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Estimating Protein-Ligand Binding Affinity using High-

Throughput Screening by NMR

Matthew D. Shortridge, David S. Hage, Gerard S. Harbison, and Robert Powers*

Department of Chemistry, University of Nebraska, Lincoln, NE 68588

Abstract

Many of today’s drug discovery programs utilize high-throughput screening methods that rely on

quick evaluations of protein activity to rank potential chemical leads. By monitoring biologically

relevant protein-ligand interactions, NMR can provide a means to validate these discovery leads and

to optimize the drug discovery process. NMR-based screens typically use a change in chemical shift

or linewidth to detect a protein-ligand interaction. However, the relatively low throughput of current

NMR screens and their high demand on sample requirements generally makes it impractical to collect

complete binding curves to measure the affinity for each compound in a large and diverse chemical

library. As a result, NMR ligand screens are typically limited to identifying candidates that bind to

a protein and do not give any estimate of the binding affinity. To address this issue, a methodology

has been developed to rank binding affinities for ligands based on NMR-based screens that use

1D 1H NMR line-broadening experiments. This method was demonstrated by using it to estimate

the dissociation equilibrium constants for twelve ligands with the protein human serum albumin

(HSA). The results were found to give good agreement with previous affinities that have been

reported for these same ligands with HSA.

INTRODUCTION

Over the last decade, nuclear magnetic resonance (NMR) spectroscopy has evolved as an

important tool for drug discovery.1 Current NMR screening methods complement structural

biology efforts by validating chemical leads from high-throughput screening (HTS) prior to

initiating a structure-based drug design program.2–7 The first NMR screening methods, such

as SAR by NMR,4 RAMPED-UP NMR,8 and NMR-SOLVE,9 were developed to identify

ligands that bind a therapeutic target in a biologically-relevant manner by observing chemical

shift changes in two-dimensional (2D) 1H-15N HSQC spectra. However, these methods tend

to be resource-intensive. Also, their relatively low throughput makes it impractical to use these

methods for collecting complete binding curves that allow binding affinities (often represented

by the dissociation equilibrium constant, KD) to be measured as an integral component of an

NMR screen. To overcome these issues, recent methods such as MS/NMR10 and multi-step

NMR screen11 have applied a tiered approach to screening that joins complementary

techniques to increase throughput and minimize resource usage. For instance, the multi-step

NMR screen combines one-dimensional (1D) 1H NMR line-broadening experiments and

2D 1H-15N HSQC chemical shift perturbation experiments to identify drug discovery leads

from a biologically-relevant, small-molecule library.12

Ligand-focused 1D NMR methods are well suited to identify hits from large chemical libraries

because they favor weak-affinity ligands (i.e., ligands with KD values in the range of μM-mM),

decrease data-collection time, and reduce overall sample requirements.7 In addition, with the
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advent of sample changers and flow-probes, ligand-focused 1D NMR experiments can be

readily adapted to automation to give a corresponding increase in throughput.7, 13–17 A

number of fast, ligand-focused 1D NMR experiments exist that exploit differences in relaxation

rates, diffusion rates, saturation transfers, or NOE transfers to identify protein-ligand

complexes.3, 18 In general, a binding event is identified by using a change in linewidth or

chemical shift in the free ligand 1D-1H NMR spectrum upon the addition of a protein. However,

using these measurements to determine the dissociation equilibrium constant for a protein-

ligand complex as part of an NMR screen is still a challenging task.19–25

Similar to traditional measurements,20 NMR methods rely on the collection of multiple data

points to accurately determine a dissociation equilibrium constant or binding affinity for a

protein-ligand interaction.9 This approach is usually impractical in a high–throughput mode

that requires a rapid method for characterizing and ranking binding affinities. Examples of

single-point KD measurements using 1D NMR experiments have recently been described that

use 19F-containing compounds21, 22 or the displacement of known low-affinity inhibitors.
24, 26 Unfortunately, these approaches are typically limited in practice because known low-

affinity inhibitors or a large library of “drug-like” and structurally diverse 19F-containing

compounds are not available for a wide range of protein targets.

