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Abstract

We present a new approach to the estimation of production functions that allows for richer patterns

of firm heterogeneity than can be accommodated under the proxy variable methods of Olley and Pakes

(1996) and Levinsohn and Petrin (2003). In particular, we show that the economics of the firms static

input choice contains the necessary identifying information to control for the endogeneity problem in the

production function. From an econometric point of view, our estimation proceeds in a single GMM step,

and thus standard asymptotic standard errors are available. We consider the identification and estimation

of models with heterogeneity in both input and output prices, as well as heterogeneity in factor specific

productivity. Our empirical results show that we control for more of the endogeneity problem than the

proxy variable approach, resulting in estimates of labor productivity nearly half as small.

1 Introduction

As first pointed out by Marschak and Andrews (1944), using inputs and outputs to estimate production
functions gives rise to an endogeneity problem. The endogeneity problem is caused by the presence of
productive factors that are unobservable to the econometrician but that are “transmitted” to the firm’s
optimal choice of inputs. These unobservable factors are traditionally captured by a scalar productivity
index that varies across firms and potentially evolves over time. The two traditional and oldest methods
of controlling for the endogeneity problem in the production are fixed effect estimation using panel data
and instrumental variables. However these solutions have proven unsatisfactory on both theoretical and
empirical grounds (for a review, see Ackerberg et al. (2007)). Instead, the modern literature on estimating
production functions initiated by Olley and Pakes (1996) (OP for short) uses restrictions from economic
theory to identify production function parameters. In particular, under certain condition’s on the firm’s
profit maximization problem, it is possible to use an observed input decision of the firm, such as investment
(Olley and Pakes, 1996)or intermediate materials (Levinsohn and Petrin, 2003), and invert this inputs in
order to recover a firm’s level of productivity, thereby controlling for it in the estimation. We shall refer
to this method of inverting inputs as the “proxy variable approach” since the observed level of the input
essentially proxies for the unobserved level of productivity.
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Jagadeesh Sivadasan for lending us their data and their time. Funding for this research was provided by the Graduate School
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Along with a number of regularity conditions on the firm’s problem, the theory underlying the proxy variable
approach depends critically upon the assumption that the firm’s current level of total factor productivity
is the only dimension of unobserved heterogeneity across firms. In particular, unobserved differences in
input/output prices and technology differences are assumed away. This is a strong assumption, and if violated
would mean that the econometrician does not fully control for productivity when inverting the proxy, leaving
the endogeneity problem to remain. As Ackerberg et al. (2007) themselves suggest, productivity heterogeneity
is possibly reflective of heterogeneity in the quality of labor, and thus wages are endogenous. However in so
far as wages are not observed, controlling for their endogeneity is an important issue for production function
estimation that has yet to be addressed. As Fox and Smeets (2007) have recently shown, total factor
productivity as recovered by the proxy method appears to explain only a small portion of the measured
productivity differences across firms in their data, which suggests that proxy method is not recovering
productivity estimates that capture . Moreover, the theory and empirics of the firm size distribution (see
e.g., Lucas (1978)) along with the observation that larger firms pay higher wages (see e.g., Mortensen and
Pissarides (1994)) suggest that wages and the marginal product of labor are highly heterogeneous, even
within a homogoenous good industry. While such patterns of heterogeneity naturally arise through a variety
of sorting/matching mechanism for clearing factor markets (e.g., the matching of productive managers with
productive workers), they have remained outside the scope of the empirical literature to date. In addition,
even though manufacturing firm’s may behave competitively in their output markets, it is quite likely that
their products are partially differentiated, at the very least by firm location when the population under
consideration is all firms in an industry at the country level (as is the case with the now popular Chilean
data used in Levinsohn and Petrin (2003)). Such unobserved heterogeneity in output prices is also excluded
from the proxy variable approach.

The purpose of this paper is to present a new a new method for estimating production functions that allows
for richer patterns of firm heterogeneity than the proxy variable approach, and as such has a number of
potential applications. In addition to presenting the basics of our approach, we present results from the
application of our method to the same Chilean manufacturing data used in Levinsohn and Petrin (2003)
(LP for short). Compared to the LP estimates, our approach yields significantly smaller estimates of labor
productivity (on average half as small), and significantly smaller estimates of returns to scale (from increasing
returns to decreasing). These differences are what we expect when the proxy variable (intermediate materials
in the LP case) fails to fully control for the endogeneity problem due to the multiple dimensions of unobserved
heterogeneity that are likely playing a role in the data.

The key to our method lies in using the economics of the firm’s static input decision as a source of identifying
information. Since the classic endogeneity problem is caused by a“transmission”of the the firm’s productivity
to its static input choices, the first order condition of the static input choice provides an exact source to
control for unobserved productivity. In particular, we use the first order condition as a second structural
equation that allows us to separate out the endogenous part of the error term in the production function.
Appealing to the first order conditions of the firm’s static input decision stands in contrast to the modern
literature’s focus on the first order conditions of the firm’s dynamic input decision. Nevertheless, we form
moment conditions much in the manner of LP and OP, thus our framework is consistent with the dynamics
of their underlying economic model. Since we avoid altogether proxy variables, we are able to allow for richer
patterns of firm heterogeneity, such as differences in prices and factor specific productivity, which explains
why our estimates diverge from theirs in the particular direction we obtain.

We further examine the sources heterogeneity that are playing a role in the data. In particular we consider
whether firms in an industry exhibit heterogeneity in their labor productivity. We show that the distribution
of labor productivity can be nonparametrically identified within our framework, and our estimate of the
distribution across industries reveals considerable heterogeneity in labor productivity.
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The plan of the paper is as follows. We first lay the groundwork by specifying the general economic setting
in which both our method and the proxy variable methods take place. The proxy variable approach and its
specialized assumptions are then reviewed. The main body of the paper focuses on how to use the structure
of the firm’s labor input problem to control for the endogeneity problem and allow for multiple dimensions of
heterogeneity. We then conclude with the application of our framework to the Chilean manufacturing data
and directions for future research.

