
Estimating Probabilities of Diabetes Mellitus

Using Neural Networks 1

Murali Shanker 2

College of Business
Kent State University
Kent, OH 44242-0001

USA
Phone: +1 (330) 672-2750 Ext. 347

Fax: +1 (330) 672-2448
E-mail: mshanker@kent.edu

M.Y. Hu
Kent State University and Chinese University of Hong Kong

M. S. Hung
Optimal Solutions Technologies, Inc.

November 13, 1999

1Estimating Diabetes Probability using ANN
2Author for correspondance



Abstract

Classification problems are often encountered in medical diagnosis. This paper presents an introduction

to classification theory and shows how artificial neural networks can be used for classification. We

also map out a bootstrapped procedure for interval estimation of posterior probabilities. The entire

procedure is illustrated using the diabetes mellitus data in Pima Indians.
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INTRODUCTION

Statistical classification involves the assignment of an object to an appropriate group based on a

number of variables (also called attributes) describing that object. Recent developments [1][2] [3],

to name just a few, show that with neural networks, not only can we assign an object to a group,

but we can also estimate the probability that the object belongs to that group. This probability,

called the posterior probability, is much more useful to the decision maker than the classification itself.

Clearly, medical diagnosis is a natural application of statistical classification and the primary purpose

of this paper is to demonstrate the methodology for the estimation of posterior probability for medical

diagnosis.

The organization of this paper is as follows. In the next section, basic concepts of statistical

classification and least squares estimation are reviewed, so as to justify the use of neural networks

for the estimation of the posterior probability. Then artificial neural networks are introduced. As

there are many aspects of neural networks existing in the literature, only those directly related to our

work are presented. Special attention is given to how to build the appropriate neural network model.

Issues such as feature selection and network architecture selection are discussed. To illustrate the

methodology of building neural networks for medical diagnosis, an actual data set obtained from a

diabetes study of Pima Indians is used [4]. The process of building neural networks for the diagnosis

of diabetes is described next. It turns out that the “optimal” networks are fairly simple. The results

are then analyzed in the following section.

LEAST SQUARES ESTIMATION OF THE POSTERIOR PROBA-
BILITY

In this section, a very brief review of classification theory is presented in order to define the neces-

sary terminology and notation. Then the least squares method for the estimation of the posterior

probability is developed.

Let each object be associated with a d-vector x of attributes. Assume that the sample space X

consists of m groups of the objects. Following Duda and Hart [1973], let ωj denote the fact that an

object is a member of group j. Define

P (ωj) = prior probability of group j, the probability that a randomly selected object belongs to

group j;

f(x | ωj) = conditional probability density function for x being a member of group j.

The posterior probability P (ωj | x), which is the probability that object x belongs to group j, is

obtained using the Bayes rule:

P (ωj | x) =
f(x, ωj)

f(x)
=

f(x | ωj)P (ωj)∑m
j=1 f(x,ωj)

(1)
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For medical diagnosis, one group may be positive (e.g., diabetic) whereas the other group may be

negative (e.g., not diabetic). Then the posterior probability of the first group will be the probability

that the case is positive.

Suppose a particular x is observed and is to be assigned to a group. Let cij(x) be the cost of

assigning x to group i when it actually belongs to group j. The expected cost of assigning x to group

i is

Ci(x) =
m∑

j=1

cij(x)P (ωj | x). (2)

To minimize the expected cost, the optimal assignment of x should follow the Bayesian decision rule

shown below.

Decide ωk for x if Ck(x) = min
i

Ci(x). (3)

A particular case for the rule is when the cost is binary: cij(x) = 0 if i = j, and 1 otherwise. The

cost function Ci(x) can be simplified to

Ci(x) =
∑

i6=j

P (ωj | x) = 1− P (ωi | x), (4)

and the Bayesian decision rule is reduced to

Decide ωk for x if P (ωk | x)= max
i

P (ωi | x). (5)

It is clear that “optimal” classification should be made based on the posterior probability. Un-

fortunately, it is usually a nonlinear function of the attributes x and the functional form can be very

complex. So far as we know, neural networks are the only practical method for approximating the

posterior probabilities directly.