This report discusses a new NMR screening method that can be used to determine the relative

ranking of binding affinities using a variation of traditional 1D 1H NMR line-broadening

experiments.27, 28 This approach correlates the ratio of NMR peak height for free and bound

ligands to the fraction of bound ligand in a protein-ligand complex. This method is illustrated

by using human serum albumin (HSA) as a model protein, which is an important secondary

target for efficacy screening and a well-established system for monitoring protein-ligand

interactions.29

THEORY

Binding interactions between a large protein (MW > 5000 Da) and a low molecular weight

ligand (MW < 500 Da) can be examined by using the decrease in NMR peak height that occurs

upon the addition of a protein to a solution with constant ligand concentration. NMR line-

broadening experiments follow an opposite protocol from typical experiments that measure

KD values, where ligands are added to solutions that contain a constant protein concentration.

Thus, a different form for the standard Langmuir binding isotherm is required in the former

type of study. If it is assumed that a protein (P) has a 1:1 binding with a ligand (L), the

dissociation equilibrium constant for this interaction can be represented by the following

equation

(1)

where [P]F is the concentration of the free protein at equilibrium, [L]F is the corresponding

concentration of the free ligand, and [PL] is the concentration of the resulting protein-ligand

complex.

Rearrangement of eq 1 produces the following binding isotherm, in which fB represents the

“fractional occupancy”, or the fraction of bound ligand.
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(2)

It is assumed in many types of binding studies that the total ligand concentration [L]T is

approximately equal to the free ligand concentration; however, this assumption is not

applicable to the NMR line-broadening experiments used in this study because [L]T is not

necessarily in excess of the maximum complex concentration [PL]. Also, a direct measurement

of the free protein concentration is not possible for the method described in this report.

Therefore, eq 3 was derived to describe this situation in terms of the total protein concentration

[P]T and total ligand concentration [L]T that are known to be present in the system (see

Appendix for derivation).

(3)

Eq 3 can be simplified to approximate the fractional occupancy in terms of the total ligand

concentration [L]T and total protein concentration [P]T by using a Taylor series expansion and

the assumption that [L]T > [P]T.

(4)

The fractional occupancy for a protein-ligand complex can be measured using a ratio of NMR

peak height (1−IB/IF), where IB is the sum of ligand NMR peak heights in the presence of the

protein and IF is the sum of NMR peak heights for the free ligand. Therefore, B (the NMR peak

height ratio) represents an easily measurable response of ligand binding that can be described

in terms of the fraction of bound ligand (fB) and the NMR-linewidth for the free (νF) and bound

(νB) states (see Appendix for derivation).

(5)

Combining eq 4 and eq 5 leads to a new binding isotherm for this system, as shown below,

(6)

The unit-less NMR-linewidth ratio constant (c), as defined in eq 6, accounts for the proportional

change in ligand linewidth upon binding of a ligand to a protein. Once a ligand is bound, the

free ligand linewidth (νF) of a ligand resonance adopts the linewidth of the protein (νB) and
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the increase in linewidth produces a corresponding decrease in peak height measured by the

ratio of NMR peak height (B).

The dissociation equilibrium constant for a protein-ligand complex that is calculated using eq

6 is based on relative changes in NMR peak height by fitting the given binding isotherm to a

complete protein titration curve. This is impractical in the context of an NMR high-throughput

screen where only a single titration point is measured. However, eq 6 can be rearranged to

solve for KD to yield an estimate for KD that is based on [P]T, [L]T, c and Bsingle, where

Bsingle is the fractional occupancy at a single protein concentration. The resulting expression

is shown in eq 7.

(7)

For proteins such as HSA that possess multiple non-specific binding sites, the decrease in

ligand signal at a relatively high protein concentration will be an average of specific and non-

specific binding. To correct for this effect, the non-specific binding term n[P]T that corresponds

to a linear increase in fraction bound with the addition of protein is simply added to eq 6, as

shown in eq 8.

