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Abstract 

 
We propose an econometric model that captures the e¤ects of market 
microstructure on a latent price process. In particular, we allow for correlation 
between the measurement error and the return process and we allow the 
measurement error process to have a diurnal heteroskedasticity. We 
propose a modification of the TSRV estimator of quadratic variation. We 
show that this estimator is consistent, with a rate of convergence that 
depends on the size of the measurement error, but is no worse than n1=6. 
We investigate in simulation experiments the finite sample performance of 
various proposed implementations. 
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1 Introduction

It has been widely recognized that using very high frequency data requires taking into account the

e¤ect of market microstructure (MS) noise. We are interested in estimation of the quadratic variation

of the latent price in the case where the observed log-price is a sum of the latent log-price that evolves

in continuous time and an error that captures the e¤ect of MS noise.

There is by now a large literature that uses realized variance as a nonparametric measure of

volatility. The justi�cation is that in the absence of market microstructure noise it is a consistent

estimator of the quadratic variation as the time between observations goes to zero. For a literature

review, see Barndor¤-Nielsen and Shephard (2007). In practice, ignoring microstructure noise seems

to work well for frequencies below 10 minutes. For higher frequencies realized variance is not robust,

as has been evidenced in the so-called �volatility signature plots�.

The �rst consistent estimator of quadratic variation of the latent price in the presence of MS noise

was proposed by Zhang, Mykland, and Aït-Sahalia (2005) who introduced the Two Scales Realized

Volatility (TSRV) estimator, and derived the appropriate central limit theory. TSRV estimates

the quadratic variation using a combination of realized variances computed on two di¤erent time

scales, performing an additive bias correction. They assumed that the MS noise was i.i.d. and

independent of the latent price. The rate of convergence of the TSRV estimator is n1=6. Zhang

(2004) introduced the more complicated Multiple Scales Realized Volatility (MSRV) estimator that

combines multiple (� n1=2) time scales, which has a convergence rate n1=4: This has been shown to
be the optimal rate. Aït-Sahalia, Mykland and Zhang (2006a) modify TSRV and MSRV estimators

and achieve consistency in the presence of serially correlated microstructure noise. Another class of

consistent estimators of the quadratic variation was proposed by Barndor¤-Nielsen, Hansen, Lunde,

and Shephard (2006). They introduce realized kernels, a general class of estimators that extends the

unbiased but inconsistent estimator of Zhou (1996), and is based on a general weighting of realized

autocovariances as well as realized variances. They show that they can be designed to be consistent

and derive the central limit theory. They show that for particular choices of weight functions they can

be asymptotically equivalent to TSRV and MSRV estimators, or even more e¢ cient. Apart from the

benchmark setup where the noise is i.i.d. and independent from the latent price Barndor¤-Nielsen

et al. have two additional sections, one allowing for AR(1) structure in the noise, another with an

additional endogenous term albeit one that is asymptotically degenerate.

We generalize the initial case of the noise being i.i.d. and independent from the latent price in

three directions. The �rst generalization is allowing for (asymptotically non-degenerate) correlation
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between MS noise and the latent returns. This is one of the stylized facts found in Hansen and Lunde

(2006) where they show that this correlation is present and is negative.

Another generalization concerns the magnitude of the MS noise, which we model explicitly. All of

the papers above, like most of the literature that takes account of MS noise, assume that the variance

of the MS noise is constant across sampling frequencies. An exception is Zhang et al. (2005) in the

part where they derive the optimal sparse sampling frequency. We explicitly model the magnitude of

the MS noise via a parameter �, where � = 0 case corresponds to the benchmark case of the variance

of MS noise being constant as n goes to in�nity. The rate of convergence of our estimator depends

on the magnitude of the noise, and can be from n1=6 to n1=3, where n1=6 is the rate of convergence

corresponding to "big" noise when � = 0.

The third feature of our model is that we allow the MS noise to exhibit diurnal heteroscedasticity.

