Other papers in the operations and marketing science literature also address the problem

of estimating substitution behavior and lost sales. Anupindi et al. [2] present a method for

estimating consumer demand when the first choice variant is not available. They assume a

continuous time model of demand and develop an EM method to uncensor times of stock-outs

for a periodic review policy, with the constraint that at most two products stock-out in order to

handle a manageable number of variables. They find maximum likelihood estimates of arrival

rates and substitution probabilities.

Swait and Erdem [27] study the effect of temporal consistency of sales promotions and

availability on consumer choice behavior. The former encompasses variability of prices, displays,

and weekly inserts. The latter also influences product utility, because the uncertainty of a SKU’s

presence in the store may lead consumers to consider the product less attractive. They solve the

estimation problem via simulated maximum likelihood and test it on fabric softener panel data,

assuming a variation of the MNL model to explain consumer choice; but there is no demand

uncensoring in their approach.

Campo et al. [8] investigate the impact of stockouts on purchase quantities by uncovering the

pattern of within-category shifts and by analyzing dynamic effects on incidence, quantity and

choice decisions. They propose a modification of the usual MNL model to allow for more gen-

eral switching patterns in stock-out situations, and formulate an iterative likelihood estimation

algorithm. They then suggest a heuristic two-stage tracking procedure to identify stock-outs:

in a first stage, they identify potential stockout periods; in stage two, these periods are fur-

ther screened using a sales model and an iterative outlier analysis procedure (see Appendix A

therein).

Borle et al. [5] analyze the impact of a large-scale assortment reduction on customer retention.

They develop models of consumer purchase behavior at the store and category levels, which are

estimated using Markov chain Monte Carlo (MCMC) samplers. Contrary to other findings, their

results indicate that a reduction in assortment reduces overall store sales, decreasing both sales

frequency and quantity.

Chintagunta and Dubé [10] propose an estimation procedure that combines information from

household panel data and store level data to estimate price elasticities in a model of consumer

choice with normally-distributed random coefficients specification. Their methodology entails

maximum likelihood estimation (MLE) with instrumental variables regression (IVR) that uses

share information of the different alternatives (including the no-purchase option). Different from

ours, their model requires no-purchase store visit information.
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Kalyanam et al. [18] study the role of each individual item in an assortment, estimating the

demand for each item as well as the impact of the presence of each item on other individual

items and on aggregate category sales. Using a database from a large apparel retailer, including

information on item specific out-of-stocks, they use the variation in a category to study the

entire category sales impact of the absence of each individual item. Their model allow for flexible

substitution patterns (beyond MNL assumptions), but stock-outs are treated in a somewhat ad

hoc way via simulated data augmentation. The model parameters are estimated in a hierarchical

Bayesian framework also through a MCMC sampling algorithm.

Bruno and Vilcassim [6] propose a model that accounts for varying levels of product avail-

ability. It uses information on aggregate availability to simulate the potential assortments that

consumers may face in a given shopping trip. The model parameters are estimated by drawing

multivariate Bernoulli vectors consistent with the observed aggregate level of availability. They

show that neglecting the effects of stock-outs leads to substantial biases in estimation.

More recently, Musalem et al. [22] also investigate substitution effects induced by stock-

outs. Different from ours, their model allows for partial information on product availability,

which could be the case in a periodic review inventory system with infrequent replenishment.

However, their estimation algorithm is much more complex and computationally intensive than

ours since it combines MCMC with sampling using Bayesian methods.

The aforementioned paper by Kök and Fisher [19] is close to ours. They develop an EM

method for estimating demand and substitution probabilities under a hierarchical model of

consumer purchase behavior at a retailer. This consumer behavior model is similar to the

one in Campo et al. [8], and is quite standard in the marketing literature; see e.g. Bucklin and

Gupta [7], and Chintagunta [9]. In their setting, upon arrival, a consumer decides: 1) whether or

not to buy from a subcategory (purchase-incidence), 2) which variant to buy given the purchase

incidence (choice), and 3) how many units to buy (quantity). Product choice is modeled with

the MNL framework. Unlike our aggregate demand setting, they analyze the problem at the

individual consumer level and assume that the number of customers who visit the store but

did not purchase anything is negligible (see Kök and Fisher [19, Section 4.3]). The outcome of

the estimation procedure is combined with the parameters of the incidence purchase decision,

the parameters of the MNL model for the first choice, and the coefficients for the substitution

matrix. Due to the complexity of the likelihood function, the EM procedure requires the use of

non-linear optimization techniques in its M-step.

Closest to our work is that of Conlon and Mortimer [11], who develop an EM algorithm to

account for missing data in a periodic review inventory system under a continuous time model

of demand, where for every period they try to uncensor the fraction of consumers not affected

by stock-outs. They aim to demonstrate how to incorporate data from short term variations in

the choice set to identify substitution patterns, even when the changes to the choice set are not

fully observed. A limitation of this work is that the E-step becomes difficult to implement when
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multiple products are simultaneously stocked-out, since it requires estimating an exponential

number of parameters (see Conlon and Mortimer [11, Appendix A.2]).

In summary, there has been a growing field of literature on estimating choice behavior and

lost sales in the context of retailing for the last decade. This stream of research also includes

procedures based on the EM method. Our main contribution to the literature in this regard is

a remarkably simple procedure that consists of a repeated sequence of closed-form expressions.

The algorithm can be readily implemented in any standard procedural computer language, and

requires minimal computational time.

3 Model, estimation and algorithm

3.1 Model description

A set of n substitutable products is sold over T purchase periods, indexed t = 1, 2, . . . , T . No

assumption is made about the order or duration of these purchase periods. For example, a

purchase period may be a day and we might have data on purchases over T (non-necessarily

consecutive) days, or it may be a week and we have purchase observations for T weeks. Periods

could also be of different lengths and the indexing need not be in chronological order.

The only data available for each period are actual purchase transactions (i.e., how many units

we have sold of each product in each period), and a binary indicator of the availability of each

product during the period. (We assume products are either always available or unavailable in a

period; see discussion below.) The number of customers arriving and making purchase choices in

each period is not known; equivalently, we do not observe the number of no-purchase outcomes in

each period. This is the fundamental incompleteness in the data, and it is a common limitation

of transactional sales data in retail settings in which sales transactions and item availability are

frequently the only data available.

The full set of products is denoted N = {1, . . . , n}. We denote the number of purchases of

product i observed in period t by zit, and define zt = (z1t, . . . , znt). We will assume that zit ≥ 0

for all i, t; that is, we do not consider returns. Let mt =
∑n

i=1 zit denote the total number of

observed purchases in period t. We will further assume without loss of generality that for all

product i, there exists at least one period t such that zit > 0; else, we can drop product i from

the analysis.

We assume the following underlying model generates these purchase data: The number of

arrivals in each period (i.e., number of customers who make purchase decisions) is denoted At.

At has a Poisson distribution with mean λt (the arrival rate). Let λ = (λ1, . . . , λT ) denote the

vector of arrival rates. It may be that some of the n products are not available in certain periods

due to temporary stock-outs, limited capacity or controls on availability (e.g., capacity controls

from a revenue management system, or deliberate scarcity introduced by the seller). Hence,

let St ⊂ N denote the set of products available for sale in period t. We assume St is known
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for each t and that the products in St are available throughout period t. Whenever i 6∈ St, for

notational convenience we define the number of purchases to be zero, i.e., zit = 0.

Customers choose among the alternatives in St according to a MNL model, which is assumed

to be the same in each period (i.e., preferences are time homogeneous, though this assumption

can be relaxed as discussed below). Under the MNL model, the choice probability of a customer

is defined based on a preference vector v ∈ Rn, v > 0, that indicates the customer “preference

weights” or “attractiveness” for the different products.2 This vector, together with a normalized,

no-purchase preference weight v0 = 1, determine a customer’s choice probabilities as follows: let

Pj(S, v) denote the probability that a customer chooses product j ∈ S when S is offered and

preference weights are given by vector v. Then,

Pj(S, v) =
vj

∑

i∈S vi + 1
. (1)

If j 6∈ S, then Pj(S, v) = 0.