(8)

EXPERIMENTAL SECTION

Materials

The HSA (essentially fatty acid free, ≥ 96% pure), choline bromide (~ 99% pure), clofibrate,

furosemide, phenol red, phenylbutazone, phenytoin (~ 99% pure), sodium salicylate,

tolbutamide, uridine 5′-monophosphate (98–100% pure) and warfarin (> 98% pure) were

purchased from Sigma (St. Louis, MO). The bromophenol blue (ACS reagent grade, 95% pure),

bromocresol green (ACS reagent grade, 95% pure), and ibuprofen were from Sigma-Aldrich

(Milwaukee, WI). The dimethyl sulfoxide-d6 (99.9% D), deuterium oxide (99.9 atom% D) and

naproxen (98% pure) were obtained from Aldrich (Milwaukee, WI). The 3-(trimethylsilyl)

propionic-2,2,3,3-d4 acid sodium salt (98% D) was purchased from Cambridge Isotope

(Andover, MA). The potassium phosphate dibasic salt (anhydrous, 99.1% pure) and monobasic

salt (crystal, 99.8% pure) were purchased from Mallinckrodt (Phillipsburg, NJ).

Apparatus

All NMR spectra were collected on a Bruker 500 MHz Avance spectrometer (Billerica, MA)

equipped with a triple-resonance, Z-axis gradient cryoprobe and using a Bruker BACS-120

sample changer and IconNMR software for automated data collection. Spectra were collected

at 298 K using 512 transients, a sweep-width of 6009 Hz, 16 K data points and a relaxation

delay of 2.0 s. The residual HDO resonance signal was suppressed with pre-saturation. The

total experiment time, including sample changing for each spectrum, was approximately 33

min.
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Sample Preparation

All small-molecule ligands that were used in this study were selected based on their previously

reported KD values for HSA and their good solubility in an aqueous solution.29 The small-

molecule ligand samples were individually prepared in 10 mL stock solutions that contained

20 μM ligand, 1% (v/v) dimethyl sulfoxide-d6 (DMSO-d6), 10 μM 3-(trimethylsilyl)

propionic-2,2,3,3-d4 acid sodium salt (TSP) and pH 7.0 (uncorrected) 50 mM potassium

phosphate buffer prepared in deuterium oxide.

A series of ten HSA stock solutions were prepared in deuterium oxide by making serial dilutions

from a 200 μM master solution of HSA in deuterium oxide. The final concentrations of HSA

in these stock solutions ranged from 0 μM to 200 μM and were prepared so that a 10 μL addition

of the HSA stock solution to 490 μL of a free ligand solution resulted in final concentrations

of 0 μM, 0.1 μM, 0.2 μM, 0.4 μM, 0.6 μM, 0.8 μM, 1 μM, 2 μM, 3 μM, and 4 μM HSA,

respectively. These mixtures were prepared individually for each ligand in 1.5 mL

microcentrifuge tubes and then transferred to NMR tubes. The sample for each titration that

contained 0 μM HSA was used as the reference for calculating the free ligand intensities (IF)

and free ligand linewidths (νF). All binding studies performed with these solutions were

conducted at 25°C.

1D 1H NMR Binding Curves

Spectra were processed with the ACD/1D NMR manager (Advanced Chemistry Development,

Inc., Toronto, Ontario). A linear prediction algorithm was applied to the FID in the forward

direction and the resulting FID was Fourier transformed. The NMR spectrum was phase-

adjusted and baseline-corrected. The residual water signal was removed for clarity using the

solvent removal function in ACD. This function simply sets the spectrum’s baseline to zero

around the residual water signal. All ligand resonance peaks were visually selected and peak

positions were measured relative to a TSP reference set to 0.0 ppm. Peak height were measured

relative to the DMSO-d6 peak at 2.69 ppm that was normalized to an height of 1.00. The DMSO-

d6 peak was completely recovered during the 1D 1H NMR experiment using a 2.0 s recycle

delay, which is >3x the T1 for DMSO in D2O at 299K (0.3–0.5 s).30, 31 Individual peak

heights in the aromatic region for each ligand were summed to obtain the free (IF) and bound

(IB) heights at each titration point. The peak-height ratios were plotted versus total protein

concentration and fit to eq 8 using the program KaleidaGraph version 3.52 for Windows

(Synergy Software., Reading, PA) to estimate the KD value for each protein-ligand complex.

The average NMR-linewidth ratio (c) for each ligand was estimated by using eq 6, where νB

was taken to be approximately 94.2 Hz using a previously measured correlation time for HSA

of 41 ns.32 The value for νF was calculated as described in the next section. The fit of each

binding curve was constrained so that KD ≥ 0 in these studies.