2 The Standard Setup

Research on the estimation of production functions has largely assumed a Cobb-Douglas technology. We
will follow in this tradition in order to explain our approach. However the method of using the first order
condition of the static input choice as an additional source of identifying information can be carried out
under a variety of assumptions about the functional form of technology. In the last section, we sketch our
strategy for studying other production functions, such as CES. What follows below is a presentation of just
the most essential elements from the model of Olley and Pakes (1996) needed to explain the proxy variable
approach along with our method.

We consider the problem of a firm j that produces an output Y using capital K and labor L. The firm’s
technology at time t is described by the following Cobb-Douglas production function:

yjt = αljt + βjkjt + ajt (1)

where small letters denote logs. Thus the productivity of labor αj , the productivity of capital βj , and the
productivity residual ajt will generally vary across firms. Furthermore, a firm’s productivity residual ajt can
evolve over time. More generally, we can allow for several inputs, but for the sake of exposition will study
the traditional two input case.

While (1) represents a fairly general case of a population of Cobb-Douglas firms, the focus of the empirical
literature has been on the case where ∀j, βj = β and αj = α. That is, the only technology difference across
firms in operation at a given time lies in the productivity residual. We will focus for now on this special case
and return later in the paper to the more general formulation inherent in (1).

As Griliches and Mairesse (1998) explain, the the productivity residual ajt can be decomposed into three
components, i.e.,

ajt = ωjt + εjt + ηjt. (2)

In (2), ωjt is an anticipated productivity shock that firm j observes before it makes its period t input
decisions, while εjt is an unanticipated productivity shock that firm j observes only after it makes its period
t input decisions. On the other hand, ηjt equals measurement error (brought about, for example, by deflating
revenue in order to measure output), which does not enter into the firm’s problem but rather enters only
into the econometric specification. We refer to the component ωjt as the firm’s total factor productivity as
it captures a systematic technology difference across firms. Moreover from the econometric point of view,
total factor productivity represents the endogenous part of error term since current and past realizations of
a firm’s productivity, i.e., the set {ωjτ}tτ=1, can be transmitted to the firm’s inputs choices kjt and ljt for
the current period, thus invalidating the most obvious estimation strategy, i.e., pooled OLS regression on
(1). The exact mechanism through which productivity is transmitted to the inputs depends on the timing
of the input decisions, which we now discuss.
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A firm’s productivity ωjt evolves according to a Markov process. That is, the transition probability of
productivity can be written as

Pr
(
ωjt|{ωjτ}t−1

τ=1, Jt−1

)
= Pr

(
ωjt|{ωjτ}t−1

τ=1

)
where Jt−1represents all other information available to the firm at time t−1. It is traditionally assumed that
this process is first order, an assumption we maintain moving forward. More generally, our method allows
for R&D expenditure this period to impact productivity next period, but we ignore this consideration for
the time being in order to explain the most basic model.

Firm j faces output prices Pjt and wages Wjt in period t and behaves competitively, i.e., chooses inputs
to maximizes profits taking the input and output prices it faces as given. The inputs on the other hand
are chosen over different time horizons. Capital on the other hand is accumulated dynamically. That is,
Kjt is determined by the sequence of prior investment decisions {Ijτ}tτ=1 via the accumulation process
Kjt = K(Kjt−1, Ijt−1). The key point is that the current period’s capital stock is determined through last
period’s investment decision, and is thus independent of the innovation ξjt = ωjt−E[ωjt|ωjt−1] in the current
period’s productivity. Labor on the other hand is a static input and is thus chosen each period conditional
on (kjt, ωjt) as state variables. Labor is chosen to maximize each period’s profit, while firm j sequence of
investments {Ijt} is chosen to maximize the expected discounted sum of profits.

3 The Proxy Variable Approach

In order to solve the endogeneity problem, the literature initiated Olley and Pakes (1996) and further de-
veloped by Levinsohn and Petrin (2003) assumes the existence of a proxy input djt (demand for investment
(djt = Ijt) in Olley and Pakes (1996), demand for materials (djt = Mjt) or electricity (dj,t = Cjt) in Levin-
sohn and Petrin (2003)), such that

djt = δt (kjt, ωjt) (3)

The demand function δt is assumed to be strictly monotone in productivity ωjt when demand is positive,
i.e., when djt > 0. The proxy demand function δt is indexed by time to capture the effect of all other time
specific variables on the proxy decision. However an important assumption is that δt is not index by j, so
any firm level heterogeneity firm outside of capital stock kjt and total factor productivity ωjt is assumed
away. This, for example, restricts all firms to face homogeneous input and output prices in all periods, i.e.,
∀j, t it is assumed that Pjt = Pt, and Wjt = Wt. Furthermore, the assumption does not allow for there to
be an idiosyncratic error term in the proxy demand function, which could reflect such things as firm level
differences in interest rate expectations and tax treatment in the case of investment demand, or stochastic
supply of electricity in the case of intermediate input demand, or more generally measurement error in the
proxy variable itself (due for example to applying to a deflator to measure real proxy demand).