We denote the no-purchase probability by P0(S, v). It accounts for the fact that when set S

is offered, a customer may either buy a product from a competitor, or not buy at all (i.e., buys

the outside alternative):

P0(S, v) =
1

∑

i∈S vi + 1
.

The no-purchase option can be treated as a separate product (labeled zero) that is always

available. Note that by total probability,
∑

j∈S Pj(S, v) + P0(S, v) = 1.

The statistical challenge we address is how to estimate the parameters of this model – namely,

the preference vector v and the arrival rates λ – from the purchase data zt, t = 1, 2, . . . , T .

3.2 The incomplete data likelihood function

One can attempt to solve directly this estimation problem using maximum likelihood estimation

(MLE). The incomplete data likelihood function can be expressed as follows:

LI(v,λ) =

T
∏

t=1



P(mt customers buy in period t|v,λ)
mt!

z1t!z2t! · · · znt!

∏

j∈St

[

Pj(St,v)
∑

i∈St
Pi(St, v)

]zjt



 (2)

where the probabilities in the inner product are the conditional probabilities of purchasing

product j given that a customer purchases something. The number of customers that purchase

in period t, mt, is a realization of a Poisson random variable with mean λt

∑

i∈St
Pi(St, v), viz

P(mt customers buy in period t|v, λ) =

[

λt

∑

i∈St
Pi(St, v)

]mt e−λt

∑
i∈St

Pi(St,v)

mt!
. (3)

One could take the log of (2) and attempt to maximize this log-likelihood function with

respect to v and λ. However, it is clear that this is a complex likelihood function without much

2A further generalization of this MNL model to the case where the preference weights are functions of the

product attributes is provided in Section 6.2.
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structure, so maximizing it (or its logarithm) directly is not an appealing approach. Indeed, our

attempts in this regard were not promising (see Section 5).

3.3 Multiple optima in the MLE and market potential

A further complication is that one can show that the likelihood function (2) has a continuum of

maxima. To see this, let (v∗, λ∗) denote a maximizer of (2). Let α > 0 be any real number and

define a new preference vector v0 = αv∗. Define new arrival rates

λ0
t =

α
∑

i∈St
v∗i + 1

α
(
∑

i∈St
v∗i + 1

)λ∗
t .

Then, it is not hard to see from (1) that

λ∗
t Pj(St, v

∗) = λ0
t Pj(St, v

0),

for all j and t. Since this product of the arrival rate and purchase probability is unchanged, by

inspection of the form of (2) and (3), the solution (v0,λ0) has the same likelihood and therefore

is also a maximum. Since this holds true for any α > 0, there are a continuum of maxima.3

One can resolve this multiplicity of optimal solutions by imposing an additional constraint

on the parameter values related to market share. Specifically, suppose we have an exogenous

estimate of the preference weight of the outside alternative relative to the total set of offerings.

Let’s call it r, so that

r :=
1

∑n
j=1 vj

. (4)

Then fixing the value of r resolves the degree of freedom in the multiple maxima. Still, this

leaves the need to solve a complicated optimization problem. In Section 3.5 we look at a simpler

and more efficient approach based on viewing the problem in terms of primary – or first-choice

– demand.

3.4 Discussion of the model

Our model uses the well-studied MNL for modeling customer choice behavior in a homogeneous

market (i.e., customer preferences are described by a single set of parameters v). As mentioned,

a convenient property of the MNL is that the likelihood of purchase can be readily recalculated

if the availability of the products changes. But the MNL has significant restrictions in terms

of modeling choice behavior, most importantly the property of independence from irrelevant

alternatives (IIA). Briefly, the property is that that the ratio of purchase probabilities for two

alternatives is constant regardless of the consideration set containing them. Other choice models

are more flexible in modeling substitution patterns (e.g., see Train [29, Chapter 4]). Among

3Of course, this observation holds more generally: For any pair of values (v, λ), there is a continuum of values

α(v, λ), α > 0, such that LI(v, λ) = LI(αv, αλ).

8



them, the nested logit (NL) model has been widely used in the marketing literature. While less

restrictive, the NL requires more parameters and therefore a higher volume of data to generate

good estimates.

Despite the limitation of the IIA property, MNL models are widely used. Starting with

Guadagni and Little [16], marketing researchers have found that the MNL model works quite

well when estimating demand for a category of substitutable products (in Guadagni and Little’s

study, regular ground coffee of different brands). Recent experience in the airline industry also

provides good support for using the MNL model.4 According to the experience of one of the

authors, there are two major considerations in real airline implementations: (i) the range of

fare types included, and (ii) the flight departure time proximity. Regarding (i), in cases where

airlines are dealing with dramatically different fare products, then it is often better to split

the estimation process using two entirely separate data pools. Consider the following real-world

example: an international airline uses the first four booking classes in their nested fare hierarchy

for international point-of-sales fares which have traditional restrictions (i.e., advance purchase,

minimum stay length, etc); these are the highest-valued fare types. The next eight booking

classes are used for domestic travel with restriction-free fares. Because there is little (or no)

interaction between the international and domestic points-of-sales, the airline applies the MNL

model to two different data pools: one for international sales and the other for domestic sales.

Separate choice models are fit to the two different pools. Regarding (ii), it would be somewhat

unrealistic to assume that first-choice demand for a closed 7am departure would be recaptured

onto a same day, open 7pm departure in accordance with the IIA principle. Hence, it makes

sense to restrict the choice set to departure times that are more similar. Clearly some customers

will refuse to consider the alternative flight if the difference in departure times is large. Some

recently developed revenue management systems with which the authors are familiar still use

the MNL for such flight sets, but they implement a correction heuristic to overcome the IIA

limitation.

Another important consideration in our model is the interpretation of the outside alternative,

and the resulting interpretation of the arrival rates λ. For instance, if the outside alternative is

assumed to be the (best) competitor’s product, then

s = 1/(1 + r) =

∑n
j=1 vj

∑n
j=1 vj + 1

defines the retailer’s market share, and λ refers to the volume of purchases in the market,

including the retailer under consideration and its competitor(s). Alternatively, if the outside

alternative is considered to consist of both the competitor’s best product and a no-purchase

option, then s gives the retailer’s “market potential”, and λ is then interpreted as the total

market size (number of customers choosing). This later interpretation is found in marketing

4For example, Sabre has been implementing the single-segment MNL model for a large domestic US airline for

more than two years, and has been observing very significant revenue improvements.
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and empirical industrial organizations applications (e.g., see Berry et al. [4] for an empirical

study of the U.S. automobile industry, and Nevo [24] for an empirical study of the ready-to-eat

cereal industry). Henceforth, given an indicator s (share or potential), we set the attractiveness

of the outside alternative as r = (1 − s)/s, which is equivalent to (4). Low values of r imply

higher participation in the market.

Also, note we work with store-level data (as opposed to household panel data). Chintagunta

and Dubé [10] discuss the advantages of using store-level data to compute the mean utility

associated with products.

We also assume that for every product j, there is a period t for which zjt > 0 (otherwise,

that product can be dropped from the analysis). In this regard, our model can accommodate

assortments with slow moving items for which zjt = 0 for several (though that all) periods. It’s

worth noting that for retail settings, having zero sales in many consecutive periods could be

a symptom of inventory record error. DeHoratius and Raman [12] found that 65% of 370,000

inventory records of a large public U.S. retailer were inaccurate, and that the magnitude of the

inaccuracies was significant (of around 35% of the inventory level on the shelf per SKU). A

possible misleading situation is that the IT system records a SKU as being in-stock even though

there are no units on the shelf, and hence no sales will be observed despite the fact that the

product is tagged as “available”.