This is motivated by the stylised fact in market microstructure literature that intradaily spreads (one

of the most important components of the market microstructure noise) and intradaily �nancial asset

price volatility are described typically by a U-shape. See Andersen, Bollerslev, and Cai (2000),

McInish and Wood (1992). For example, Engle and Russell (1998) use a diurnal factor with splines

to adjust the stock price volatility. Allowing for diurnal heteroscedasticity in our model has the e¤ect

that the original TSRV estimator may not be consistent because of end e¤ects. In some cases, instead

of estimating the quadratic variation, it would be estimating some function of the noise. We propose

a modi�cation of the TSRV estimator that is consistent, without introducing new parameters to be

chosen. Our model is not meant to be de�nitive and can be generalized in a number of ways.

The structure of the paper is as follows. Section 2 introduces the model. Section 3 describes

the estimator. Section 4 gives the main result and the intuition behind it. Section 5 gives the

modi�cation of the main result that arises when the noise is particularly small (� � 1=2). Section 6
investigates the numerical properties of the estimator in a set of simulation experiments. Section 7

concludes.

2 The Model

Suppose that the latent (log) price process Xt is a Brownian semimartingale solving the stochastic

di¤erential equation

dXt = �tdt+ �tdWt; (1)
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whereWt is standard Brownian motion, and �t and �t are predictable and locally bounded processes,

independent of the process W . The (no leverage) assumption of �t and �t being independent of W

is unrealistic, but is frequently used and makes the analysis more tractable. The simulation results

suggest that it does not change the result.

We observe the noisy price Y at �xed equidistant times t1; : : : ; tn on [0; 1], that is,

Yti = Xti + uti ; (2)

where the measurement error process is

uti = vti + "ti (3)

vti = �n
�
Wti �Wti�1

�
"ti = m (ti) + n

��=2! (ti) �ti ; � 2 [0; 1=2)

with �ti i.i.d. mean zero and variance one and independent of the Gaussian processW with E�4ti <1:
The functions m and ! are di¤erentiable, nonstochastic functions of time. They are unknown as is

the constant � and the rate �: The usual benchmark measurement error model with noise being i.i.d.

and independent from the latent price has � = 0; n = 0 and !(:) and m(:) constant.

There are two key parts to our model: the correlation between u and X and the relative magni-

tudes of u and X: The term v in u induces a correlation between latent returns and the change in

the measurement error, which can be of either sign depending on �: Correlation between u and X

is plausible due to rounding e¤ects, asymmetric information, or other reasons [Hansen and Lunde

(2006), Diebold (2006)].1 We have E[uti ] = m(ti) and var[uti ] = �
22n(ti � ti�1) + 2n���2�(i=n): To

have the variance of both terms in u equal, set 2n = n
1��: This seems like a reasonable restriction if

both components are generated by the same mechanism. In this case, the size of the variance of the

measurement error can be measured by � alone. In the special case that �t = � and ! (ti) = !; we

�nd

corr(�Xti ;�uti) '
�q

[2�2 + 2!2]
:

In this case, the range of correlation is limited, although it is quite wide - one can obtain up to a

correlation of �1=
p
2 depending on the relative magnitudes of �; !:

1In a recent survey of measurement error in microeconometrics models, Bound, Brown, and Mathiowetz (2001)

emphasize �mean-reverting�measurement error that is correlated with the signal.
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An alternative model for endogenous noise has been developed by Barndor¤-Nielsen, Hansen,

Lunde, and Shephard (2006). In our notation, they have the endogenous noise part such that

var(vti) = O (1=n) ; and an i.i.d., independent from X part with var("ti) = O (1) : They conclude

robustness of their estimator to this type of endogeneity, with no change to the �rst order asymptotic

properties compared to the case where vti = 0.