We leave asides for the moment our reservations about the assumptions underlying proxy demand, and show
how the proxy variable and how is used to control for unobserved productivity. First, for all observations
(j, t) for which djt > 0, we can invert (3) to recover ωjt, which we then replace in (??) to yield

yjt = αljt + βkjt + δ−1
t (kjt, djt) + εjt

= αljt + Φt (kjt, djt) + εjt
(4)

where εjt = εjt+ηjt and Φdt(kjt, djt) = αkjt+ωjt. Thus one can consistently estimate the labor coefficient α
and the value Φjt = Φ(kjt, djt) in (4) by semiparametric techniques (e.g., Robinson (1988)). This constitutes
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the first stage of the estimation. For the second stage, given the first stage estimates (α̂, Φ̂), and any possible
value of the capital coefficient β, we can form the residual

θjt(β) = y − α̂ljt − βkjt = ωjt + εjt (5)

for all observations (j, t). We can also form the residual

ωjt(β) = Φ̂jt − βkjt (6)

for all observations (j, t) such that proxy demand is positive, i.e., djt > 0. Then the nonparametric regression
of θjt on ωjt−1 yields

E[ωjt + εjt |ωjt−1, djt−1 > 0] = E[ωjt |ωjt−1],

where the last equality follows from the fact that εjt is uncorrelated with ωjt and the first order Markov
assumption. Finally the parameter β is estimated using the moment condition that ξjt = ωjt−E[ωjt |ωjt−1]
is mean independent of kjt.

3.1 The Colinearity Problem

As pointed out by Bond and Söderbom (2005) and Ackerberg et al. (2006), while (4) appears to identify the
labor coefficient, the assumptions made thus far about the data generating process suggest that the labor
coefficient α is in fact not identified from the first stage regression in the proxy variable approach. We now
present a proof of their non-identification argument, which the authors do not formally establish.

The key to understanding the nonidentification claim starts by recalling that labor is assumed to be a fully
flexible factor, and as such is chosen optimally by firm j at time t given the state variables (kjt, ωjt). Recalling
also the scalar unobservable assumption, we thus have that labor demand follows ljt = ft(kjt, ωjt). However
the proxy demand also has the form djt = δdt(kjt, ωjt), which we invert to obtain ωjt = ht(kjt, djt). From
this it follows that

ljt = ft(kjt, ht(kjt, djt)) = Ft(kjt, djt).

Going back to the first stage regression in the proxy variable approach, if we wish to be fully nonparametric
about Φt, then it follows that we cannot simultaneously identify the labor coefficient α. To see this, consider
α′ 6= α. Then

yit = αljt + Φt(kjt, djt) + εjt

= (α′ + (α− α′))ljt + Φt(kjt, djt) + εjt

= α′ljt + (α− α′)Ft(kjt, djt) + Φt(kjt, djt) + εjt

= α′ljt + Φ′
t(kjt, djt) + εjt.

Thus we cannot be both fully nonparametric about Φt and still identify α.

Later in the paper, we offer a new approach to estimating the production function parameters . In particular
we show that when the full economics of the static input decision are used, the labor coefficient is identified
simultaneously with the other parameters. Thus we do not need to invoke timing restrictions or adjustment
cost stories to break the above colinearity as proposed by Ackerberg et al. (2006) and Bond and Söderbom
(2005). For now we will assume the labor coefficient β is known, and proceed to examine potential difficulties
that arise with the second stage of the proxy variable approach.
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3.1.1 Selection on the Proxy

Recall once again that the proxy variable approach requires that δt(kjt, ωjt) be monotonic in ωjt conditional
on the event that the proxy demand djt > 0. For the case of investment, the proxy demand is a lumpy and
equals zero for sufficiently small values of productivity ωjt, in which case it cannot inverted out. In the case
of manufacturing data from Chile, Levinsohn and Petrin (2003) report that such zeroes occur for nearly 50%
of their observations when using investment as a proxy variable. Although dropping such observations from
the data in order to estimate the model surely results in a serious efficiency loss, so long as the moments
are constructed in the fashion explained in Section 3, there is no selection bias introduced. However the
economic relationships in the model give rise to a number of alternative and seemingly more efficient ways of
constructing moments, and these alternative constructions could very well give rise to a selection problem.

For example Ackerberg, Caves and Frazer (2006); Ackerberg, Benkard, Berry and Pakes (2007) advocate an
“equivalent” method of constructing the moments. To quote Ackerberg, Benkard, Berry, and Pakes (p. 53,
adjusting their notation to square with ours)

An equivalent way to construct a moment condition ... is as follows ... Given β, construct
ω̂jt = Φ̂jt−αkjt. Nonparametrically regress ω̂jt on ω̂jt−1 to construct the estimated residual ξ̂jt.
Construct a moment condition interacting ξ̂jt with kjt.

However this manner of constructing the moment does in fact suffer from selection bias. To see this, recall
(6) and notice that we can only construct the residual ω̂jt for those observations (j, t) such that dj,t > 0.
However

E[ωjt |ωjt−1, djt > 0, djt−1 > 0] = E[ωjt |ωjt−1, djt > 0] 6= E[ωjt |ωjt−1].

Thus this procedure using the investment proxy will not lead to the right moment condition.

Another important difficulty can arise from the fact that ω̂jt can only be constructed for those observations
for which djt > 0. For example Olley and Pakes (1996) wish to use their estimated model to study the
distribution of productivity among active firms at any given time. Thus they do not wish to select on those
firms for which djt > 0. As a result they can only form the “noisy” productivity residual using (5), i.e.,

̂ωjt + εjt. However the distribution of ωjt is not the same as ωjt + εjt, and unless distributional restrictions
are placed on εjt, it is not possible to know apriori the impact of this bias other than that the degree of
heterogeneity will be overstated As Fox and Smeets (2007) discuss, manufacturing data show considerably
more heterogeneity in their underlying technology (as measured by the residual from the standard pooled
OLS estimator of 1) than can be explained by the productivity residuals ωjt recovered from the Olley and
Pakes procedure, suggesting that much of the variance in ωjt + εjt is coming from εjt. Their findings also
suggest that the proxy variable does not sufficiently recover underlying heterogeneity in productivity. This
is naturally a result of the scalar unobservability assumption, which recall if violated implies that the proxy
variable does not in fact control for unobserved productivity, leading to inconsistent production function
estimates.