Further, if a period t has no sales for any of the products, then that period can be dropped

from the analysis – or equivalently, it can be established ex-ante that all primary demands Xjt

and substitute demands Yjt, j = 1, . . . , n, as well as the arrival rate λt will be zero. This is

because our model assumes that the market participation s is replicated in every single period,

and hence no sale in a period is a signal of no arrival in that period.

Regarding the information on product availability, as mentioned above we assume that a

product is either fully available or not available throughout a given period t. Hence, the time

partitioning should be fine enough to capture short-term changes in the product availability

over time. However, in contrast to other approaches (e.g., Musalem et al. [22]), we do not

require information on inventory levels; all we require is a binary indicator describing each

item’s availability.

Finally, note that our model assumes homogeneous preferences across the whole selling hori-

zon, but a non-homogeneous Poisson arrival process of consumers. The assumption of homo-

geneous preferences can be relaxed by splitting the data into intervals where a different choice

model is assumed to apply over each period. The resulting modification is straightforward, so

we do not elaborate on this extension. The estimates λ̂ can be used to build a forecast of

the volume of demand to come by applying standard time series analysis to project the values

forward in time.
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3.5 Log-likelihood based on primary demand

By primary (or first-choice) demand for product i, we mean the demand that would have occurred

for product i if all n alternatives were available. The (random) number of purchases, Zit, of

product i in period t may be greater than the primary demand because it could include purchases

from customers whose first choice was not available and bought product i as a substitute (i.e., Zit

includes demand that is spilled from other unavailable products and recaptured by product i).

More precisely, the purchase quantity Zit can be split into two components: the primary demand,

Xit, which is the number of customers in period t that have product i as their first choice; and

Yit, the substitute demand, which is the number of customers in period t that decide to buy

product i as a substitute because their first choice is unavailable. Thus:

Zit = Xit + Yit. (5)

We focus on estimating the primary demand Xit. While this decomposition seems to introduce

more complexity in the estimation problem, we show below that in fact leads to a considerably

simpler estimation algorithm.

3.5.1 Basic identities

Let X̂jt = E[Xjt|zt] and Ŷjt = E[Yjt|zt] denote, respectively, the conditional expectation of the

primary and substitute demand given the purchase observations zt. We seek to determine these

quantities.

Consider first products that are unavailable in period t, that is j 6∈ St

⋃{0}. For these items,

we have no observation zjt. To determine X̂jt for these items, note that

E[Xjt|zt] =
vj

∑n
i=1 vi + 1

E[At|zt]

and
∑

h∈St

E [Zht|zt] =

∑

h∈St
vh

∑

h∈St
vh + 1

E[At|zt].

Combining these expressions to eliminate E[At|zt] yields

E[Xjt|zt] =
vj

∑n
i=1 vi + 1

∑

h∈St
vh + 1

∑

h∈St
vh

∑

h∈St

E [Zht|zt] ,

or equivalently,

X̂jt =
vj

∑n
i=1 vi + 1

∑

h∈St
vh + 1

∑

h∈St
vh

∑

h∈St

zht, j 6∈ St

⋃

{0}. (6)

Next consider the available products j ∈ St. For each such product, we have zjt observed

transactions which according to (5) can be split into

zjt = X̂jt + Ŷjt, j ∈ St.
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Note that

P{Product j is a first choice|Purchase j} =
P{Product j is a first choice}

P{Purchase j}

=
vj

∑n
i=1 vi + 1

/

vj
∑

h∈St
vh + 1

=

∑

h∈St
vh + 1

∑n
i=1 vi + 1

.

Therefore, since X̂jt = zjtP{Product j is a first choice|Purchase j}, we have

X̂jt =

∑

h∈St
vh + 1

∑n
i=1 vi + 1

zjt, and Ŷjt =

∑

h 6∈St

⋃
{0} vh

∑n
i=1 vi + 1

zjt. (7)

Lastly, for the no-purchase option (i.e., j = 0), we are also interested in estimating its

primary demand in period t conditional on the transaction data, i.e., X̂0t = E[X0t|zt]. Recall

that At is the total (random) number of arrivals in period t, including the customers that do

not purchase. Again, we do not observe At directly but note that

E[X0t|zt] =
1

∑n
i=1 vi + 1

E[At|zt]. (8)

In addition, the following identity should hold:

At = X0t +
n

∑

i=1

Xit.

Conditioning on the observed purchases we have that

E[At|zt] = X̂0t +
n

∑

i=1

X̂it. (9)

Substituting (9) into (8), we obtain:

X̂0t =
1

∑n
i=1 vi

n
∑

i=1

X̂it. (10)

Interestingly, we can also get the lost sales in period t, given by the conditional expectation of

the substitute demand for the no-purchase option, Ŷ0t = E[Y0t|zt]:

Ŷ0t =
1

∑

i∈St
vi + 1

∑

h 6∈St

⋃
{0}

X̂ht.

Next, define Nj , j = 0, . . . , n, as the total primary demand for product j over all periods

(including the no-purchase option j = 0). Thus, Nj =
∑T

t=1 Xjt, giving an estimate

N̂j :=

T
∑

t=1

X̂jt, (11)

where, consistent with our other notation, N̂j = E[Nj |z1, . . . ,zT ], which is positive because

X̂jt ≥ 0, for all j and t, and for at least one period t, X̂jt > 0.5

5This is due to our assumption that v > 0, and that for at least one period t, zjt > 0, for each j = 1, . . . , n.
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3.5.2 Overview of our approach

The key idea behind our approach is to view the problem of estimating v and λ as an estimation

problem with incomplete observations of the primary demand Xjt, j = 0, 1, . . . , n, t = 1, . . . , T .

Indeed, suppose we had complete observations of the primary demand. Then the log-likelihood

function would be quite simple, namely

L(v) =
n

∑

j=1

Nj ln

(

vj
∑n

i=1 vi + 1

)

+ N0 ln

(

1
∑n

i=1 vi + 1

)

,

where Nj is the total number of customers selecting product j as their first choice (or selecting

not to purchase, j = 0, as their first choice). We show below this function has a closed-

form maximum. However, since we don’t observe Nj , j = 0, 1, . . . , n, directly, we use the EM

method of Dempster et al. [13] to estimate the model. This approach drastically simplifies the

computational problem relative to maximizing (2). It also has the advantage of eliminating λ

from the estimation problem and reducing it to a problem in v only. (An estimate of λ can be

trivially recovered after the algorithm runs as discussed below.)

The EM method is an iterative procedure that consists of two steps per iteration: an ex-

pectation (E) step and a maximization (M) step. Starting from arbitrary initial estimates of

the parameters, it computes the conditional expected value of the log-likelihood function with

respect to these estimates (the E-step), and then maximizes the resulting expected log-likelihood

function to generate new estimates (the M-step). The procedure is repeated until convergence.

While technical convergence problems can arise, in practice the EM method is a robust and

efficient way to compute maximum likelihood estimates for incomplete data problems.

In our case, the method works by starting with estimates v̂ > 0 (the E-step). These estimates

for the preference weights are used to compute estimates for the total primary demand values

N̂0, N̂1, . . . , N̂n, by using the formulas in (6), (7), and (10), and then substituting the values of

X̂jt in (11). In the M-step, given estimates v̂ (and therefore, given estimates for N̂0, N̂1, . . . , N̂n),

we then maximize the conditional expected value of the log-likelihood function with respect to

v:

E[L(v)|v̂] =
n

∑

j=1

N̂j ln

(

vj
∑n

i=1 vi + 1

)

+ N̂0 ln

(

1
∑n

i=1 vi + 1

)

. (12)

Just as in the likelihood function (2), there is a degree of freedom in our revised estimation

formulation. Indeed, consider the first iteration with arbitrary initial values for the estimates v̂,

yielding estimates N̂j , j = 0, 1, . . . , n. From (10), r defined in (4) must satisfy N̂0 = r
∑n

j=1 N̂j .