Measuring a Free Ligand NMR-linewidth (νF)

To measure the free ligand linewidth (νF) for use in eq 6, the NMR spectrum for each free

ligand (i.e., as obtained in a solution containing no HSA) was processed as described above to

avoid any distortion in linewidth resulting from processing. NMR peak linewidths were

measured using the ACD/1D NMR manager peak fitting routine. The average peak linewidth

was used to report νF for each ligand and to calculate the NMR-linewidth ratio.

Simulated High-Throughput Screening by NMR

To simulate the outcome of an NMR high-throughput screening assay, a single protein

concentration [P]T from the full titration curve was used. On average, the 0.2 μM HSA titration

point yielded a large response for all 12 ligands without reaching saturation. The static total

ligand concentration [L]T was 20 μM. A simulated response curve was generated by fitting a

Shortridge et al. Page 5

J Comb Chem. Author manuscript; available in PMC 2009 November 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



range of KD values to a range of ideal Bsingle values calculated using eq 7. The measured

Bsingle value for each ligand at the 0.2 μM HSA titration point was used to calculate a single-

point binding constant from eq 7 and compared to the simulated response curve. This simulated

experiment used both the individual c values calculated for each ligand from the full titration

experiment and an average c value calculated from the 12 NMR titration curves. The single-

point dissociation equilibrium constant for each ligand was calculated using this average c

value.

RESULTS AND DISCUSSION

Measuring KD from 1D 1H NMR Line-Broadening Experiments

The development of NMR-based screening assays that monitor changes in chemical shifts or

linewidth as a means to identify or verify initial chemical leads has evolved to become an

increasingly important component of drug discovery efforts in the biotechnology and

pharmaceutical industry.33, 34 Nevertheless, the direct measurement of a binding affinity from

a high-throughput NMR screen is generally lacking.21–25 A decrease in the height of a ligand’s

NMR signal in the presence of a protein is commonly used in NMR-based screens to monitor

the formation of a protein-ligand complex. 1D 1H NMR spectra of small-molecules (MW ≤
500 Da) usually have extremely sharp peaks due to slow dipole-dipole relaxation (T2).3

Binding to a high molecular weight agent like a protein induces peak broadening and a

corresponding decrease in the ligand’s NMR signal height because the bound ligand now

experiences the shorter relaxation time of the protein. This effect is illustrated in Figure 1 using

binding by the protein HSA to the drugs phenytoin and naproxen as examples.

The observed increase in ligand linewidth in such an experiment will depend on a number of

factors that include the dissociation equilibrium constant for the protein-ligand interaction,

KD. In general, the observed change in the ligand’s linewidth (νobs) for the fast exchange limit

will follow the result shown below.

(9)

In eq 9, fB is the fraction of the bound protein-ligand complex, νF is the free ligand NMR-

linewidth, and νB is the linewidth for the bound state of the ligand (see the Appendix for an

explanation regarding the above expression for fB). Eq 9 shows that an increase in the observed

ligand linewidth will be related to the free and bound ligand linewidths and the value of KD

for the protein-ligand complex. If it is assumed that the linewidth of the protein-ligand complex

is significantly larger than that for the free ligand, the ratio of the ligand linewidth in the

presence and absence of the protein should represent the remaining free ligand concentration,

as indicated by eq 6.

This relationship assumes that there is a lack of any significant contribution of chemical or

dynamic exchange to the observed change in linewidth. This is a reasonable assumption in the

context of a high-throughput NMR screen against a single protein target. First, initial chemical

leads tend to be weak binders in the fast exchange regime, where the linewidth change of the

ligand will be dominated by the linewidth of the protein. Second, biologically relevant binders

will interact with the same or similar binding sites on the protein. Under these circumstances,

the ligand may experience a relatively constant contribution of chemical and dynamical line-

broadening. Thus, the minimal contribution of linewidth from exchange processes should not

affect the relative ranking of the ligand binding affinities that are obtained when using such an

experimental approach.
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The validity of this method for high-throughput screening by NMR was examined by using

twelve ligands with previously determined binding affinities to HSA.29, 35–38 These ligands

were used to examine the relationship between the estimated values for KD and the relative

ratios of the NMR Peak height. Samples containing 20 μM of any given ligand were titrated

with solutions that contained 0 to 4 μM of HSA to develop full binding curves for each of the

twelve ligands. As a control, two suspected non-binding ligands (i.e., choline bromide and

uridine-5′-monophosphate) were also screened in the presence of HSA with no observable

decrease in signal (data not shown). The KD values that were obtained by this method (see