4 A ”New” Approach to Estimating Production Functions

A more serious misgiving we have is the idea that, by inverting either investment, materials, electricity,
etc. under the proxy variable approach, we are recovering the same ωjt. This follows from the scalar
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unobservability assumption. That is, in the proxy demand function δt(kjt, ωjt), ωjt is the only firm level
unobserved factor that generates differences in proxy demand behavior across firms. In particular, the proxy
variable machinery does not allow firms to face heterogeneity in input and output prices and does not
allow heterogeneity in factor specific productivity (versus total factor productivity) differences across firms.
Moreover the proxy variable approach, since it requires a nonlinear inversion, is sensitive to measurement
error in the proxy variable, which will typically be introduced when we apply deflator to measuring real
proxy demand. All of these factors would cause the proxy approach to fail to recover productivity exactly,
and hence control for the endogeneity problem in the production function.

In this section, we develop an alternative to the proxy variable approach that solves the endogeneity problem
under the standard setup of Section (2), but allows for the above mentioned elements of heterogeneity to
be included in the model. We refer to our method as a “new” approach, because the basic idea behind it is
actually quite in the literature on labor demand. In particular, the point of departure of our approach is
that we use the first order condition for the static input decision in each period, i.e., the labor input decision,
as our second structural equation instead of the proxy demand equation. Since the endogeneity problem is
generated by the transmission of ωjt to the ljt, the first order condition for labor provides an exact source to
control for the endogeneity problem that is robust to multiple dimensions of heterogeneity. The idea that the
firm’s first order condition for profit maximization has identifying power for the marginal product of labor
has been much discussed in labor demand literature (for a review, see for example Hamermesh (1993)). The
“newness” of our idea comes from combining the first order condition with the production function itself, and
recognizing that we can use both equations jointly to invert out productivity. Thus the first order condition
for labor plays a role analogous to the proxy demand equation. However as we show below, it contains much
more information such that we are able to control for heterogeneity unobserved input and output prices.

Another key difference is that we estimate this second equation simultaneously with the production function
itself, which leads to an straightforward one step estimator.

4.1 The Labor Input Problem

Recall the empirical specification (1) and the decomposition of the error term (2), and consider the usual
constrained case where each firm has the same labor and capital coefficients, i.e., βj = β and αj = α for all
firms j. These together imply a production function

Qjt = AjtUjtL
α
jtK

β
jt (7)

where log(Ajt) = ωjt and log(Ujt) = εjt, where the expectation is taken in the cross section over firms,
i.e, Ujt is drawn from the distribution Gt. Thus Ajt represents the firm’s total factor productivity or
“anticipated” productivity shock, whereas Ujt is the firm’s unexpected productivity shock or expectational
error in anticipating productivity, and the terms ωjt and εjt exactly match their meaning in the decomposition
of the econometric error term from equation (2). For the purposes of presentation. Thus we have merely
backed out the underlying production function implied by the standard empirical specification.

For simplicity, let Gt = G for all t (more generally we can allow Ujt to be drawn from a time varying Gt
but this generalization complicates the exposition). Notice then that the term E[log(Ujt)] gets subsumed in
the constant term β0 in (1) along with the mean of measurement error ηjt. Recall Ujt > 0 is a productivity
shock that the firm can only observe after it has made its period t input decisions. Thus when planning
for these period t input decisions, the firm faces a stochastic production function in (7). We assume the
unanticipated productivity shock Ujt is independent of the productive inputs (Ajt, Ljt,Kjt), i.e., it is an
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exogenous shock. Furthermore we assume and that the firm has rational expectations and hence knows the
distribution G from which the shock is drawn. This implies that WLOG, E[Ujt] = 1, since any systematic
expectation for the unexpected shock other than one simply gets subsumed in TFP component Ajt from the
point of view of the firm. Thus the firm can form the conditional expectation

Q∗
jt = E[Yjt |Ajt, Ljt,Kjt] = AjtL

α
jtK

β
jt.

Finally observe that by definition that the observable output Yjt is related to the firm’s expected output Q∗
jt

by
log Yjt = logQ∗

jt + εjt + ηjt. (8)

We now consider the firm’s labor input problem. Given potentially heterogeneous output prices Pjt and
wages Wjt, and assuming risk neutrality on the part of the firm, the first order condition for labor becomes.

α
PjtQ

∗
jt

Ljt
= Wjt. (9)

Now taking logs of both sides, adding εjt + ηjt to both sides, rearranging terms and recalling the definition
εjt = εjt + ηjt, we get

ln
(
PjtYjt
WjtLjt

)
= − log (α) + εjt. (10)

Equation (10) provides us the essential additional information to solve the endogeneity problem inherent in
the production function (1). To see this, combine (1) and (10) to yield the system

ln
(
PjtYjt
WjtLjt

)
= − log (α) + εjt (11)

yjt = αljt + βkjt + ωjt + εjt.

Letting sjt = ln
(
PjtYjt

WjtLjt

)
and xjt = (ljt, kjt), we can express the above system more generally as

(
sjt

yjt

)
= Υ(xjt, ωjt, εjt). (12)

For production functions more general than Cobb-Douglas, the system of combining the first order condition
for labor with the production function will yield the form (12). Moreover, for a variety of production
functions, for any realization of the data Djt = (sjt, yjt, ljt, kjt) and value of the parameter vector (β, α),
we can uniquely solve the two equation system (12) for the two econometric unobservables (ωjt, εjt) . This
especially clear in the case of the Cobb-Douglas case in (11), which forms a simple triangular system in
(ωjt, εjt). The appendix to this paper present the corresponding development for a CES production function.