The process "ti is a special case of the more general class of locally stationary processes of Dahlhaus

(1997). The generalization to allowing time varying mean and variance in the measurement error

allows one to capture diurnal variation in the measurement error process, which is likely to exist in

calendar time. Nevertheless, the measurement error in prices is approximately stationary under our

conditions, which seems reasonable. Allowing a non-constant scaling factor (� > 0) seems natural

from a statistical point of view since the uti represent outcomes that have happened in the small

interval [(i � 1)=n; i=n]; the scale of this distribution ought to reduce as the interval shrinks, i.e.,
as n ! 1; at least for some of the components of the market microstructure noise. Many authors
argue that measurement error is small; small is what the sampling interval is also argued to be and

asymptotics are built o¤ this assumption so why not also apply this to the scale of the measurement

error.

The focus of this paper is estimating increments in quadratic variation of the latent price process,2

but estimation of parameters of the MS noise in our model is also of interest. We acknowledge that not

all the parameters of our model are identi�able, but some are. We have provided elsewhere consistent

estimators of �; Linton and Kalnina (2005), and do not pursue this here. Estimating the function

! (�) would allow us to measure the diurnal variation of the MS noise. In the benchmark measurement

error model this is a constant ! (�) � ! that can be estimated consistently by
Pn�1

i=1

�
Yti+1 � Yti

�2
=2n

(Bandi and Russell (2006a), Barndor¤-Nielsen et al. (2006), Zhang et al. (2005)). In our model,

instead of n�1, the appropriate scaling is n��1. Such an estimator would converge to (�2=2) +R
!2 (u) du. Hence, in the special case � = 0 this estimator would converge asymptotically to the

integrated variance of the MS noise. Following Kristensen (2006) we could also estimate ! (�) at
some �xed point � using kernel smoothing,

b!2 (�) = 1

2n1��

Pn
i=1Kh (tt�1 � �)

�
�Yti�1

�2Pn
i=1Kh (tt�1 � �) (tt � tt�1)

:

2There is a question about whether one should care about the latent price or the actual price. This has been raised

elsewhere, see Zhang, Mykland, and Aït-Sahalia (2005). We stick with the usual practice here, acknowledging that the

presence of correlation between the noise and e¢ cient price makes this even more debatable, Aït-Sahalia, Mykland,

and Zhang (2006b).
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Under equidistant observations, this simpli�es to b!2 (�) = Pn
i=1Kh (tt�1 � �)

�
�Yti�1

�2
=2n1��: In

the above, h is a bandwidth that tends to zero asymptotically and Kh(:) = K(:=h)=h; where K(:) is a

kernel function satisfying some regularity conditions. If we also allow for endogeneity (� 6= 0), b!2 (�)
estimates !2 (�) plus a constant, and so still allows to investigate the pattern of diurnal variation.

3 Estimation

We suppose that the parameter of interest is the quadratic variation of X on [0; 1]; denoted QVX =R 1
0
�2tdt: Let

[Y; Y ]n =
n�1X
i=1

�
Yti+1 � Yti

�2
be the realized variation of Y; and introduce a modi�ed version of it (jittered RV) as follows,

[Y; Y ]fng =
1

2

 
n�KX
i=1

�
Yti+1 � Yti

�2
+

n�1X
i=K

�
Yti+1 � Yti

�2!
: (4)

This modi�cation is useful for controlling the end e¤ects that arise under our sampling scheme.

Our estimator of QVX makes use of the same principles as the TSRV estimator in Zhang et al.

(2005). We split the original sample of size n into K subsamples, each of size n = n=K. Introduce a

constant � and c such that K = cn�: For consistency we will need � > 1=2� �: The optimal choice
of � is discussed in the next section. By setting � = 0, we get the condition for consistency in Zhang

et al. (2005), that � > 1=2:3

Let [Y; Y ]nj denote the jth subsample estimator based on a K-spaced subsample of size nj;

[Y; Y ]nj =

nj�1X
i=1

�
YtiK+j � Yt(i�1)K+j

�2
; j = 1; : : : ; K;

and let

[Y; Y ]avg =
1

K

KX
j=1

[Y; Y ]nj

be the averaged subsample estimator. To simplify the notation, we assume that n is divisible by K

and hence the number of data points is the same across subsamples, n1 = n2 = ::: = nK = n=K: Let

n = n=K:

3This condition is implicit in Zhang et al. (2005) in Theorem 1 (page 16) where the rate of convergence isp
K=n = c

p
n2��1:
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De�ne the adjusted TSRV estimator (jittered TSRV) as

dQV X = [Y; Y ]avg � �nn
�
[Y; Y ]fng : (5)

Compared to the TSRV estimator, this estimator does not involve any new parameters that would

have to be chosen by the econometrician, so it is as easy to implement. The need to adjust the TSRV

estimator arises from the fact that under our assumptions TSRV is not always consistent. The

problem arises due to end-of-sample e¤ects. For a very simple example where the TSRV estimator is

inconsistent, let us simplify the model to the framework of Zhang et al. (2005), and introduce only

heteroscedasticity, the exact form of which is to be chosen below. Let us evaluate the asymptotic

bias of TSRV estimator,4

n1=6E
ndQV TSRVX �QVX

o
= n1=6

�
E[u; u]avg � c�1n�2=3E [u; u]n

	
+ n1=6

�
E[X;X]navg � c�1n�2=3E [X;X]

n	� n1=6QVX
= c�1n�1=2

n�KX
i=1

�
!2ti+K + !

2
ti

�
� c�1n�1=2

n�1X
i=1

�
!2ti+1 + !

2
ti

�
+ o (1) :

A simple example of heteroscedasticity would be !2 (i=n) = a + i=n, where a is any constant. In

this case simple calculations give that n1=6E(dQV TSRVX � QVX) diverges to in�nity. The rate n1=6 is
achieved by choosing � (that enters into n) optimally (so � = 2=3). Even if any other � is used, we

get in this example that TSRV estimator is asymptotically biased.

We remark that (5) is an additive bias correction and there is a nonzero probability thatdQV X < 0:
One can ensure positivity by replacingdQV X by maxfdQV X ; 0g; but this is not very satisfactory.
4 Asymptotic Properties

The expansion for [Y; Y ]avg and [Y; Y ]n both contain additional terms due to the correlation between

the measurement error and the latent returns. The main issues can be illustrated using the expansion

of [Y; Y ]avg , conditional on the path of �t:

[Y; Y ]avg = QVX|{z}
(a)

+ 2
�n
K

1Z
0

�tdt| {z }
(b)

+ E [u; u]avg| {z }
(c)

+O

0BB@n�1=2| {z }
(d)

+

r
n

Kn2�| {z }
(e)

1CCAZ; (6)

4For intermediate steps, see proof of Lemma A7, which uses very similar calculations for the full model.
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where Z � N (0; 1) ; while the terms in curly braces are as follows: (a) the probability limit of

[X;X]avg, which we aim to estimate; (b) the bias due to correlation between the latent returns and

the measurement error; (c) the bias due to measurement error; (d) the variance due to discretization;

(e) the variance due to measurement error.

Should we observe the latent price without measurement error, (a) and (d) would be the only

terms. In this case, of course, it is better to use [X;X]n ; since that has an error of smaller order

n�1=2: In the presence of the measurement error, however, both [Y; Y ]avg and [Y; Y ]n are badly biased,

the bias arising both from correlation between the latent returns and the measurement error, and

from the variance of the measurement error. The largest term is (c), which satis�es

E [u; u]avg = 2nn��

0@ 1Z
0

!2 (u) du+ �2

1A+O �n�� + n�1� = O �nn��� ;
i.e., it is of order nn��: So without further modi�cations, this is what [Y; Y ]avg would be estimating.

Should we be able to correct that, the next term would be 2(�n=K)
R
�tdt arising from E [X; u]

avg :

This second term is zero, however, if there is no correlation between the latent price and the MS

noise, i.e., if � = 0: Interestingly when we use the TSRV estimator for bias correction of E [u; u]avg,

we also cancel this second term.