As above, r measures the magnitude of outside alternative demand relative to the alternatives

in N . We will prove later in Proposition 1 that this relationship is preserved across different

iterations of the EM method. So the initial guess for v̂ implies an estimate of r.
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Expanding (12), the conditional expected, complete data log-likelihood function is:

L(v) := E[L(v1, . . . , vn)|v̂1, . . . , v̂n]

=
n

∑

j=1

N̂j

{

ln

(

vj
∑n

i=1 vi + 1

)

+ r ln

(

1
∑n

i=1 vi + 1

)}

=

n
∑

j=1

N̂j ln

(

vj
∑n

i=1 vi + 1

)

+ r ln

(

1
∑n

i=1 vi + 1

) n
∑

j=1

N̂j . (13)

This expected log-likelihood function is then maximized to generate new estimates v̂∗j , j =

1, . . . , n. We show below this is a simple maximization problem, with closed-form solution

v∗j =
N̂j

r
∑n

i=1 N̂i

, j = 1, . . . , n

In the E-step of the next iteration, the EM method uses these maximizers to compute updated

estimates X̂jt in (6), (7), and (10), leading to updated values N̂j . These two steps are repeated

until convergence.

Note that both the expectation and maximization steps in this procedure only involve simple,

closed-form calculations. Also, note that the whole EM procedure can be described only in terms

of the preference weight estimates v̂j , j = 1, . . . , n. The optimal first-choice estimates X̂jt are

returned by applying (6), (7), and (10) using the estimates v̂j of the final iteration. Estimates

of λ can also be recovered from (9) by simply noting that

λ̂t ≡ E[At|zt] = X̂0t +

n
∑

i=1

X̂it. (14)

That is, the arrival rate is simply the sum of the primary demands of all n products plus the

primary demand of the no-purchase alternative. Intuitively this is why viewing the problem in

terms of primary demand eliminates the arrival rate from the estimation problem; the arrival

rate is simply the sum of primary demands.

3.5.3 Summary of the EM algorithm

We next summarize the EM algorithm for estimating primary demand using pseudocode.
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EM algorithm for estimating primary demand

[Initialization]: Given a market participation s, let r := (1 − s)/s. For all product j and period t, set

Xjt := zjt, with Xjt := 0 if j 6∈ St. Then, initialize variables N0, N1, . . . , Nn, as follows:

Nj :=

T
∑

t=1

Xjt, j = 1, . . . , n, N0 := r

n
∑

j=1

Nj , X0t := N0/T, and vj := Nj/N0, j = 1, . . . , n.

Repeat

[E-step]:

For t := 1, . . . , T do

For j := 1, . . . , n do

If j 6∈ St, then set

Xjt :=
vj

∑n

i=1
vi + 1

∑

h∈St
vh + 1

∑

h∈St
vh

∑

h∈St

zht,

else (i.e., j ∈ St), then set

Yjt :=

∑

h6∈St

⋃
{0} vh

∑n

i=1
vi + 1

zjt and Xjt := zjt − Yjt.

EndIf

EndFor

Set

X0t :=
1

∑n

i=1
vi

n
∑

i=1

Xit and Y0t :=
1

∑

i∈St
vi + 1

∑

h6∈St

⋃
{0}

Xht.

EndFor

[M-step]:

Set N0 :=
∑T

t=1
X0t.

For j := 1, . . . , n do

Set Nj :=
∑T

t=1
Xjt.

Set vj := Nj/N0.

EndFor

until Stopping criteria is met.

A few remarks on implementation: The initialization of Xjt, j = 1, . . . , n, is arbitrary; we

merely need starting values different from zero if j ∈ St. The stopping criteria can be based on

various measures of numerical convergence, e.g., that the difference between all values Xjt from

two consecutive iterations of the algorithm is less than a small constant ǫ, or on a maximum

number of iterations. In all of our experiments we observed very quick convergence, so it would

appear that the exact stopping criteria is not critical.

4 Properties of the EM algorithm

We start by noting some properties of the algorithm with respect to the retailer’s market par-

ticipation related parameter r (recall that s = 1/(1+ r)). First, note that the function L in (13)
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is linearly decreasing as a function of r, for all r > 0. Second, as claimed above, the value r

remains constant throughout the execution of the algorithm:

Proposition 1 The relationship N̂0 = r
∑n

j=1 N̂j, is preserved across iterations of the EM

algorithm, starting from the initial value of r.

Proof. In the E-step of an iteration, after we compute the values X̂it, we use formula (10) with

the vjs replaced by the optimal values obtained in the M-step of the previous iteration, i.e.,

X̂0t =
1

∑n
i=1

N̂ ′
i

r
∑n

h=1
N̂ ′

h

n
∑

i=1

X̂it = r
n

∑

i=1

X̂it,

where N̂ ′
i stand for the volume estimates from the previous iteration. The new no-purchase

estimate is

N̂0 =
T

∑

t=1

X̂0t =
T

∑

t=1

r
n

∑

i=1

X̂it

= r
n

∑

i=1

T
∑

t=1

X̂it = r
n

∑

i=1

N̂i,

and hence the relationship N̂0 = r
∑n

j=1 N̂j , is preserved.

Our next result proves that the complete data log-likelihood function L(v1, . . . , vn) is indeed

unimodal:

Theorem 1 The function L(v1, . . . , vn), with v > 0, and N̂j > 0,∀j, is unimodal, with unique

maximizer v∗j =
N̂j

r
∑n

i=1
N̂i

, j = 1, . . . , n.

Proof. Taking partial derivatives of function (13), we get:

∂

∂vj

L(v1, . . . , vn) =
N̂j

vj

− (1 + r)
∑n

i=1 N̂i
∑n

i=1 vi + 1
, j = 1, . . . , n.

Setting these n equations equal to zero leads to a linear system with unique solution:

v∗j =
N̂j

r
∑n

i=1 N̂i

, j = 1, . . . , n. (15)

The second cross partial derivatives are:

∂2

∂2vj

L(v1, . . . , vn) = −N̂j

v2
j

+ γ(v1, . . . , vn),

where

γ(v1, . . . , vn) =
(1 + r)

∑n
i=1 N̂i

(
∑n

i=1 vi + 1)2
,

16



and
∂2

∂vj∂vi

L(v1, . . . , vn) = γ(v1, . . . , vn), j 6= i.

Let H be the Hessian of L(v1, . . . , vn). In order to check that our critical point (15) is a local

maximum, we compute for x ∈ Rn, x 6= 0,

xT H(v1, . . . , vn)x =
(1 + r)

(

∑n
i=1 N̂i

)

(
∑n

i=1 xi)
2

(
∑n

i=1 vi + 1)2
−

n
∑

i=1

N̂i
x2

i

v2
i

. (16)

The second order sufficient conditions are xT H(v∗1, . . . , v
∗
n)x < 0, for all x 6= 0. Plugging in the

expressions in (15), we get

xT H(v∗1, . . . , v
∗
n)x = r2

(

n
∑

i=1

N̂i

)(

(
∑n

i=1 xi)
2

1 + r
−

(

n
∑

i=1

N̂i

)

n
∑

i=1

x2
i

N̂i

)

.

Note that since r > 0, and N̂j > 0,∀j, it is enough to check that
(

n
∑

i=1

xi

)2

−
(

n
∑

i=1

N̂i

)

n
∑

i=1

x2
i

N̂i

≤ 0, ∀x 6= 0. (17)

By the Cauchy-Schwartz inequality, i.e., |yTz|2 ≤ ||y||2 ||z||2, defining yi = xi√
N̂i

and zi =
√

N̂i,

we get:
(

n
∑

i=1

xi

)2

=

(

n
∑

i=1

xi
√

N̂i

×
√

N̂i

)2

≤





√

√

√

√

n
∑

i=1

x2
i

N̂i





2 



√

√

√

√

n
∑

i=1

N̂i





2

=

(

n
∑

i=1

x2
i

N̂i

) (

n
∑

i=1

N̂i

)

,

and therefore inequality (17) holds.