To estimate the parameter vector, we simply introduce the variety of possible moment conditions offered
by the underlying economic model, which are similar to those used by OP and LP. For example, under the
identifying assumption that1 E[logUjt] = E[εjt] = 0, and the assumption of mean zero measurement error
E[ηjt] = 0, we have the two natural moments, E[ξjtkjt] = 0 for ξjt = ωjt − E[ωjt |ωjt−1], and E[εjt] = 0,
which we can use to estimate the parameter vector (α, β). Moreover we have the natural overidentifying
moments E[εjtljt] = 0 and E[εjtkjt] = 0. All of these moments are available without appealing to lagged
values for instruments.

1The identifying assumption E[εjt] = 0is satisfied, for example, if there is no unanticipated productivity shock, i.e, Ujt = 1,
or if Ujt is log-normally distributed. We currently have a number of approaches for relaxing this assumption (that include
allowing firms to have arbitrary risk preferences), but present our method under this assumption for clarity.
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Several points are to be noted concerning our approach. First, the role of introducing the first order condition
for labor, as the system (12) makes clear, is to separate out the error terms ωjt and εjt, which cannot be
separated out from the production function alone. The intuition for why this separation is possible in a
general production function setting is straightforward. The firm observes ωjt and thus it gets absorbed in
the first order condition, which is nothing other than usual endogeneity problem. However the expectational
error/unanticipated shock εjt does not get absorbed by the firm but rather gets introduced when we move
from the first order condition from the point of view of the firm to the first order condition from the
point of view of the econometrician, i.e., the transition from (9) to (10). Thus the two error terms enter
asymmetrically into the second equation, which is the key to the ability to invert the system (11).

Another key point is that we allow for input and output price heterogeneity. However it is not required
required that we be able to observe these prices, because they enter the second equation through the term
sjt, and hence that we only need to observe the firm’s expenditure on labor WjtLjt and its revenue PjtYjt,
both variables being commonly available. But these are standard observables in the production setting. In
fact, the measure of output Yjt is typically derived by deflating revenue PjtYjt, where revenue is what the firm
actually reports in census data. The firm’s expenditure on inputs is also typically reported. Thus WjtLjt

and PjtYjt are primitives in the data that do not suffer from measurement error generated by applying
deflators (such as is required when trying to measure real intermediate input demand or real investment
when applying the proxy, which require deflating expenditures on investment and intermediate inputs).

The above empirical strategy has been explained with reference to a two input production function in labor
and capital, where labor is the static input and capital is the dynamic input. Such a two input production
function is typical when output Y is measured in a value added fashion (for a discussion of value added
versus gross output production functions, see Levinsohn and Petrin (2003) and the references cited therein).
We point this out because in some settings it may be felt that a firm’s labor decision does not adjust to fully
adjust to TFP shock in a given period, either because labor is also a dynamic input or because adjustment
costs prevent labor from being a fully flexible factor. In these cases, we can still proceed with the above
empirical strategy, but instead of taking the first order condition for labor, we take the first order condition
for any static input that was subtracted out of the value added production function. This will yield an
analogous condition to (10), so long as we add this input back into the production function. This will
introduce another parameter to be estimated. The key point is that our approach is not married to the
assumption that labor is a static input, so long as there is some static input that enters the production
function whose expenditure we can measure.

As a final remark about the above empirical strategy, since our estimation of the labor and capital coefficients
amounts to a single step GMM procedure, we can appeal to the standard formulas for asymptotic standard
errors. This stands in contrast to the more complicated derivation of standard errors for the two step
estimators used in Olley and Pakes (1996) and Levinsohn and Petrin (2003).

5 Empirical Example

We now apply our method to the same Chilean manufacturing data used in Levinsohn and Petrin (2003). We
use industry 311 (food products) for illustrative purposes. The data for each industry contain a panel of firms
extending 18 years (1979-1996). See LP and the references cited therein for a further description of the data
and the construction of the variables. In the following tables, we present estimates of the labor and capital
coefficient derived from OLS, the LP estimator with electricity as the intermediate input (the preferred
input in LP), and our method (which we label GNR). We use a third order polynomial approximation for
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our estimation of the first order Markov process. In addition, for both the LP and GNR estimates, we use
the bootstrap to generate the confidence intervals.

Table 1: Industry 311
Method Labor 95% CI Capital 95% CI

OLS .953 .932,.947 .400 .389,.411
LP .647 .595,.700 .399 .292,.505

GNR .414 .402,.425 .362 .274,.391

The most apparent feature that emerges from the tables is the extent to which the GNR estimates reduce
the labor coefficient as compared to both OLS and LP. The elasticity of labor productivity is on average half
as small under GNR as compared to LP. This reduction is exactly what we expect under the hypothesis that
the proxy variable approach does not fully recover productivity due to ignored dimensions of heterogeneity,
which leaves endogeneity in the error term during the first stage of the LP/OP estimation. While the capital
coefficients achieved under both GNR and LP are roughly comparable, the reduction of the labor coefficient
under GNR has an important implication for the understanding of these industries. In particular, all of
the industries significantly exhibit decreasing returns to scale under GNR while they significantly exhibit
increasing returns to scale under LP. Increasing returns to scale is a problematic finding since the underlying
economic framework described in section 2 assumes price taking behavior, which cannot be easily reconciled
with a market structure of firms having increasing returns to scale (mere existence of price equilibrium in a
competitive setting is not straightforward if firm technologies are not convex). We view the GNR finding of
decreasing returns as a further merit of the approach as competitive behavior is the intuitive expectations
for the industries under question (food products, apparel, etc).

Another feature of the tables to notice are the much tighter confidence intervals found under GNR as
compared to LP. This is a natural result of the fact that GNR estimation proceeds in a single step, with only
one nonparametric term to estimate (namely the first order Markov process on productivity), as opposed to
the two step estimator of LP with two nonparametric terms to estimate (both in the first and second stage).