The asymptotic distribution of our estimator arises as a combination of two e¤ects, measurement

error and discretization e¤ect. First, quadratic variation of the observed price is only a proxy for the

quadratic variation of latent price. After correcting for the bias, we still have the variation due to

the measurement error. The convergence of the estimator to the realized variance of the latent price

X is the following,r
Kn2�

n

�dQV X � [X;X]avg� =) N
�
0; 8�4 + 48�2

R
!2 (u) du+ 8

R
!4 (u) du

�
: (7)

The rate of convergence arises from var[u; u]avg = O (n=Kn2�) : Both parts of the noise u, which are

v and ", contribute to the asymptotic variance. The �rst part of the asymptotic variance roughly

arises from var[v; v] , the second part from var[v; "] (which is nonzero even though correlation between

both terms is zero), and the third part from var["; "]: If the measurement error is uncorrelated with

the latent price, the �rst two terms disappear.

Should we observe the latent price without any error, we would still not know its quadratic

variation due to observing the latent price only at discrete time intervals. This is another source of

estimation error. From Theorem 3 in Zhang et al. (2005) we have
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n1=2 ([X;X]avg �QVX) =) N

0@0; 4
3

1Z
0

�4tdt

1A : (8)

The �nal result is a combination of the two results (7) and (8), and the fact that they are

asymptotically independent. The fastest rate of convergence is achieved by choosing K so that the

variance from the discretization is of the same order as the variance arising from the MS noise, so set

n�1=2 =
p
n=Kn2�: The resulting optimal magnitude of K is such that � = 2 (1� �) =3. The rate

of convergence with this rule is n�1=2 = n�1=6��=3. The slowest rate of convergence is n�1=6, and it

corresponds to large MS noise case, � = 0. The fastest rate of convergence is n�1=3, which corresponds

to � = 1=2 case. If we pick a larger � (and hence more subsamples K) than optimal, the rate of

convergence in (7) increases, and the rate in (8) decreases so dominates the �nal convergence result.

In this case the �nal convergence is slower and only the �rst term due to discretization appears in

the asymptotic variance (see (9)). Conversely, if we pick a smaller � (and hence K) than optimal, we

get a slower rate of convergence and only the second term in the asymptotic variance ("measurement

error" in (9)), which is due to MS noise.

We obtain the asymptotic distribution ofdQV X in the following theorem
Theorem 1. Suppose fXtg is a Brownian semimartingale satisfying (1). Suppose f�tg and

f�tg are measurable and càdlàg processes, independent of the process fWtg. Suppose further that
the observed price arises as in (2). Let measurement error uti be generated by (3), with �ti i.i.d.

mean zero and variance one and independent of the Gaussian process fWtg with E�4ti < 1. Then,
conditional on the sample path f�2tg with probability one

n1=2
�dQV X �QVX� =) N (0; V ) ;

V =
4

3

1Z
0

�4tdt| {z }
discretization

+ c�3
�
8�4 + 48�2

R
!2 (u) du+ 8

R
!4 (u) du

�| {z }
measurement error

: (9)

Remarks.

1. The main statement of the theorem can also be written as

n1=6+�=3
�dQV X �QVX� =) N (0; cV ) ;
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where V = V1 + c�3V2; with V1 being the discretization error. We can use this to �nd the value of

c that would minimize the asymptotic variance, copt = (2V2=V1)1=3; resulting in asymptotic variance

(3=22=3)V
1=3
2 V

2=3
1 :

2. Suppose the parameter of interest is
R T2
T1
�2tdt, the quadratic variation of X on [T1; T2]: Then

the asymptotic variance of Theorem 1 becomes

V =
4

3
(T2 � T1)

T2Z
T1

�4tdt+ c
�3

0@8 (T2 � T1)2 �4 + 48�2 T2Z
T1

!2 (u) du+ 8 (T2 � T1)�1
T2Z
T1

!4 (u) du

1A :
This follows by simple adjustments in the proofs.