Proceeding from first principles, we have a unique critical point for L(v1, . . . , vn) which is a

local maximum. The only other potential maxima can occur at a boundary point. But close to

the boundary of the domain the function is unbounded from below; that is

lim
vj↓0

L(v1, . . . , vn) = −∞, j = 1, . . . , n.

Hence, the function is unimodal.

A few comments are in order. First, observe that equation (16) also shows that the function

L(v1, . . . , vn) is not jointly concave in general, since there could exist a combination of values

N̂1, . . . , N̂n, and the vector (v1, . . . , vn) such that for some x, xTH(v1, . . . , vn)x > 0.6 Figure 1

illustrates one example where L(v1, . . . , vn) is not concave. Second, due to the definition of v∗j ,

6For example, if we take n = 2, v = (1.5, 1.2), N̂1 = 50, N̂2 = 3, and x = (0.01, 1), then r = 1/(v1 +v2) = 0.37,

and x
TH(v1, v2)x = 3.33.
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Figure 1: Example of log-likelihood function L(v1, v2), for r = 0.02, N̂1 = 60, and N̂2 = 50. The maximizer is

v
∗ = (27.27, 22.73).

and since
∑T

t=1 zjt > 0, then N̂j > 0 for every iteration of the EM method. Third, Theorem 1

proves that the M-step of the EM procedure is always well defined, and gives a unique global

maximizer. This means it is indeed an EM algorithm, as opposed to the so-called Generalized

EM algorithm (GEM). In the case of GEM, the M-step only requires that we generate an

improved set of estimates over the current ones7, and the conditions for convergence are more

stringent (e.g., see McLachlan and Krishnan [21, Chapter 3] for further discussion.)

The following result shows that the EM method in our case satisfies a regularity condition

that guarantees convergence of the log-likelihood values of the incomplete-data function to a

stationary point:

Theorem 2 (Adapted from Wu [32]) 8 The conditional expected value E[L(v1, . . . , vn)|v̂1, . . . , v̂n]

in (13) is continuous both in v > 0 and v̂ > 0, and hence all the limit points of any in-

stance {v̂(k), λ̂
(k)

, k = 1, 2, . . .} of the EM algorithm are stationary points of the corresponding

incomplete-data log-likelihood function LI(v, λ), and LI(v̂
(k), λ̂

(k)
) converges monotonically to

a value LI(v
∗, λ∗), for some stationary point (v∗,λ∗).

Proof. The result simply follows from the fact that N̂j =
∑T

t=1 X̂jt, j = 0, 1, . . . , n, and X̂jt

is continuous in v̂ according to equations (6), (7), and (10). Clearly, L is also continuous in v.

In addition, recall that the estimates v̂ imply a vector λ̂ once we fix a market participation r

(through equation (14), and therefore the EM algorithm indeed generates an implied sequence

{v̂(k), λ̂
(k)

, k = 1, 2, . . .}.
7In particular, the M-step of GEM just requires to find a vector v̄ such that E[L(v̄)|v̂]] ≥ E[L(v̂)|v̂]. See

McLachlan and Krishnan [21, Section 1.5.5].
8See also McLachlan and Krishnan [21, Theorem 3.2].
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5 Numerical Examples

We next report on two sets of numerical examples. The first set is based on simulated data,

which was used to get a sense of how well the procedure identifies a known demand system

and how much data is necessary to get good estimates. Then, we provide two other examples

based on real-world data sets, one for airlines and another for retail. In all the examples, we

set a stopping criteria based on the difference between the matrices X̂ from two consecutive

iterations of the EM method, and stopped the procedure as soon as the absolute value of all

the elements of the difference matrix was smaller than 0.001. The algorithm was implemented

using the MATLAB9 procedural language, in which the algorithm detailed in Section 3.5.3 is

straightforward to code.

5.1 Examples based on simulated data

Our first example is small and illustrates the behavior of the procedure. We provide the original

generated data (observed purchases) and the final data (primary and substitute demands). Next,

we look at the effect of data volume and quality on the accuracy of the estimates.

5.1.1 Preliminary estimation case

Given a known underlying MNL choice model (i.e., values for the preference weights v) and

assuming that the arrivals follow a homogeneous Poisson process with rate λ = 50, we simulated

purchases for n = 5 different products. Initially, we considered a selling horizon of T = 15

periods, and preference weights v = (1, 0.7, 0.4, 0.2, 0.05) (recall that the weight of the no-

purchase alternative is v0 = 1). Note w.l.o.g. we index products in decreasing order of preference.

These preference values give a market potential s =
∑n

j=1 vj/(
∑n

j=1 vj + 1) = 70%.

Table 1 describes the simulated retail data, showing the randomly generated purchases for

each of the five products for each period and total number of no-purchases and arrivals. Here,

period 1 represents the end of the selling horizon. Note a label “NA” in position (j, t) means

that product j is not available in period t. The unavailability was exogenously set prior to

simulating the purchase data.

For the estimation procedure, the initial values of v̂j are computed following the suggestion

in Section 3.5.3, i.e.,

v̂j =

∑T
t=1 zjt

r
∑T

t=1

∑n
i=1 zit

, j = 1, . . . , n.

We also assume perfect knowledge of the market potential. The output is shown in Table 2.

The second column includes the true preference weight values for reference. The third column

reports the estimates computed by the EM method. The fourth column reports the percentage

bias between the estimated and true values. Note that the results suggest an apparent bias in

9MATLAB is a trademark of The MathWorks, Inc. We used version 6.5.1 for Microsoft Windows.
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Table 1: Purchases and no-purchases for the Preliminary Example

Observable data

Purchases Periods Total

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 10 15 11 14 NA NA NA NA NA NA NA NA NA NA NA 50

2 11 6 11 8 20 16 NA NA NA NA NA NA NA NA NA 72

3 5 6 1 11 4 5 14 7 11 NA NA NA NA NA NA 64

4 4 4 4 1 6 4 3 5 9 9 6 9 NA NA NA 64

5 0 2 0 0 1 0 1 3 0 3 3 5 2 3 3 26

Non observable data

No purchases 8 17 15 12 29 24 40 35 32 37 40 32 48 45 52 466

λ 38 50 42 46 60 49 58 50 52 49 49 46 50 48 55 742

Table 2: Output parameters for Preliminary Example

Parameter True Value Est. value Bias ASE t-stat

v̂1 1.00 0.948 -5.25% 0.092 10.32

v̂2 0.70 0.759 8.49% 0.078 9.72

v̂3 0.40 0.371 -7.35% 0.048 7.69

v̂4 0.20 0.221 10.25% 0.035 6.28

v̂5 0.05 0.052 3.80% 0.016 3.28

the estimates, which is not unexpected since the MLE is only asymptotically unbiased. The

fifth column shows the asymptotic standard error (ASE) of the corresponding estimate (e.g., see

McLachlan and Krishnan [21, Chapter 4] for details on ASE calculation). Note that for all the

coefficients we can reject the null hypothesis that the true value is zero at the 0.01 significance

level.10 The average estimated λ̂ in this small example is 48.91, showing a small bias with respect

to the mean rate: -2.18%.

Table 3 shows the uncensored primary demands obtained by the EM method (i.e., the esti-

mates X̂jt, j = 1, . . . , n, and X̂0t, t = T, . . . , 1) as well as the estimate of the arrival rate in each

period, λ̂t (the sum of all primary demand estimates). Table 4 shows the substitute demand

estimates Ŷjt, j = 1, . . . , n, and Ŷ0t, t = T, . . . , 1. By inspection of the latter, observe that as we

move towards the end of the horizon (i.e., towards the right of the table) and the most preferred

products become less available, the shifted demand tends to explain an increasing fraction of

the sales and no-purchases.

From this information, we can also compute another important performance measure in

10The quasi-t statistic is computed as the ratio between the estimated value of the parameter and the ASE.