It is straightforward to generalize our procedure to allow for a more general Markov process on productivity,
such as letting the process on TFP be higher order Markov or dependent upon the firm’s R&D expenditure. In
addition, we can incorporate a selection correction into our estimator in order to account for the endogenous
exit of firms from an industry due to an unfavorable productivity shock. Such exits lead to an unbalanced
panel, and treating such observations as missing at random could bias the estimate of the capital coefficient
as discussed by Olley and Pakes (1996). We can analogously incorporate a selection correction into our
approach, but with the advantage once again of not requiring inversion on the proxy (the existence of a
monotonic relationship between the proxy and productivity, and hence invertibility of the proxy, is central
to their development of the correction procedure). In particular, the selection correction under our method
amounts to controlling for capital kjt when regressing ωjt on ωjt−1. All of these extensions are sketched in
the working paper version of the proposal (Gandhi et al., 2008).

6 Heterogeneous Factor Productivity

The existing literature on production function estimation has focused mainly on heterogeneity through
the TFP term, ωjt. However, as pointed out earlier, there is evidence that ωjt fails to account for a
significant portion of heterogeneity. One possible explanation for this is the existence of heterogeneity in
factor productivity. Since a model with this added level of heterogeneity nests a model without it, it is
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possible to test for the existence of such heterogeneity. In this section we show how to extend our method
to account for different forms of factor productivity heterogeneity.

Depending on the data and form of heterogeneity one wants to allow for, the extension can be trivial.
For example, if one wants to allow for time-specific coefficients (αt, βt) one can simply run our procedure
separately for each time period. In the same manner, if one has access to a long enough panel allowing
for firm specific coefficients (αj , βj) is also straightforward. In this case, we can simply run our procedure
separately for each firm. Even though the ability to allow for these extensions is not new to our method, as
this can also be done using the methods of OP and LP, it has not been explicitly addressed in the literature.

The more interesting case arises when we want to allow for firm specific coefficients without access to a long
panel. This is the case for most data sets and it is not a trivial extension. However, as we show below, we
can still identify the distributions of αj , βj , ωjt and εjt nonparametrically.

Heterogeneous Labor Productivity

Heterogeneity in labor productivity, which corresponds to allowing the coefficient on labor αj vary across
firms j, has theoretically appealing properties. In particular, it has the potential of explaining certain
labor market “puzzles” such as the the simultaneous correlation between wages, firm size, and productivity
observed in a variety of micro data sets (see e.g., Lucas (1978); Mortensen and Pissarides (1994); Davis and
Haltiwanger (1995)). We begin by showing how to identify and estimate the distribution of labor productivity
within our framework.

Consider a version of equation (10), where α is replaced with αj which varies across firms j. In particular
assume each αj is drawn from a distribution G, which represents the population distribution of labor pro-
ductivity. Assume each firm is in operation for at least two time periods which we generically call t = 1, 2.
Consider now the system (10) for periods t = 1 and t = 2, which yields

ln(
Pj1Yj1
Wj1Lj1

) =− ln(αj) + εj1

ln(
Pj2Yj,2
Wj2Lj,2

) =− ln(αj) + εj2. (13)

Let sj1 = ln( Pj1Yj1
Wj1Lj1

) and sj2 = ( Pj2Yj2
Wj2Lj2

). From the data, we can directly recover the joint distribution of
the random vector (s1, s2). As we show below it follows that, from a theorem of Kotlarski (1967), we can
separately identify nonparametrically the distribution of the random variable α ∼ G and the distributions
of the random variables εi ∼ Fi for i = 1, 2.

Theorem 1. If the joint distribution of (s1, s2) admits a non-vanishing characteristic function and the
random variables (α, ε1, ε2) are mutually independent, then the joint distribution of (s1, s2) identifies the the
joint distribution of (α, ε1, ε2).

Proof. Recall the assumption that E[εi] = 0 for i = 1, 2. With this restriction in place, refer to the system
(13). The theorem of Kotlarski (1967) implies that that the distribution of a = − ln(α) and the distributions
of µi for i = 1, 2 are nonparametrically identified from the joint distribution of (s1, s2). Thus we can
identify the distribution G of the one-to-one transformation 1/ exp(a) = α and the distribution Fi of εi for
i = 1, 2.
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The basic idea behind the identification theorem is that in a single cross section (for say t = 1), we cannot
separately identify whether the heterogeneity in labor’s share of revenue across firms is due to heterogeneity
in labor productivity α, or heterogeneity in the shocks ε1. However, if we bring a second cross section to bear
on the problem through t = 2, we can use the persistence in labor’s share of revenue within a firm across
time to separate out the effects. Thus the higher the correlation in labor’s share of revenue between the two
time periods, the more of the observed cross sectional variance in labor’s share of revenue we attribute to
productivity differences in α.