5 Asymptotic properties in the case � � 1=2

So far we have worked with the model, in which � 2 [0; 1=2) : In this section we consider cases when
the measurement error is even smaller, i.e., the case � 2 [1=2; 1) and the case � � 1:
For high � the convergence rate

p
Kn2�=n of the measurement error in (7) is faster, so optimally

we would like to pick larger n (i.e., smaller �) to increase also the rate of convergence n1=2 of the

discretisation error in (8). However, there is a bias term that prevents us choosing very small �: It is

E
�
n
n
[X;X]n

�
= n

n
QVX and with rate of convergence n1=2 it is only negligible if � > 1=3. This latter

condition is incompatible (for � � 1=2) with setting � = 2 (1� �) =3 to balance both error terms.
This results in the measurement error converging faster than the discretisation error. Hence, the

convergence rate n1=2 = n(1��)=2 and asymptotic variance of the estimator now come only from the

measurement error. Since the rate of convergence is decreasing in �, but consistency requires � > 1=3,

we have that to the �rst order asymptotically optimal � is slightly above 1/3. For � = 1=3 + �

(where � small and positive) the rate of convergence is n1=2 = n(1��)=2 = n1=3��=2 . Note that this is

exactly the rate that occurs when there is no measurement error at all.

To summarize, we have the following theorem.

Theorem 2. Suppose that the conditions for Theorem 1 hold, except � 2 [1=2; 1) : Choose

� 2 (1=3; 1) : Then, conditional on the sample path f�2tg with probability one

n(1��)=2
�dQV X �QVX� =) N (0; V ) ;
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V =
4

3

1Z
0

�4tdt| {z }
discretization

: (10)

Finally note that � � 1 means [u; u] is of the same or smaller magnitude than [X;X]: In the case
� = 1 they are of the same order and identi�cation breaks down. When � > 1 , realized volatility

of observed prices is a consistent estimator of quadratic variation of latent prices, as measurement

error is of smaller order. This is an arti�cial case and does not seem to appear in the real data.

How can we put this analysis in context? A useful benchmark for evaluation of the asymptotic

properties of nonparametric estimators is the performance of parametric estimators. Gloter and Jacod

(2001) allow for the dependence of the variance of i.i.d. Gaussian measurement error �n on n and

establish the Local Asymptotic Normality (LAN) property of the likelihood, which is a precondition

to asymptotic optimality of the MLE. For the special case �n = � they obtain a convergence rate

n�1=4, thus allowing us to conclude that the MSRV and realized kernels can achieve the fastest

possible rate. They also show that the rate of convergence is n�1=2 if �n goes to zero su¢ ciently fast,

which is the rate when there is no measurement error at all. Our estimator has a rate n�1=3+� when

there is no measurement error, which is also the rate of convergence when the noise is su¢ ciently

small. Also, Gloter and Jacod have that for "large" noise, the rate of convergence depends on the

magnitude of the noise, which is in line with what we showed in the previous section. The rate of

convergence and the threshold for the magnitude of the variance of the noise is di¤erent, though.

6 Simulation study

In this section we explore the behaviour of the estimator (5) in �nite samples. We simulate the

Heston (1993) model:

dXt = (�t � vt=2) dt+ �tdBt
dvt = � (� � vt) dt+ v1=2t dWt;

where vt = �2t , and Bt;Wt are independent standard Brownian motions:5

For the benchmark model, we take the parameters of Zhang et al. (2005): � = 0:05; � = 5;

� = 0:04;  = 0:5: We set the length of the sample path to 23400 corresponding to the number of

5Simulations with nonzero correlation yield the same conclusions, but we have assumed it away in our framework.
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seconds in a business day, the time between observations corresponding to one second when a year

is one unit, and the number of replications to be 100,000.6 We set � = 0. We choose the values

of ! and � so as to have a homoscedastic measurement error with variance equal to 0:00052 (again

from the Zhang et al. (2005)), and correlation between the latent returns and the measurement error

equal to �0:1. For this we use the identity

corr(�Xti ;�uti) =
E (�)p
2E (�2)