Table 1) were experimentally determined by directly fitting the resulting binding curve of each

ligand to eq 8. These fits gave a sum of residuals squared that ranged between 0.977 and 0.998

over the ten concentrations of HSA that were tested. Figure 2 shows the results that were

obtained for three of the tested ligands, which have previously reported dissociation

equilibrium constants that ranged from 0.7 to 36.8 μM. These figures and the corresponding

fits illustrate the ability of this approach to be used with ligands that have weak-to-moderate

strength binding to proteins such as HSA.

Co-variance of KD and the NMR-linewidth Ratio (c)

Ideally, the dissociation equilibrium constant (KD) and the NMR-linewidth ratio (c) could be

simultaneously derived by fitting eq 6 to the experimental NMR binding curves. Unfortunately,

KD and c are completely covariant. This requires an approximation for c in order to calculate

KD from the NMR binding curves. The linewidth of a protein (νP) may provide a lower estimate

of νB if it is assumed that νB is dominated by the protein linewidth (νP). Estimations of νP can

be made from the correlation time (τc) of the protein by using the intramolecular dipole-dipole

relaxation rate constant (T2
−1). 39

(10)

where

(11)

In these equations, J(ω) is the normalized spectral density function, μo is the vacuum

permeability, γ is the magnetogyric ratio, ω is frequency (rad s−1), ħ is Plank’s Constant, B0

is the static magnetic field strength and r is the hydrodynamic radius of the protein. In addition,

the Stokes-Einstein equation can be used to relate τc to the molecular weight (MW) for a

globular protein,40

(12)

where T is the temperature, k is the Boltzmann constant, η is the viscosity of the solvent, r is

the radius and ρ is the shape constant.

The reliability of eq 12 to approximate a protein correlation time from its molecular weight is

illustrated from a comparison between 27 experimental τc values 41, 42 and correlation times

predicted using eq 12 (figure 3A). A linear best-fit was obtained with an R2 of 0.81 in this case.
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For a high-throughput screen, νp can be estimated from the molecular weight of a protein by

using this approximation for τc with a shape constant of 1.32 combined with eq 10 and 11. The

shape constant was determined by optimizing a linear fit between the experimental and

predicted τc values shown in Figure 3A by varying ρ. The result is an approximate correlation

between νP and MWP, as shown in eq 13.

(13)

This dependency of linewidth on the size and shape of a protein is plotted in Figure 3B. For

HSA (MW, 66 kDa), the correlation time (41 ns) has previously been measured using time-

resolved fluorescence.32 This correlation time was used to calculate the value used for νP,

which was 94.2 Hz.

The free ligand linewidth (νF) can be measured directly from the NMR spectra of the free ligand

using an average ligand linewidth. Average νF values measured from the free ligand NMR

spectra are reported in Table 1. However, for large and diverse chemical libraries it may not

be feasible to measure an accurate linewidth for each compound. Alternatively, νF is generally

between 1 and 2 Hz for many small-molecules (MW, 500 < Da), which provides a reasonable

estimate for νF to calculate an average value for c.

Sensitivity of KD and NMR-linewidth Ratio (c)

A closer examination of eq 6 indicates that the NMR-linewidth ratio (c) acts as a scaling factor

in the calculation of KD, with a larger c value resulting in a proportionally larger KD value.

Unfortunately, small variations or errors in the measurement of νF will result in proportionally

larger variations in both c and KD. In the context of high-throughput screening by NMR, an

incorrect estimate of c will result in a systematic underestimation or overestimation of KD.

However, the relative ranking of the ligand binding affinities will be maintained. In addition,

a lower limit to c is inherently defined by eq 6.

Comparison of Estimated KD Values with Literature Values

Table 1 shows the dissociation equilibrium constants that were measured for twelve ligands

known to bind HSA by using the 1D 1H NMR line-broadening method that is described in this

report. Previously reported KD values from the literature are also listed for these twelve ligands.
35–37, 43–67 In general, there is good agreement between the KD values that were estimated

by NMR and those values reported in the literature. Variations in temperature, pH or buffer

conditions may partly explain the range of KD values observed in the literature. There may

have also been differences in the fatty acid content of the HSA preparations, which can affect

the reported KD values. Thus, 1D 1H NMR line-broadening measurements appear to provide

reliable preliminary estimates for binding affinities as part of a high-throughput screening

assay.