To implement the estimation of the the distribution of (α, {εt}Tt=1) in the system (13), we can apply semi-
parametric factor methods such as those described by e.g., Carneiro et al. (2003). We now present estimates
of the distribution of α for industry 311 from the Chilean data (which we used in Section 5) assuming that
each period t’s exogenous shock εt comes from a common distribution F (an assumption that our identifica-
tion theorem shows that we can relax). While we can recover the distributions nonparametrically, we instead
estimate the distributions F and G using flexible parametric forms. In particular, we let the distribution
of a = − ln (α) follow a truncated (between (0,∞)) mixture of normals with 5 components and F follow
a mixture of normals with 3 components and obtain estimates by maximum likelihood. In both cases we
treat missing observations for a firm as missing at random. In the graph below, we present the estimated
densities of labor productivity for the four Chilean industries we previously examined. As is apparent, these
industries reveal considerable heterogeneity, with average labor productivity roughly corresponding to the
labor coefficient estimated under the GNR method of the previous section. The standard deviations are
roughly .2, and thus there is a positive mass of firms where the labor productivity of some firms can be over
twice as high as the labor productivity of other firms. Examining the full consequences of these findings for
the relationship between wages, firm size, and productivity, is a subject of ongoing research.
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Given our estimates for the distribution of αj , we next turn to estimation of the capital coefficient β. The
difficulty here is that we only know the marginal distribution of αj . We do not know each individual firm’s
value of αj , nor do we know the correlation between αj and other variables such as labor and capital. This
lack of information prevents us from solving directly for ωjt in the production function and from using
the procedure described in Section 5 to estimate β. It also causes problems for other potential methods
for estimating β, as we discuss below. In spite of these limitations, we are able to exploit the first-order
condition to provide a solution to this problem. Since we are unable to obtain an estimate of ωjt directly,
we cannot be non-parametric about the process on productivity as we were in section 5, because we cannot
regress ωjt on ωjt−1. However, if we impose parametric assumptions the evolution of ωjt, we can recover β
given our estimates for the distribution of αj .

For example, if we assume that ωjt follows an AR(1) process: ωjt = ρωjt−1 + ηjt, then using the production
function in periods t and t− 1, ηjt can be written as the following:

ηjt = ωjt − ρωjt−1

= yjt − αj ljt − βkjt − εjt − ρ (yjt−1 − αj ljt−1 − βkjt − εjt−1)
= (yjt − ρyjt−1)− αj (ljt − ρljt−1)− β (kjt − ρkjt−1)− (εjt − ρεjt−1)

Notice that, since we do not know the value of αj for any individual firm, we cannot form ηjt even given
a value for β. Further, since αj is correlated with ljt (and ljt−1), we cannot simply integrate it out using
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the marginal distribution of αj we estimated above. However, if we let ψjt denote an instrument that is
uncorrelated with ηjt, then

E [ηjtψjt] = E {[(yjt − ρyjt−1)− αj (ljt − ρljt−1)− β (kjt − ρkjt−1)− (εjt − ρεjt−1)]ψjt}
= E (yjtψjt)− ρE (yjt−1ψjt)− E (αj ljtψjt) + ρE (αj ljt−1ψjt)

−βE (kjtψjt) + βρE (kjt−1ψjt)− E (εjtψjt) + ρE (εjt−1ψjt)

(14)

Terms involving y and k can be directly calculated from the data. The last two terms are equal to zero as
long as our instruments are uncorrelated with εjt. The two terms involving αj are problematic since αj is
correlated with ljt and ljt−1 and potentially the instrument as well. Notice, however, that we only need the
expectation of αj ljtψjt and αj ljt−1ψjt. We show below that by taking advantage of the first-order condition,
we can estimate this expectation for all instruments ψjt that are independent of εjt. 2 That is, although we
cannot form ηjt for any firm, we can form the moment condition E [ηjtψjt] = 0 and use it to estimate β.

To see how we can form E (αj ljtψjt) and E (αj ljt−1ψjt), let sψjt≡ sjt − ln (ljtψjt) with sjt the log inverse of
the labor share, ljt the log of labor, and ψit an instrument as defined previously. By rearranging the first
order condition for labor and multiplying by 1

ljtψjt
we have:

sψjt = − ln (αj ljtψjt) + εjt (15)

Since the distribution of ln
(
sψjt

)
is given in the data and we have estimates for the distribution of εjt

from above, we can deconvolve the distribution of − ln (αj ljtψjt) and from that obtain an estimate of the
distribution of αj ljtψjt. This yields an estimate of E [αj ljtψjt]. A similar argument holds for E [αj ljt−1ψjt].
Thus we can form the moment conditions (14) and use them to estimate β and ρ. This can easily be extended
to allow for more general processes on the Markovian evolution of ωjt, for example an AR(2), although it
requires additional instruments to estimate the additional parameters.

Heterogeneous Capital Productivity

So far we have shown how to estimate the distribution of αj and to use that in estimating a homogeneous
capital coefficient β. However, we can go further. If we assume that the random coefficient on capital is of a
particular form, then we can estimate a random coefficient for capital, βj , as well. Let uj ≡ αj −α, where α
is the mean of αj . Suppose that βj = β + ujλ, where λ denotes the sign and degree of correlation between
the labor and capital coefficients. The moment equations for this case are very similar to the case with a
homogeneous capital coefficient.

0 = E [ηjt ∗ ψjt]
= E (yjtψjt)− ρE (yjt−1ψjt)− E (αj ljtψjt) + ρE (αj ljt−1ψjt)

−λE [αjkjtψjt] + λρE [αjkjt−1ψjt]− αλE [kjtψjt] + αλρE [kjt−1ψjt]
−βE (kjtψjt) + βρE (kjt−1ψjt)− E (εjtψjt) + ρE (εjt−1ψjt)

(16)

We can use a variation of (15) to estimate E [αjkjtψjt] and E [αjkjt−1ψjt]. In this case there is one more
parameter to estimate here, λ, so one additional instrument is required as compared to the homogeneous
capital coefficient case. Note that α does not need to be estimated since this is already known from the
estimation of the distribution of alpha.