�p
�2 + !2

and the fact that for our volatility we have E (�) = �; var (�) = �2=2�: We set � = 2 (1� �) =3:
First, we construct di¤erent models to see the e¤ect of varying � and the number of observations

within a day. We take the values of � and ! that arise from the benchmark model, and then do

simulations for the following combinations of � and n. When interpreting the results, we should also

take into account that both of these parameters change the size of the variance of the measurement

error. The measure to assess the proximity of the �nite sample distribution to the asymptotic

distribution will be percentage errors of the interquartile range of n1=2(dQV X � QVX) compared to
1:3
p
V : This measure is easiest to interpret if we work with a �xed variance, i.e., when we condition

on the volatility path. Hence, we simulate the volatility path for the largest number of observations,

23400, and perform all simulations using this one sample path of volatility. The last parameter to

choose is K, the number of subsamples. This is the only parameter that an econometrician has to

choose in real life. Therefore, we use four di¤erent values as follows (the �rst three expressions are

also rounded to the closest integer):

Table 1. Choices of K

(2V2=V1)
1=3n

2
3
(1��) asymptotically optimal rate and c Tables 2 and 3

n
2
3
(1��) variation of above Tables 4 and 5

n
2
3 variation of above Table 6

b�nc ; � =
�
3RV

2

n2

2RQ

�1=3
Bandi and Russell (2006, eq. 24) Table 7

Table 2 contains the interquartile range errors (IQRs), in per cent, with asymptotically optimal

rate and constant for K. That is, we use K = (2V2=V1)
1=3n2(1��)=3, rounded to the nearest integer,

where V1 and V2 are discretisation and measurement errors from (9). Table 3 contains the values of

K.
6Note that in the theoretical part of the paper we had for brevity taken interval [0,1]. For the simulations we need

the interval [0,1/250]. See remark 2 for the relevant expression of Theorem 1, with T1 = 0 and T2 = 1=250:

11



***Tables 2 and 3 here***

We see large errors, and from the values of K in Table 3 we can guess this is due to the

asymptotically optimal rule selecting very low copt. In fact, for the volatility path used here,

copt = (2V2=V1)
1=3 = 0:0242: Hence, another experiment we consider is an arbitrary choice c = 1:

The next two tables (Table 4 and 5) contain the percentage errors and values of K that result from

using K = n2(1��)=3:

***Table 4 and 5 here***

The performance of this choice is much better. We can see from Table 4 that for small values of �,

the asymptotic approximation improves with sample size. The sign of the error changes as � increases

for given n, meaning that the actual IQR is below that predicted by the asymptotic distribution for

small � and small n but this changes into the actual IQR being above the asymptotic prediction.

Another variant that does not include the unobservable � would be to use K = n2=3. Table 6

shows the corresponding results, which are slightly worse for small n. The choice of K of course does

not depend on �, see the last column of Table 6 for the resulting values.

***Table 6***

Finally, we consider the choice of K proposed by Bandi and Russell (2006, eqn 24). Table 7

contains the IQR percentage errors and values of K that result from using KBR = b�nc ; � =�
3RV

2

n2

2RQ

�1=3
, where RV is the realised variance, RV =

P
(�Ylow)

2 and RQ is the realised quarticity,

RQ = S
3

P
(�Ylow)

4. Here, Ylow is low frequency (15 minute) returns, which gives S = 24 to be the

number of low frequency observations during one day.

***Table 7 here***

We see that the IQR errors of this choice are generally smaller than with asymptotically optimal

K, except for cases that have both large n and small �, including the case � = 0 usually considered

in the literature. We notice that KBR rule gives better results than asymptotically optimal when it

chooses a larger K, which is in most cases, but not all. In comparison to rules K = n2(1��)=3 and

K = n2=3 (Tables 4 and 6, respectively), the performance of this choice is still disappointing, especially

for small �. The reason seems to be that values ofKBR are in general too small, and appropriate only

for very small MS noise cases, i.e., when � is very large. For these cases (as in columns to the right)

12



performance of KBR (Table 7) approaches to one for K = n2(1��)=3 (Table 4). One possible reason of

these disappointing results could be that the assumption of constant volatility in Bandi and Russell

(2006) is not representative of the volatility path in above simulations, see Figure 1. One might also

note that this is not exactly the TSRV estimator that Bandi and Russell derived the optimal value

of K for, due to our end-of-sample adjustments (jittering). However, under homoscedastic MS noise

as in our simulation setup, the di¤erences betweendQV anddQV TSRV are negligible in practice. Hence,
this cannot be a cause for substantial worsening of the results.