The theoretical basis for the neural network estimation is the method of least squares. Continuing

the notation from the previous development, but recasting the problem in a more general form, let

x ∈ <d and y ∈ <m be vectors of random variables and fx,y(x, y) be their joint distribution. The

objective of the least squares method is to determine a mapping F : <d → <m so as to

Minimize Q = E

[
m∑

i=1

(yi − Fi(x))2
]

, (6)

where the expectation E is defined over the joint density function, and yi and Fi(x) are the ith

component of y and F (x), respectively. By definition,

Q =
∫

x∈X

∫

y

[
m∑

i=1

(yi − Fi(x))2
]

fx,y(x, y)dydx

For classification, x is an object and y is the target membership value defined as

yi = 1 if x belongs to group i, 0 otherwise.
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For the following development, we will assume there are only two groups so that the results can be

used directly for our problem of determining whether a patient is diabetic or not. For a more general

derivation, please see [1]. For a two-group classification problem, we can reduce the membership

variable to only one and let y = 1 if object x belongs to group 1 and y = 0 otherwise. As a result,

there is only one component of the estimated function and it will be denoted by F (x). Then

Q =
∫

x∈X

[
(1− F (x))2f(x, ω1) + (0− F (x))2f(x, ω2)

]
dx

where f(x, ω1) and f(x, ω2) are the joint density functions for groups 1 and 2, respectively. Since

f(x, ωj) = P (ωj | x)f(x) and P (ω2 | x) = 1− P (ω1 | x), the expected sum of squares can be written

as

Q =
∫

x∈X

[
(1− F (x))2P (ω1 | x)f(x) + F (x)2 (1− P (ω1 | x)) f(x)

]
dx

=
∫

x∈X

[
F (x)2 − 2F (x)P (ω1 | x) + P (ω1 | x)

]
f(x)dx

=
∫

x∈X

[
(F (x)− P (ω1 | x))2 + (1− P (ω1 | x))P (ω1 | x)

]
f(x)dx.

Let

σ2
A =

∫

x∈X
P (ω1 | x)(1− P (ω1 | x))f(x)dx (7)

and

σ2
ε =

∫

x∈X
(F (x)− P (ω1 | x))2f(x)dx (8)

and therefore,

Q = σ2
A + σ2

ε (9)

The quantity σ2
A is termed the approximation error and σ2

ε the estimation error by Barron [1989] .

It is clear that Q is minimized when σ2
ε is zero and that is achieved when

F (x) = P (ω1 | x). (10)

Hence, the least squares solution is the posterior probability.

NEURAL NETWORKS

Artificial neural networks have been used to solve a wide variety of problems including classification.

A neural network is composed of nodes and arcs connecting a node to another. Nodes are artificial

representations of neurons and arcs are those of synapses in a biological brain. The feedforward

neural networks, the kind considered here, are networks without closed feedback loops. The node set
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is typically partitioned into three subsets: input nodes, output nodes, and hidden nodes. A multi-layer

perceptron is a feedforward network where hidden nodes are arranged in layers and only nodes between

nodes of neighboring layers are connected.

Each arc in a neural network is associated with a weight. Let (i, j) denote the arc going from node

i to node j and wij be its weight. A hidden or output node may be assigned a scalar called bias, which

is similar to the intercept in a linear regression function. For node j, let w0j denote the bias and Sj

be the set of nodes (including node 0 if the node has a bias) connected into it. The input received at

node j is defined as

xj =
∑

i∈Sj

wijai,

where ai is the output of node i and is defined as

ai = Fi(xi).

The function Fi is called the activation function and is usually one of two forms: logistic or linear.

The logistic function is defined as Fi(x) = (1 + e−x)−1 and the linear function is Fi(x) = x. (Some

authors add an intercept and a slope to the linear function.) In almost all applications, including this

one, the input nodes use linear activation functions. The activation value of node 0 is fixed at a0 = 1.