Recall that for a two-tailed test, the critical values of this statistic are ±1.65, ±1.96, and ±2.58 for the 0.10, 0.05,

and 0.01 significance levels, respectively.
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retail operations: the percentage of lost sales, defined as

P(lost sale) =

∑T
t=1 Y0t

∑n
j=1 Nj

=
238.7

514.7
= 46.38%.

The total aggregate recapture rate is computed as the ratio of the total substitute demand across

the n products to the total primary demand, i.e.,

Recapture rate =

∑T
t=1

∑n
j=1 Yjt

∑n
j=1 Nj

=
70.04

514.7
= 13.61%.

Table 3: First-choice demand output X̂jt and λ̂t for n = 5 products and for the no-purchase option j = 0.

Prod. Periods Total

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 (Nj)

1 10.0 15.0 11.0 14.0 15.0 12.1 13.0 10.8 14.5 15.9 11.9 18.5 11.5 17.2 17.2 207.5

2 11.0 6.0 11.0 8.0 14.3 11.5 10.4 8.7 11.6 12.7 9.5 14.8 9.2 13.8 13.8 166.3

3 5.0 6.0 1.0 11.0 2.9 3.6 6.9 3.4 5.4 6.2 4.7 7.2 4.5 6.7 6.7 81.2

4 4.0 4.0 4.0 1.0 4.3 2.9 1.5 2.5 4.4 3.4 2.3 3.4 2.7 4.0 4.0 48.3

5 0.0 2.0 0.0 0.0 0.7 0.0 0.5 1.5 0.0 1.1 1.1 1.9 0.6 0.9 0.9 11.4

No-purch. 12.8 14.0 11.5 14.5 15.9 12.8 13.7 11.4 15.3 16.7 12.5 19.5 12.1 18.1 18.1 219.0

λ̂t 42.8 47.0 38.5 48.5 53.1 42.8 46.0 38.3 51.1 56.0 42.0 65.4 40.5 60.8 60.8 733.7

Table 4: Recaptured demand output Ŷjt for n = 5 products and for the no-purchase option j = 0.

Product Periods Total

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0 5.7 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.2

3 0.0 0.0 0.0 0.0 1.1 1.4 7.1 3.6 5.6 0.0 0.0 0.0 0.0 0.0 0.0 18.8

4 0.0 0.0 0.0 0.0 1.7 1.1 1.5 2.5 4.6 5.6 3.7 5.6 0.0 0.0 0.0 26.3

5 0.0 0.0 0.0 0.0 0.3 0.0 0.5 1.5 0.0 1.9 1.9 3.1 1.4 2.1 2.1 14.5

No-purch. 0.0 0.0 0.0 0.0 6.3 5.0 14.3 11.9 15.8 27.3 20.5 31.9 26.4 39.6 39.6 238.7

Figure 2 illustrates the aggregate first-choice demands (expected and calculated), sales and

a näıve estimator of the primary demand. The expected first-choice demand is derived by

E[Nj ] = λ × T × vj
∑n

i=1 vi + 1
,

and the calculated first-choice demand N̂j is the outcome of the EM method (i.e., last column of

Table 3). The näıve estimator of the primary demand is computed by amplifying the observed
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sales proportionally to the number of periods where the product was available.11

The figure shows an inverse relationship between sales and first-choice demand; while sales

are determined by availability, the first-choice demand uncovered by our procedure is quite

different for the least available but most preferred products (i.e., products 1 and 2). The

expected number of no-purchases from the underlying true MNL model is remarkably close to

the number estimated by our method: 223.9 vs. 219.0. A χ2-test between the primary demand

estimated by the EM algorithm and the true expected primary demand from the MNL gives

a p-value=0.71, providing very strong justification not to reject the null hypothesis that the

underlying choice demand model indeed follows the discrete distribution estimated via the EM

procedure.

We also see that our first-choice demand estimates more closely track the true underlying

primary demand relative to the näıve estimate. In particular, the error of the näıve estimates

seems to be more significant for the less popular products.
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Figure 2: First-choice demand (expected and calculated), sales and näıve estimates for the Preliminary Example,

disaggregated per product.

Figure 3 shows the total purchases per period, across the 5 products under consideration.

Note that due to the high market potential (and related high recapture rate), even for the

periods with less available products (i.e., periods 1-3), some purchases for the least preferred

products still occur. The expected aggregate demand per period for products j = 1, . . . , 5, in

11For instance, based on Table 1, product 1 shows 50 sales in 4 out of 15 periods, so this ad-hoc estimator gives

50× 15/4 = 187.5. This is a standard, single-class untruncation method used by airlines on booking curves under

the independent demand paradigm.
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this case is: λ × ∑n
j=1 vj/(

∑n
j=1 vj + 1) = 35.07. Despite the small sample size, the average of

the cumulative first-choice demand per period estimated by the EM algorithm is close: 34.31.
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0

5

10

15

20

25

30

35

40

45

50

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Period

U
n

it
s

Purchases First-choice demand

Figure 3: Observed purchases and estimated first-choice demand for the Preliminary Example, disaggregated

per period.

In this case, it took 23 iterations of the EM method to meet the stopping criteria for the

current example in just a fraction of a second of computational time. As a benchmark, we also

optimized the incomplete data log-likelihood function (i.e., the logarithm of function (2)). We

used the built-in MATLAB function “fminsearch” that implements the simplex search method

of Lagarias et al. [20]. This is a direct search method that does not use numerical or analytic

gradients. The initial point (v, λ) was based on the observed bookings as in the EM method. The

tolerance was also set at 0.001. For this example, the MATLAB algorithm took 10,672 iterations

to converge, requiring 13,382 evaluations of the log-likelihood function and several minutes of

computational time. It converged to a point of the same level set of logLI(v,λ) as the one

obtained by our EM method. However, the order of magnitude difference in computation time

between the two methods, especially considering the small size of the problem, is noteworthy.

5.1.2 Effects of data volume and quality

In this section, we report on the performance of our procedure under different volumes and

quality of the input data. As in the previous example, given a known underlying MNL choice

model and assuming that customers arrive according to a homogeneous Poisson process with

rate λ = 50, we used Monte Carlo simulation to generate purchases for n = 10 different products.

Here, unlike in the previous example, we randomly generated the availability of products: In

each period, each product is available independently with probability 70%. We then tested
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various volumes of simulated data, ranging from 10 to 5,000 periods.

We further considered three different market potential scenarios: A weak market position

where s = 14%, an intermediate market position where s = 46%, and a dominant position where

s = 81%. Figure 4 shows the box plot of the biases of the estimates v̂ under the different market

potential conditions. On each box, the central mark is the median, the edges of the box are the

25th and 75th percentiles, the whiskers extend to the most extreme data points not considered

outliers, and outliers are plotted individually. The average of the estimates λ̂t was always very

close to the mean 50, consistently exhibiting a very small bias compared with the bias for the v̂

(generally within [-2%, 2%]), and so we did not include it in the box plot.

As expected, we note that for each market potential scenario, as we increase the number

of periods, the biases decrease. Having T = 50 periods seem to be enough to get most biases

smaller than 10%. At the same time, as we increase the market potential (and hence, more

purchases per period are observed), we note a trend towards more accuracy with fewer periods.

One potential concern of our procedure is the need to get an exogenous estimate of market

share and the impact this estimate has on the quality of the estimation. To test this sensitivity,

we used the same inputs for generating data as above (i.e., λ = 50, n = 10, products available

with probability 70%) for the case of T = 500 periods. We then applied our EM procedure

assuming inaccurate information about the market potential. Specifically, we perturbed s by

±10% and ±20%, and plotted the biases of the estimates v̂ and the average λ̂ (Figure 5, left),

and of the estimates of the primary demand N̂j , j = 1, . . . , n, and the average λ̂ (Figure 5,

right). Note that a perturbation of the market potential generally amplifies the biases of the

estimated parameters v̂ and the average λ̂ with respect to their original values. However, the

algorithm adjusts these biases in such a way that it preserves the quality of the estimates of the

primary demand volume for products j = 1, . . . , n. In other words, the relative preferences across

products are sensitive to the initial assumption made about market potential (see Section 6.1

for further discussion), yet Figure 5 (right) shows a relatively small bias in the resulting primary

demand estimates.