2There are many possible instruments here, since ε is measurement error and is assumed to be independent of all random
variables except Y and functions of Y , such as s.
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7 Directions for Further Work

7.1 Extensions to Other Production functions

We have thus far illustrated our method with respect to a Cobb-Douglas production function. As already
mentioned, this functional form is the standard in the literature. However since we use the first order condi-
tion derived from this parametric form, whereas the proxy inversion relies upon monotonicity assumptions
not tied to a particular production function, the question arises as to whether our approach is robust to
deviations from Cobb-Douglas. Of course, even the proxy variable approach must start out by writing down
a parametric form of the production function, which is used explicitly in the first stage of their estimation.
However, the monotonic form of the proxy demand equation δt(kjt, ωjt) does not come from a particular
parametric form of the production function, but does come at the cost of imposing the scalar unobservability
assumption. In contrast, our approach makes full use of the parametric form inherent when the researcher
writes down the production function, and takes the first order condition for static input demand with respect
to this form. The advantage of course is that this gave us identifying power to control for unobserved input
and output price heterogeneity. The question is thus whether using the parametric form of the production
to derive input demand is a worse assumption than imposing the scalar unobservability assumption and
treating input demand nonparametrically. Our initial results on the Chilean data suggest that we are in fact
controlling for more unobserved productivity than the proxy approach, but a full analysis of robustness will
require Monte Carlo simulations.

However from production theory, it is well known that the Cobb-Douglas and the CES functional form
exhaust the space of production functions that are homogeneous and additively separable. Thus it is natural
to ask whether, at the least, our approach can be analogously extended to a CES production function to
yield a solvable system like (12). This is in fact possible, and we provide this development in the working
paper version of our proposal (Gandhi et al., 2008). Further developing our approach to handle random
coefficients in the CES production function is an avenue for future research.

7.2 Risk Aversion and Quantile Maximization

Our first order condition for labor input demand is based on the assumption that the firm is a risk neutral
expected profit maximizer. Of course this is an assumption, and the question is whether we can add risk
tastes as a parameter of the model. Under the assumption that the firm is quantile maximization (i.e., the
firm chooses a lotteries over profits that maximize a certain quantile of the distribution, such as the median,
min, max, etc), we can in fact easily allow for simultaneous estimation of risk tastes and the production
function parameters under weaker identifying assumptions than expected profit maximization. Quantile
maximization has the advantage of being robust to tail behavior in distributions, and has recently been
established as a formal decision theory in and of itself. The working paper of the proposal (Gandhi et al.,
2008)contains a sketch as to this development, whose empirical implementation is another avenue of further
work. In particular, the quantile maximization approach allows us to relax the strict behavioral assumption
required of expected profit maximization.

7.3 Application to the Analysis of Productivity

We ultimately hope that our approach to estimating production functions allows for a richer study of produc-
tivity itself, which was the original intent of Olley and Pakes (1996). Since our estimation method explicitly
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accounts for heterogeneity in wages, and labor productivity differences under random coefficients, our method
produces different estimates of productivity than OP or LP. A particular application of interest is the ex-
tent to which opening up an economy enhances firm productivity. This question was previously studied by
Pavcnik (2002) using the OP estimator and the Chilean data. Since our estimates of productivity control
for wage differences (and hence labor quality), it allows us to more carefully study whether productivity
enhancements due to the opening of an economy are due to genuine positive productivity shocks brought
about by this event, or allocation of output to potentially larger firms that hire higher quality workers. Since
we have the Chilean data in hand, this question is ripe for study.
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Bond, Stephen and Måns Söderbom, “Adjustment Costs and the Identification of Cobb Douglas Pro-
duction Functions,” 2005. Unpublished Manuscript, The Institute for Fiscal Studies, Working Paper Series
No. 05/4.

Carneiro, Pedro, Karsten Hansen, and James J. Heckman, “Estimating Distributions of Treatment
Effects with an Application to the Returns to Schooling and Measurement of the Effects of Uncertainty
on College Choice,” International Economic Review, May 2003, 44 (2), 361–422. 2001 Lawrence R. Klein
Lecture.

Davis, Steven K and John Haltiwanger, “Employer Size and The Wage Structure in U.S. Manufactur-
ing,” NBER Working Papers 5393, National Bureau of Economic Research, Inc December 1995.

Fox, Jeremy and Valerie Smeets, “Do Input Quality and Structural Productivity Estimates Drive Mea-
sured Differences in Firm Productivity?,” 2007.

Gandhi, Amit, Salvador Navarro, and David Rivers, “On the Estimation of Production Functions,”
2008. Unpublished manuscript, University of Wisconsin-Madison.

Griliches, Zvi and Jacques Mairesse, “Production Functions: The Search for Identification,” in “Econo-
metrics and Economic Theory in the Twentieth Century: The Ragnar Frisch Centennial Symposium,”
New York: Cambridge University Press, 1998, pp. 169–203.

Hamermesh, Daniel S., Labor Demand, Princeton, NJ: Princeton University Press, 1993.

Kotlarski, Ignacy I., “On Characterizing the Gamma and Normal Distribution,” Pacific Journal of Math-
ematics, 1967, 20, 69–76.

Levinsohn, James and Amil Petrin, “Estimating Production Functions Using Inputs to Control for
Unobservables,” Review of Economic Studies, April 2003, 70 (243), 317–342.

Lucas, Robert E., “On the Size Distribution of Business Firms,”Bell Journal of Economics, Autumn 1978,
9 (2), 508–523.

Marschak, Jacob and W.H. Andrews, “Random Simultaneous Equations and the Theory of Production,”
Econometrica, 1944, 12, 143–205.

16



Mortensen, Dale T. and Christopher A. Pissarides, “Job Creation and Job Destruction in the Theory
of Unemployment,” Review of Economic Studies, July 1994, 61 (3), 397–415.

Olley, G. Steven and Ariel Pakes, “The Dynamics of Productivity in the Telecommunications Equipment
Industry,” Econometrica, November 1996, 64 (6), 1263–1297.

Pavcnik, Nina, “Trade Liberalization Exit and Productivity Improvements: Evidence from Chilean Plants,”
Review of Economic Studies, 2002, 69, 245–276.

Robinson, Peter M., “Root-N-Consistent Semiparametric Regression,” Econometrica, July 1988, 56 (4),
931–954.

17