One can view a neural network as a mapping function F : <d →<m when a d-dimensional input x is

submitted to the network and an m-dimensional output a is obtained after using the above definitions

to transform inputs to outputs. The attractiveness of neural networks is its simplicity. All one needs

to do for a feedforward network is to define the network architecture – here it means how the nodes

are connected, what nodes have biases, what activation function is used in each node.

The weights of a neural network are determined by training the network. In neural network

literature, training is based on a learning law which prescribes necessary algorithms to carry out the

computation. For feedforward networks, training is a mathematical minimization problem, usually

with the following objective function:

Minimize
L∑

l=1

∑

i∈NO

(yl
i − al

i)
2

where L is the number of patterns (sample size) and yl
i is the target value for pattern l and output

node i. For classification problems, the target values can be defined as

yl
i =

{
1 if pattern l belongs to group i
0 otherwise

So neural networks are one of the least squares methods. The remaining issue is whether neural

networks can provide an accurate estimate. Cybenko [1989] and Funahashi [1989] , among others, have

shown that a neural network, with sufficient number of hidden nodes, can approximate any function
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arbitrarily closely. In practice, the number of hidden nodes required for a good approximation can be

quite small.

For two-group classification problems, one output node is sufficient. So the objective function is

simplified to

Minimize
L∑

l=1

(yl − al)2 (11)

where yl = 1 if pattern l belongs to group 1 and yl = 0 otherwise, and al denotes the network output

for pattern l. The fact that we are minimizing the sum here instead of the mean does not affect

the solution. Therefore, we expect the network output to be an unbiased estimator of the posterior

probability.

Finally, since the objective function is not necessarily convex with respect to the weights w, none

of the nonlinear optimization algorithms can guarantee to yield the global minimizing solution. The

most popular algorithm, the back-propagation method [9], suffers from lack of clear stopping criteria

and long running time. The algorithm used here was developed by Ahn [10] and is called forward

additive algorithm. It uses a strategy where the starting solution is determined by the data set. When

there are no hidden nodes and the activation functions at the output node are linear (i.e., a (x) = x),

the network becomes a multiple linear regression model and the global solution can be found easily,

similar to solving a system of linear equations defined by the data set. The next step is to change

the activation functions at the output nodes to logistic function (or any nonlinear function), using

the linear model solution as the starting solution for this logistic regression model. Minimization is

achieved by a convergent algorithm called limited memory quasi-Newton developed by Nocedal [11]

and adapted for neural network training by Denton [12]. The next step is to add one hidden node

at a time, along with the arcs from the input nodes to the new hidden node and the arcs from the

hidden node to the output nodes. The solution of the previous network is retained as the starting

value for the same parameters in the new network and new parameters are assigned starting values

based on the distribution of the input features. (There are four different methods in Ahn’s algorithm

for assigning starting values of the new parameters. We used only the most basic method. See Ahn

[10] for the details of all the methods.)

Building Neural Network Models

There are many questions to be answered when building a neural network model: the number of input

and output nodes, the number of hidden layers and the nodes in each layer, the arcs (which nodes are

to be connected), the bias terms (which nodes are to have them), and the activation function at each

node. There are few concrete guidelines for any of the decisions. For this study, we concentrate on

networks of one hidden layer and one output node. There are arcs from every input node to every

hidden node and from every input node to the output node. The activation function for the input
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nodes is linear, whereas it is logistic for every other node. Only the output node has bias. So the

remaining key questions are the input nodes and the number of hidden nodes.

The issue in input nodes is not merely about its number and about what they are. We would

like to use the fewest features in a model, but without sacrificing the model’s power for prediction

or explanation (known as Occam’s Razor). Feature selection is a difficult issue, and the difficulty is

compounded by the nonlinear nature of neural networks. Nonlinearity renders the typical hypothesis

testing on the significance of feature variables – such as in linear regression – impossible. In several

studies [13][14][15], we have used a backward elimination method and shown it to be successful in

determining the right mix of feature variables. The method is to train a neural network with the

full set of features. The network is evaluated on a holdout set, called the validation set. Let the

SSE of the validation set be denoted as SSEF . Next, one feature variable is deleted and a new

neural network is trained. Let its SSE on the same validation set be denoted as SSER. Then the

quantity SSER−SSEF represents the contribution of the feature variable. The larger the difference

SSER − SSEF , the greater the contribution. (One would expect the difference to be positive on

the training set, if the training algorithm yields global or near global minimum, but it can be either

positive or negative on the holdout set.) After this quantity is calculated for each feature in turn, the

variable with the smallest contribution is the logical candidate for removal and it is removed if some

threshold value is crossed. After a feature is removed, the remaining set can now be considered the

full set. The above process is then repeated.