5.2 Industry data sets

We next present results of two estimation examples based on real-world data sets, one for an

airline market and one for a retail market.

5.2.1 Airline Market Example

This example is based on data from a leading commercial airline serving a sample O-D market

with two daily flights. We present it to illustrate the practical feasibility of our approach and

to show the impact of the choice set design on the estimation outcome.

We analyzed bookings data for the last seven selling days prior to departure for each consec-

utive Monday from January to March of 2004 (eleven departure days total). There were eleven
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Figure 4: Biases of the preference weights v̂ under different market potentials: (a) s = 14%, (b) s = 46%, and

(c) s = 81%, for different selling horizon lengths.

classes per flight, and each class has a different fare value, which were constant during the eleven

departure days under consideration. The market share of the airline for this particular O-D pair

was known to be approximately 50%. As explained in Section 3.3, we use this information as a

first order approximation for the market potential s.

We define a product as a flight-number-class combination, so we had 2 × 11 = 22 products.

For each product, we had seven booking periods (of length 24 hours) per departure day, leading

to a total of 7× 11 = 77 observation periods. There were non-zero bookings for 15 out of the 22

products, so we focused our analysis on these 15 products. We note that in the raw data we

occasionally observed a few small negative values as demand realizations; these negative values

corresponded to ticket cancelations, and for our analysis we simply set them to zero.

We computed two estimates for the demand volume, under different assumptions: In the
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multi-flight case we assumed customers chose between both flights in the day, so the choice

set consisted of all 15 products; in the independent-flight case, we assumed customers were

interested in only one of the two flights, implying there were two disjoint choice sets, one for

each of the flights with 7 and 8 products respectively, and with a market share of 25% per flight.

It took 31 iterations of the EM method to compute the multi-flight estimates, and 24 and 176

iterations for each of the independent flights. In all cases, the total computational time was only

a few seconds.

Figure 6 shows the observed and predicted bookings, and EM-based and näıve estimates of

the first-choice demand for the 15 products under consideration, for the multi-flight case. The

predicted bookings are computed based on the EM estimates v̂ and λ̂, and on the availability

information of the different products:

E[Bookings of product j on day t] = λt

vjI{j ∈ St}
∑

i∈St
vi + 1

. (18)

The label in the horizontal axis represent the fares of the corresponding products (e.g., “F1, $189”

means “Flight 1, bucket with fare $189”). Figure 7 shows similar statistics for the independent

flight case. While the total number of bookings observed is 337, the total estimated volume

for the first-choice demand of the 15 products is 613 for the multi-flight case and 1,597 for the

independent-flight case. As one might expect, the most significant mismatches occur at the low

fares, where price sensitive customers could either buy-up, buy from a competitor, or not buy

at all. Note that the procedure leads to significantly different volume estimates for some of the

alternatives (e.g., product “F2, $279” has a primary demand of 128 units for the multi-flight

case and 735 units for the independent-flight case). Comparing the two cases, the multi-flight

case has more degrees of freedom in fitting the product demands because it includes relative

attractiveness across more options. The significant differences between the two approaches

suggests that the definition of choice set can have a profound impact on the demand volume

estimates. Hence, how best to construct these sets is an important area of future research (e.g.,

see Fitzsimons [14] for an analysis of the impact of choice set design on stockouts).

Figure 8 shows the preference weights v̂ = (v̂1, . . . , v̂15) computed for both the multi-flight

and the independent flight cases via the EM and the näıve methods. Even though there are

differences between the preference weights derived under both choice set definitions, these dif-

ferences are not as extreme as the difference in the first-choice demand volume estimates.

Using the estimates Ŷ0t and N̂j , we then computed the fraction of lost sales. For the multi-

flight case the estimate was 42.4%, and for the two-independent flight case, the estimates are

33.1% and 86.1% for each flight, respectively. In addition, for the multi-flight case, in Figure 9

we plot the fraction of lost sales as a fraction of the number of unavailable products. This

fraction is almost linearly increasing in the number of stocked-out products.12

12This pattern is different from the one observed by Musalem et al. [22] for a mass consumer good (shampoo

in their case), for which the increase is exponential.
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We conducted two in-sample tests to check the goodness-of-fit of our estimation procedure. 13

First, we ran our estimation procedure to generate v̂ and λ̂. Then, using information on the

availability of each product across the 77 periods, we estimated the number of bookings per

period. We aggregated these expected bookings at the weekly level, producing a 15× 11 grid of

estimated bookings. The resulting root mean square error (RMSE) for the multi-flight case was

5.10. For both independent flight cases, the RMSEs were 5.82 and 2.90, respectively.

Next, we aggregated the observed bookings and the expected bookings across all the 77 pe-

riods and ran a χ2-test for the multi-flight case (giving a p-value=0.72) and for the independent

flight cases (with both p-values=0.99), giving strong justification not to reject the null hypoth-

esis that the observed bookings follow the distribution estimated via the EM procedure.14 The

accuracy measures obtained suggest that considering both flights separately seems to better

explain the choice behavior of customers.

Table 5 summarizes the estimation statistics for the output of the EM method under both

market segmentation cases. The t-statistics indicate that we can reject the null hypothesis that

the true value of any coefficient is zero at the 0.01 significance level.

Table 5: Estimation results for the Airline Market Example

Parameter Product Multi-flight demand Independent-flight demand

Coefficient ASE t-statistic Coefficient ASE t-statistic

v1 F1, $189 0.0832 0.0121 6.8760 0.0695 0.0100 6.9500

v1 F2, $189 0.0397 0.0082 4.8415 0.0105 0.0016 6.5625

v3 F1, $279 0.1249 0.0151 8.2715 0.0658 0.0097 6.7835

v4 F2, $279 0.2087 0.0203 10.2808 0.1814 0.0073 24.8493

v5 F1, $310 0.1361 0.0159 8.5597 0.0747 0.0104 7.1827

v6 F2, $310 0.0455 0.0088 5.1705 0.0353 0.0030 11.7667

v7 F2, $345 0.0524 0.0095 5.5158 0.0379 0.0031 12.2258

v8 F1, $380 0.0442 0.0087 5.0805 0.0289 0.0063 4.5873

v9 F2, $380 0.0358 0.0078 4.5897 0.0248 0.0025 9.9200

v10 F2, $415 0.0314 0.0073 4.3014 0.0183 0.0021 8.7143

v11 F1, $455 0.0725 0.0113 6.4159 0.0488 0.0083 5.8795

v12 F2, $455 0.0614 0.0103 5.9612 0.0227 0.0024 9.4583

v13 F1, $500 0.0359 0.0078 4.6026 0.0268 0.0061 4.3934

v14 F2, $500 0.0121 0.0045 2.6889 0.0024 0.0008 3.0000

v15 F1, $550 0.0163 0.0052 3.1346 0.0188 0.0051 3.6863

Finally, we again tried to optimize the incomplete data log-likelihood function for this ex-

ample using the MATLAB built-in function “fminsearch”, but the attempt failed. For example,

for the multi-flight case, the MATLAB function was running for several minutes, taking 15,241

13We also tried out-of-sample tests, but the amount of data was very limited and highly volatile to have

representative enough fit and testing periods.
14We needed to do this global aggregation to guarantee a number of expected bookings greater or equal than 5

for all the products.
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iterations and 17,980 evaluations of the function logLI(v, λ), but it converged to a meaning-

less point involving negative arrival rates. While one could attempt to stabilize this procedure

and come up with better starting points, the experience attests to the simplicity, efficiency and

robustness of our method relative to brute-force MLE.