One limitation of the model that was used for this analysis is the assumption of only a single

site interaction between the ligand and protein. There are many cases for which multisite

binding or other effects (e.g., allosteric interactions) are present that give rise to more complex

binding models.3, 29,35,39 Multisite binding also contributes to the relatively large range of

KD values reported in the literature for HSA ligands. In these situations, the KD values listed

in Table 1 (for both the NMR and literature results) should be regarded as weighted averages

and as measures of the global affinity for a particular ligand with HSA. This averaging effect

may be more pronounced for the NMR method than for other techniques because of the

practical limit in ligand concentration that could be used to provide a measurable signal. There

is also a practical limit to the number of concentrations and data points that could be sampled
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to give a binding curve. This effect may explain why the NMR-derived KD values tend to be

lower than the literature values, because the use of higher concentrations for the NMR studies

would give a higher weight and likelihood to the detection of weaker interactions between the

ligand and protein.

A number of other practical limitations also need to be considered in the use of NMR for these

binding studies. For instance, the NMR resonances that are specifically involved with protein

binding have been shown to exhibit the most dramatic changes in linewidth.27, 28 Therefore,

there are inherent errors caused by summing all peak height and selectively excluding ligand

peaks due to an overlap with buffer and protein resonances. In addition, errors in the

measurement of peak height might arise at lower ligand concentrations due to the difficulty of

accurately identifying and selecting peaks under these conditions. The result could be either a

low or high estimate for KD, depending on the disparity in linewidth changes and on which

peaks are excluded. Using overlapping peaks would introduce an alternative error because the

observed height is the sum of multiple peaks that cannot be easily de-convoluted. Also, the

analysis of hundreds to thousands of NMR spectra in a high-throughput screening assay

precludes a manual inspection to selectively determine which peaks to include or exclude.

Estimating KD based on Single-point 1D 1H NMR Line-Broadening Measurements

Since NMR-based screens are a common component of the drug discovery process in the

pharmaceutical industry, single-point estimates of ligand binding affinities could be an

extremely valuable tool to initially rank and prioritize chemical leads. During the iterative drug

optimization process, it is typical to focus on a small set (i.e., 3–5 compounds) of structurally

distinct chemical classes that are amenable to synthetic modification and that exhibit drug-like

characteristics.68 For this work, an NMR screen could be used to verify the presence of a

specific and biologically-relevant interaction involving a protein target and to rank the relative

binding affinity of the screened ligands to simplify the selection of promising lead compounds.

This approach was illustrated in this study by simulating NMR high-throughput screening

results for the twelve compounds that were used in the previous binding study.

First, using an average c value of 45.7 ±11.6 and an HSA concentration of 0.2 μM, single point

KD values were calculated for a range of Bsingle values using eq 7. The result of this calculation

are shown in Figure 4. Superimposed on the single point curve in Figure 4A are the KD values

reported in Table 1 plotted versus the experimental B values at 0.2 μM HSA. Superimposed

on the single point curve in Figure 4B are the KD values from Table 1, where the corresponding

c values were used to determine a best-fit to eq 8. This represents the typical protocol that

would be used in a high-throughput screen and shows that an average value of c is acceptable

for use when individual estimates of c may not be practical. A comparison of Figure 4B with

the theoretical curve based on eq 7 indicates that the single-point method can provide a

reasonable approximation for KD.

For the twelve compounds that were considered in Figure 4B, all compounds gave single-point

estimates that agreed within a range of one standard deviation over the range of binding

affinities and concentrations that were tested. All twelve compounds had experimental and

single-point estimates for KD that agreed within two standard deviations. A higher deviation

was observed in Figure 4A for ligands with higher KD values. This occurs because of

differences between the individual c values and the average c values. Also, eq 8 is more

sensitive to small changes in c at these high KD values. This occurs because, at high KD values,

vanishingly small differences in NMR intensities correspond to large differences in KD. In

other words, this method is reaching a practical limit of detection since KD rapidly approaches

infinity as NMR peak height changes approach zero.
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The relative ranking of the KD values were also the same for results that were obtained by the

single-point calculations or the full titration method. These results indicate that the single-point

method can, at least in cases such as these, provide a preliminary estimate of KD values and

binding affinities that can be used in the context of a high-throughput screening assay. At a

minimum, the relative changes in linewidth provide a rapid and efficient mechanism to

prioritize NMR screening leads for further evaluation. However, it is still recommended that

a more robust approach for measuring binding affinities for promising leads follow the NMR

ligand affinity screen. This precaution follows, in part, from the fact that the accuracy of the