In a previous study of the same diabetes data set [15], the measure of contribution is based on the

well-known F ratio of regression theory; namely,

F =
(

SSER − SSEF

dfR − dfF

) /(
SSEF

dfF

)

where df stands for degrees of freedom and is equal to the sample size (number of cases in the validation

set) minus the number of parameters in the neural network (number of arcs plus the biases). In that

study, the threshold for removal is 3.0; therefore a feature whose F ratio is less than 3.0 is removed.

The selection of the hidden nodes is difficult because it involves a trade-off. Typically, a network

with larger number of hidden nodes yields greater precision for function approximation (smaller SSE).

But the larger network may overfit the data and thus not generalize as well. Generalizability refers to

the ability of a model to predict unseen objects. Our approach also relies on the use of the validation

set. After the features have been selected, they are used to train neural networks of increasing hidden

nodes. The architecture with the smallest SSE on the validation set is then selected.

The reliability of a model can be improved with more samples. For example, instead of relying on

one training set and one validation set for the selection of feature variables and network architecture,

the decisions would be more robust if more samples could be used. One approach to create more

samples from a data set is called bootstrap [16]. Given a sample of size n, bootstrap generates a new

sample of the same size by sampling with replacement. In such a way, as many replicated samples as

desired can be created. Several advantages of boostrapping will be discussed later.
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DATA

Pima Indian Diabetes

To illustrate the application of neural networks to the estimation of posterior probability in medical

diagnosis, the diabetes data set of Pima Indian females is used [4][17]. This population, near Phoenix,

Arizona, has been under continuous study since 1965 by the National Institute of Diabetes and Di-

gestive and Kidney Diseases because of its high incidence rate of diabetes [18][19]. Each community

resident over 5 years of age was asked to undergo a standardized examination every two years, which

included an oral glucose tolerance test. Diabetes was diagnosed according to the World Health Or-

ganization criteria [20]; that is, if the 2 hour post-load plasma glucose was at least 200 mg/dl (11.1

mmol/l) at any survey examination, or if the Indian Health Service Hospital serving the community

found a glucose concentration of at least 200 mg/dl during the course of routine medical care [18].

This database provides a well validated data resource for exploring the prediction of the date of onset

of diabetes [4][17].

The data set consists of 768 subjects who are females over 21 years old. Of these, 268 were

diagnosed with diabetes.

Feature Variables

Eight variables were considered to be significant risk factors for diabetes among Pima Indians and

other populations [4]. These are:

• Number of times pregnant (PREGNANT)

• Plasma glucose concentration at 2 hours in an oral glucose tolerance test (GTT)

• Diastolic blood pressure (mm Hg) (BP)

• Triceps skin fold thickness (mm) (SKIN)

• 2-hour serum insulin (µU/ml) (INSULIN)

• Body mass index (weight in Kg/(height in m)2) (BMI)

• Diabetes pedigree function (DPF)

• AGE (years)

The Diabetes Pedigree Function (DPF) was developed by Smith, et al. [4] to provide a synthesis of

the diabetes mellitus history in relatives and the genetic relationship of those relatives to the subject.

The DPF uses information from parents, grandparents, siblings, aunts and uncles, and first cousins.

It provides a measure of the expected genetic influence of affected and unaffected relatives on the

subject’s eventual diabetes risk.
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In a previous study, Shanker (1996) used the feature selection method discussed earlier to show

that three variables – GTT, BMI and AGE – could provide as much classification rate as the eight

variables. Hence these same three variables are used here.