5.2.2 Retail Market Example

This next example illustrates our methodology applied to sales data from a retail chain. We

consider sales observed during eight weeks over a sample selling season. We assume a unique

choice set defined by 6 substitutable products within the same small subcategory of SKUs. The

market share of this retail location is estimated to be 48%. In this example, it took 120 iterations

of the EM method to reach convergence; again, the computation time was a few seconds at most.

Figure 10 shows the observed sales, the predicted sales based on the EM estimates, the EM-

based primary demand, and the näıve primary demand for the 6 products under consideration.

While the total number of observed sales was 93, the total estimated volume of first-choice

demand for these products was 303. The observed and estimated sales seem to be quite close. In

fact, a χ2-test between the observed and estimated sales volume gives a p-value=0.97, providing

very strong evidence not to reject the null hypothesis that the observed bookings follow the

distribution estimated via the EM method. For this example, we observe a major discrepancy

between the primary demands computed via EM and those computed via the näıve approach,

much more so than in the airline market example.

Figure 11 shows the preference weights v̂ = (v̂1, . . . , v̂6) for the retail example. Again, we also

report the näıve weights. We also observe a major discrepancy between both sets of preference

weights. Table 6 summarizes the estimation statistics for the output of the EM method. The t-

statistics indicate that we can reject the null hypothesis that the true value of all the coefficients

is zero at the 0.01 significance level.

Table 6: Estimation results for the Retail Market Example

Parameter Product Coefficient ASE t-statistic

v1 P1, $15 0.4342 0.0435 9.98

v2 P2, $26 0.1366 0.0217 6.29

v3 P3, $27 0.2093 0.0277 7.56

v4 P4, $30 0.0541 0.0132 4.10

v5 P5, $35 0.0313 0.0099 3.16

v6 P6, $50 0.0576 0.0136 4.24

For this example, the percentage of lost sales is very significant:

P(lost sales) =

∑T
t=1 Y0t

∑n
j=1 Nj

=
210

303
= 69.3%.
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Finally, when applying the MATLAB built-in function “fminsearch” to optimize the log-

likelihood function for this example, the attempt failed once again. The MATLAB function ran

for several minutes, taking 5,304 iterations and 6,809 evaluations of the function logLI(v, λ),

but it converged to a point with several negative arrival rates.

6 Implementation issues and extensions

6.1 Model inputs

While the overall procedure as stated above is quite simple and efficient, there are several

practical issues that warrant further discussion. One issue we observed is that the estimates are

sensitive to how choice sets are defined. Hence, it is important to have a good understanding of

the set of products that customers consider and to test these different assumptions.

We have also noticed that with some data sets, the method can lead to extreme estimates,

for example arrival rates that tend to infinity or preference values that tend to zero. This is not

a fault of the algorithm per se, but rather the maximum likelihood criterion. In these cases, we

have found it helpful to impose various ad hoc bounding rules to keep the parameter estimates

within a plausible range. In markets where the seller has significant market power, we have

found it reasonable to set a value s no larger than 90%. Otherwise, our experience is that we

get abnormally high recapture rates into the least preferred products.

Lastly, there is the issue of obtaining a good estimate of the market share or market po-

tential s (recall that this depends on our interpretation of the outside alternative). In ei-

ther case, note that this share is based on an implicit “all-open” product offering, i.e., s =
∑n

i=1 vi/(
∑n

i=1 vi +1). This is a difficult quantity to measure empirically in some environments,

and indeed our entire premise is that products may not be available in every period.

Nevertheless, the following procedure avoids estimating an “all open”-based s: Recall from

Section 3.3 that given MLE estimates v∗ and λ∗, we can scale this estimate by an arbitrary

constant α > 0 to obtain a new MLE of the form

v(α) = αv∗

λ(α) =
α

∑

i∈St
v∗i + 1

α
(
∑

i∈St
v∗i + 1

)λ∗.

The family of MLE estimates v(α),λ(α) all lead to the same expected primary demand for the

own products j = 1, . . . , n for all α, but they produce different expected numbers of customers

who choose the outside alternative (i.e., buy a competitor’s product or do not buy at all).

Therefore, if we have a measure of actual market share over the same time periods from other

sources (based on actual availability rather than on the “all open” assumption), one can simply

search for a value of α that produces a total expected market share (using (18)) that matches

the total observed market share. This is a simple one-dimensional, closed-form search since the

family of MLE’s v(α), λ(α) is a closed-form function of α.
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6.2 Linear-in-parameters utility

In our basic setting, we focus on estimating a vector of preference weights v. A common form

of the MNL model assumes the preference weight vj can be further broken down into a function

of attributes of the form vj = euj where uj = βT xj is the mean utility of alternative j, xj is a

vector of attributes of alternative j, and β is a vector of coefficients (part worths) that assign a

utility to each attribute. Expressed this way, the problem is one of estimating the coefficients β.

Our general primary demand approach is still suitable for this MNL case. The only difference

is that now there is no closed-form solution for the M-step of the EM algorithm, and one

must resort to nonlinear optimization packages to solve for the optimal β in each iteration.

Alternatively, one could try the following heuristic approach. The vector of coefficients β could

be computed in a two-phase approach: In step 1, we run the EM algorithm as described here to

estimate v̂. In step 2 we can look for a vector β that best matches these values using the fact

that v̂j = euj = βT xj , j = 1, . . . , n. In most cases, this will be an over-determined system of

equations, in which case we could a run least squares regression to fit β.

7 Conclusions

Estimating the underlying demand for products when there are significant substitution effects

and lost sales is a common problem in many retail markets. In this paper, we propose a method-

ology for estimating demand when the seller knows her market share, only sales transaction data

and product availability data are available, and the assortment changes from period to period.

Our approach combines a multinomial logit (MNL) demand model with a non-homogeneous

Poisson model of arrivals over multiple periods. The problem we address is how to jointly

estimate the parameters of this combined model; i.e., preference weights of the products, and

arrival rates. Our key idea is to view the problem in terms of primary demand, and to treat the

observed sales as incomplete observations of primary demand. We then apply the expectation-

maximization (EM) method to this incomplete demand model, and show that this leads to

a very simple, highly efficient iterative procedure for estimating the parameters of the model

which provably converges to a stationary point of the incomplete data log-likelihood function.

We provide numerical examples that illustrate the applicability of the approach on two industry

data sets.

The methodology is very computationally efficient and simple to implement. In our expe-

rience, when applied over large volumes of data, our algorithm runs an order of magnitude

faster than directly optimizing the corresponding incomplete data log-likelihood function (as-

suming that a maximum is found for the latter, which in our experience is not always feasible

with standard optimization routines). Given its simplicity to implement, the realistic input data

needed, and the quality of the results, we believe that our EM algorithm has significant practical

potential.
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Figure 5: Biases of the estimates v̂ and the average λ̂ (left), and of the estimates of the primary demand N̂j

and the average λ̂ (right) under noisy market potentials. The raw data was generated based on the true market

potentials: (a) s = 14%, (b) s = 46%, and (c) s = 81%, and then the parameters were estimated assuming

perturbed values: ±1.2s, and ±1.1s.
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Airline market example: Joint estimation
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Figure 6: Comparison of observed and predicted bookings, EM-based and näıve first-choice demand under the

multi-flight assumption for the Airline Market Example.

735

Figure 7: Comparison of observed and predicted bookings, EM-based and näıve first-choice demand under the

independent flight assumption for the Airline Market Example.
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Airline market example
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Figure 8: Comparison of EM-based and näıve preference weights v̂ for multi-flight and independent flight

demands for the Airline Market Example.
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Figure 9: Fraction of lost sales as a fraction of total primary demand for own products, for the Airline Market

Example.
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Retail market example
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Figure 10: e Comparison of observed and predicted bookings, EM-based and näıve first-choice demand across

56 days for the Retail Market Example.
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Figure 11: Comparison of preference weight v̂ computed via EM and the näıve approach for the Retail Market

Example.
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