KD values that are measured from the single-point 1H NMR line-broadening experiments will

be strongly dependent on having a reasonable estimate for the value of NMR-linewidth ratio

(c) in such a study.

CONCLUSIONS

High-throughput NMR screening methods are commonly used to determine protein-ligand

binding interactions. A methodology to estimate binding affinities and rank chemical leads

from 1D 1H NMR line-broadening experiments was described in this report. A new equation

was derived that allowed a dissociation equilibrium constant for protein-ligand binding to be

determined from a single-point NMR peak height change. This approach assumes a single

binding-site interaction that is in the NMR fast-exchange regime with uniform changes in

compound linewidths. These are reasonable assumptions during the initial stages of a drug

discovery effort, where typical lead compounds will have weak μM-mM dissociation constants.

The technique was demonstrated by measuring dissociation equilibrium constants for twelve

compounds that bind to HSA. Although this approach does have a number of practical

limitations that must be considered, a reasonable correlation was observed between the binding

affinities that were estimated by NMR and previously reported literature values for the tested

compounds. Such information should be quite useful if the intent is to use the 1D 1H NMR

line-broadening method as part of high-throughput screening to rank the binding affinities for

ligands to a given protein. For instance, this approach could be used to prioritize chemical leads

during a drug discovery process before these leads undergo further evaluation by secondary

assays that can provide a more robust measurement of dissociation equilibrium constants. This

technique is also a general approach that can be applied to various systems for high-throughput

screening.
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GLOSSARY

L  

small-molecule ligand

[L]T  

total ligand concentration

[L]F  

free ligand concentration

P  

protein target
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[P]T  

total protein concentration

[P]F  

free protein concentration

[PL]  

protein-ligand complex concentration

IB  

NMR peak height of bound ligand

IF  

NMR peak height of free ligand

KD  

dissociation equilibrium constant for a protein-ligand complex

c  

NMR-linewidth ratio constant

B  

NMR signal response dependent on fraction of bound ligand

Bsingle  

NMR signal response dependent on fraction of bound ligand at a single [P]T and

[L]T

νF  

linewidth of the free ligand

νB  

linewidth of the bound protein-ligand complex

νP  

linewidth of the protein

νobs  

observed linewidth change upon addition of protein or ligand

fB  

fraction bound complex in solution

fF  

fraction of free ligand in solution

T2
−1  

dipole-dipole relaxation constant

τc  

correlation time

J(ω)  

normalized density function of T2
−1

Bo  

static magnetic field strength

ωo  
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Larmor frequency

MWP  

molecular weight of a protein target
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APPENDIX

The binding of a protein (P) with a single small ligand (L) can be represented by the following

reaction.

(A1)

The dissociation equilibrium constant for this system is described by the expression in eq A2,

where the concentrations [P]F, [L]F and [PL] represent the concentration of free protein, free

ligand, and protein-ligand complex, respectively.

(A2)

Based on mass balance, eq A3 can be used to express [L]F and [PL] in terms of the total ligand

concentration and other concentrations in this system.

(A3)

Substitution of these relationships into eq A2 gives eq A4.

(A4)
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Eq A4 can now be rearranged into the following form,

(A5)

which makes it possible to solve for [P]F by using the quadratic formula, as indicated in eq A6,

where only the positive root has any meaning in a real protein-ligand system.

(A6)

The bound fraction of ligand fB is next defined as given in eq A7.

(A7)

If we substitute the positive root of eq A6 into eq A7, the result is eq A8.

(A8)

A further simplification of eq 8 can be accomplished by expanding the square root as a power

4K [P] series where  about x = 0. This approach is valid as long as the

ligand is in considerable excess relative to the protein. The power series that is used here is

shown below.