NEURAL NETWORK MODELS FOR DIABETES DIAGNOSIS

The target value of each subject is coded 1 if diabetes is diagnosed, and 0 otherwise. Then the data

set is divided into three subsets: training, validation and test sets. The training set is used to train

neural networks and the validation set is used to evaluate the quality of each trained network. The

test set will be used later to evaluate the predictive power of the chosen models. The division of the

data set is shown in Table I.

(Insert Table I here)

As mentioned before, all the neural networks have three input nodes, one output node, and one

layer of hidden nodes. The activation function for the hidden and the output node is logistic. Only

the output node has a bias. To determine the appropriate number of hidden nodes, 60 bootstrap

replicates of the training set and 10 bootstrap replicates of the validation set were generated. So for

each network architecture, we have 60 trained networks, each of which is evaluated by 10 validation

sets. The average of these 60 × 10 = 600 SSE’s for each network architecture is plotted in Figure

1. The average SSE is 23.17 for networks of 0 hidden nodes, and it goes up to 23.69 for those

with 1 hidden node, and it goes up higher with more hidden nodes. The results clearly suggest the

appropriate architecture is with 0 hidden nodes. So that is the one selected for further study.

(Insert Figure 1 here)

ANALYSIS OF RESULTS

So far, one appropriate model for the diabetes data set is a neural network with three inputs and

zero hidden nodes. The next steps involve the evaluation of the models on the thus far unseen test

set. First, a large training sample was created by combining the training and validation sets. A

network was trained with this set and used to estimate the posterior probability of each case in the

test set. Based on an arbitrary classification scheme: a case is declared diabetic if the estimated

posterior probability is greater than or equal to .7, it is declared non-diabetic if the probability is less

than or equal to .3, and it is declared indeterminate otherwise, the results are summarized in Table

II.

(Insert Table II here)
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The table shows that 65 of the nondiabetics were correctly classified, whereas 5 were incorrectly

classified as diabetic. Out of the total of 148 cases, 83 ( 56.081%) were correctly classified, and

22 (14.865%) were incorrectly classified. with the remaining 43 cases indeterminate. The previous

study [15] reported a 80.21% correct classification rate (based on a different test set) with both neural

networks and logistic regression. The classification rate is higher than what we have here. But since

it did not allow for indeterminate diagnosis, the result there implies a 19.79% incorrect classification,

which is higher than our figure here. Since indeterminate cases can be referred back for further tests

or examinations, we feel the more important statistic should be the incorrect classification rate. Based

on this, the new model shows improvement in the neural network’s ability to make diagnosis.

The next step is to ascertain the reliability of the posterior probability estimates. We combined

the original training and validation sets, and thirty bootstrap replicates were generated from this

combined set. Each bootstrapped set resulted in a trained neural network, which provided an estimated

probability for each case in the test set. Figure 2 shows the mean posterior probability from the

bootstrapped networks and the probability estimated from the original combined training set.

The graph shows a close match between the two estimates. Not surprisingly, the classification

table based on the bootstrap mean posterior probability is also very close (Table III). The only

difference is more correct classification and one less indeterminate for the nondiabetic cases.

(Insert Figure 2 here)

(Insert Table III here)

For this example, it seems that bootstrap did not offer much more useful results than the traditional

non-bootstrapped methods. There are a few important advantages of the bootstrap method, however

[21]. First, it provides useful information regarding the robustness of the estimates . Figure 3 shows

the mean and the standard deviation of test set SSE from each bootstrap replicated network. The

small range in both statistics assure us that the network estimates are reliable; in other words, there

is good stability.

(Insert Figure 3 here)

The second advantage of the bootstrap method is that it offers a direct way to estimate the variance

of the estimation error σ2
ε. Recall its definition,

σ2
ε =

∫

x∈X
(F (x)− P (ω1 | x))2f(x)dx

A sample estimate can be defined as

s2
ε =

∑n
i=1

∑r
j=1

(
θij − θi

)2

(n− 1)(r − 1)
(12)

where θij is the posterior probability for case i estimated by bootstrap sample j, θi is the mean estimate

for case i, and n and r are test set sample size and number of bootstrap replications, respectively. Of

course, we can estimate the approximation error σ2
A also, with the following formula:
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s2
A =

∑n
i=1

(
1− θi

)
θi

(n− 1)
(13)

Without bootstraps, there wouldn’t be the mean probability θi, neither would there be estimates

of variances. For the test set, we obtained s2
ε = 0.0013 and s2

A = 0.1603.

An important application of s2
ε is to offer interval estimations. As there is no reason to assume

the posterior probabilities to have any known distributions, no interval estimate can be assigned an

exact confidence level. However, based on the bootstrap samples, approximate confidence levels are

possible. For each case in our test set, we counted the number of estimated posterior probabilities to

fall within a multiple of sε around the mean. The following are the “coverages” for this test set.

Percentage of points within
±1sε ±2sε ±3sε

Actual coverage 72.65% 94.71% 99.39%
Normal distribution 68.26% 95.44% 99.72%

The table shows that 72.65% of all bootstrap estimates are within one standard deviation of the

mean, as compared to 68.26% in the normal distribution. The coverages are lower in the actual

data than the normal function for larger multiples; suggesting that the distribution of points is more

clustered towards the middle. But the results are still quite useful. Since sε = .036, we can state

that 99.39% of the estimates are within 0.11 of the mean. For example, if the mean is .8, we are over

99% certain that the individual estimates will be between .91 and .69.

CONCLUSIONS

Classification problems are routinely applied to medical diagnosis. This paper provides an introduction

to the theory of classification and highlights the importance of posterior probabilities in classification.

Posterior probabilities correspond to the likelihood of an object belonging to a group. Thus, these

probabilities contain more useful information for a medical practitioner than the classification itself.

Artificial neural networks have been successfully applied to classification problems. This paper

shows that not only can neural networks be used to estimate posterior probabilities, as with other

traditional statistical procedures such as discriminant analysis and logistic regression, but that neural

networks estimates are direct and distribution-free. Yet, the primary drawback in using these neural

estimates has been the absence of a reliability measure. The bootstrapped approach is proposed and

used here to construct interval estimates for the predicted probabilities.

Data on diabetes mellitus in Pima Indian is used to illustrate the application of neural classifiers.

Variable selection was performed in a previous study. Thus, for model selection, this study concen-

trates on the identification and selection of model architecture. Bootstrap replicates of the training

and validation samples lead to the selection of the simplest architecture with no hidden nodes. Inter-

esting results are captured in the test sample. Overall, classification results are comparable to those
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previously reported. Here, we set up an indeterminate category based on posterior probabilities. Pa-

tients in this gray area are recommended to go through further medical testing. Standard deviation

of the estimate is used to construct interval estimates of the posterior probabilities.
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TABLES and FIGURES

Non Diabetic Diabetic Total
Training 301 160 461
Validation 105 54 159
Test 94 54 148
Total 500 268 768

Table I: Data Distribution
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True State
Classified as Non Diabetic Diabetic Total
Negative 65 17 82
Indeterminate 24 19 43
Positive 5 18 23
Total 94 54 148

Table II: Test Set Classification using Combined Training + Validation Sets
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True State
Classified as NonDiabetic Diabetic Total
Negative 66 17 83
Indeterminate 23 19 42
Positive 5 18 23
Total 94 54 148

Table III: Test Set Classification using Bootstrapping on the Training+Validation set
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Figure 1: Mean Validation Set SSE versus Hidden Nodes
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Figure 2: Test Set Posterior Probability: Bootstrapped Mean (Y) versus Non-Bootstrapped Mean (X)
Estimates
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Figure 3: Test Set SSE Across Bootstrap Replicates
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Figure Titles

Figure 1 Mean Validation Set SSE versus Hidden Nodes

Figure 2 Test Set Posterior Probability: Bootstrapped Mean (Y) versus Non-Bootstrapped Mean

(X) Estimates

Figure 3 Test Set SSE Across Bootstrap Replicates
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