(A9)

If eq A9 is truncated at the second term, this allows the square root term in eq A8 to be written

in the approximate form that is given in eq A10.

(A10)
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The overall result of this simplification is that eq A8 converts to the expression shown below,

there the fraction of bound ligand fB is now described in terms of only KD, the total ligand

concentration and the total protein concentration.

(A11)

If it is assumed that the observed free and bound NMR-linewidths are represented by νF and

νB, respectively, and that exchange occurs between free and bound states, the general solution

to the NMR lineshape is bilorentzian. In the slow limit, the spectrum is obviously just a sum

of the spectra of free and bound species, weighted by their relative abundances. If exchange

rates become comparable to the inverse linewidths, then a conventional solution of the pair of

coupled linear differential equations, including auto and cross relaxation terms but neglecting

any chemical shift difference between the states, gives a time domain (free induction decay):

(A12.a)

with

(A12.b)

(A12.c)

(A12.d)

(A12.e)

(A12.f)

(A12.g)
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(A12.h)

(A12.i)

(A12.j)

where ML and MPL are the magnetization of the free and bound species, respectively. In the

fast exchange limit, the solution is still formally biexponential, but the coefficient c– goes to

zero, and the free induction decay signal, normalized to unity at zero time, becomes

(A13)

Fourier transforming, the fast exchange NMR signal height can be written as shown in eq A14:

(A14)

where IF is the height of the ligand signal in the absence of protein and IB is the observed peak

height of the bound complex. This is exactly the same as the height of the free ligand signal in

extreme slow exchange! Rearranging eq A14 explains the observed decrease in NMR peak

signal for a free small-molecule ligand upon its binding to a protein. The relative ratio of NMR

peak height ( ) is now in terms of the fraction of free ligand (fF) and the fraction of bound

ligand (fB) and is dependent on the observed increase in NMR-linewidth upon the binding of

a ligand to a protein.

(A15)

Inserting A11 into A15 provides a measure of the dissociation equilibrium constant for the

protein-ligand complex by relating the fraction of bound ligand to the observed change in NMR

peak height.

(A16)
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The NMR-linewidth ratio, c, is then measured by using the free ligand NMR spectrum and by

assuming that the linewidth of the bound complex approximates the linewidth of the protein.
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Figure 1.

1D 1H NMR spectra for titration of 20 μM of the drugs phenytoin (A) and naproxen (B) with

increasing concentrations of HSA. The concentrations of HSA were as follows: (i) 0 μM, (ii)

0.4 μM, (iii) 1 μM, (iv) 2 μM, and (v) 4 μM. As the protein concentration increases, the height

of the ligand NMR signal decreases due to the bound ligand adopting the shorter relaxation

time of the protein. The I decrease in the ratio of NMR signal height ( ) is proportional

to the degree of binding such that tighter binding ligands will relax more quickly than weaker

binding ligands. This relationship provides an estimate of the dissociation constant for a

protein-ligand complex.
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Figure 2.

Experimental fractional occupancy (B) for naproxen (●), tolbutamide (▲), and phenol red

(◆) versus the total concentration of HSA. The best-fit lines were obtained using eq 8. The

r2 for these best-fit lines are given in the text and the KD values that were obtained from these

lines are provided in Table 1.
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Figure 3.

(A) Comparison of 27 experimental protein correlation times determined using NMR dynamics

data with correlation times predicted from protein MW using eq 12 and a shape constant of

1.32. A best-fit line is shown with a slope of 1 and an R2 of 0.81. (B) A plot of linewidth versus

protein molecular weight based on eq 12 for spherical proteins with ρ of 1 (solid line) and

elliptical proteins with ρ of 1.32 (dashed).
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Figure 4.

Use of NMR in a single-point binding analysis for several small-molecule ligands with known

interactions with the protein HSA. The curves in (A) and (B) represents the ideal single-point

KD values calculated from eq 7 with 0.2 μM HSA and an average c value of 45.7 ± 11.6. (A)

The KD values and errors reported in Table 1 are superimposed on the ideal fit. The KD values

are based on the best-fit to eq 8 using the c values determined for each individual compound.

(B) The KD for each compound was re-calculated based on the best-fit to eq 8 using the c values

from Table 1. The error bars in B represent the range of KD values measured from the range

of c values with the error in the free ligand linewidth, νF, propagated.
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