0 0.5 1 1.5 2 2.5

x 104

2

3

4

5

6

7

8
x 103

Figure 1. The common volatility path for all simulations.

It has been noted elsewhere that the asymptotic approximation can perform poorly, see Gonçalves

and Meddahi (2005) and Aït-Sahalia, Zhang and Mykland (2005).

In the following, we use the rule K = n2(1��)=3:We show below that the size of � can have an

e¤ect of how close is the �nite sample distribution to normal. Figure 2 shows two Normal Q-Q plots

for n = 23400 and two di¤erent values of �:

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4

5

(a) � = 0

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4

5

(b) � = 0:4
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Figure 2. Normal QQ plot of studentizeddQV X and n = 23400.
If we use errors unscaled by n, we can see that they are becoming smaller as we increase �. Figure

4 contains box plots of (dQV X �QVX)=QVX in models corresponding to the last row of Table 1, i.e.,
we take a range of values for � and set n = 23400:

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

value of α

Figure 4. Boxplots of (dQV X �QVX)=QVX corresponding to di¤erent values of � and for n = 23400:
In a second set of experiments we investigate the e¤ect of varying !; which controls the variance

of the second part of the measurement error, for the largest sample size: Denoting by !2b the value

of !2 in the benchmark model, we construct models with !2 = !2b ; 4!
2
b ; 8!

2
b ; 10!

2
b ; and 20!

2
b : The

corresponding interquartile errors are 0:96%; 1:26%; 1:93%; 2:29%; and 4:64%:

In a third set of experiments we investigate the e¤ect of varying �; which controls the size of

the correlation of the latent returns and measurement error. Denoting by �2b the value of �
2 in the

benchmark model, we construct models with �2 being from 0:01 � �2 to 20 � �2. The exact values
of �2, as well as corresponding correlation between returns and increments of the noise, and the

resulting interquartile errors are reported in Table 7.

***Table 8 here***

We can see that when the number of observations is 23400, there is no strong e¤ect from the

correlation of the latent returns and measurement error on the approximation of the asymptotic

interquartile range of the estimator.
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7 Conclusions and Extensions

In this paper we showed that the TSRV estimator is consistent for quadratic variation of the la-

tent (log) price process when measurement error is correlated with the latent price, although some

adjustment is necessary when measurement error is heteroscedastic. We also showed how the rate

of convergence of the estimator depends on the magnitude of the measurement error. Given that

robustness of TSRV estimator under the case of autocorrelated noise has been shown before, we

see that TSRV paradigm of estimators seems to be very stable to di¤erent assumptions about the

additive measurement error. What is less easy to answer is the question of valid inference. So far,

this has been only solved for the benchmark case of i.i.d. and independent from the latent price

measurement error, or asymptotically equivalent speci�cations. The case of � � 1=2 analysed in

Section 6 falls under this scenario, and, incidentally, valid inference can be achieved there by, e.g.,

the same estimator of integrated quarticity as in Zhang et al. (2005). However, this question has not

been solved when additional terms arise in asymptotic variance due to endogeneity (this paper) or

autocorrelation in measurement error (as in Aït-Sahalia, Mykland, and Zhang (2006a)). We plan to

investigate this question further. Gonçalves and Meddahi (2005) have recently proposed a bootstrap

methodology for conducting inference under the assumption of no noise (and no leverage) and shown

that it has good small sample performance in their model. Zhang, Mykland, and Aït-Sahalia (2005)

have developed Edgeworth expansions for the TSRV estimator, and it would be very interesting to

use this for analysis of inference using bootstrap. It is also of interest to estimate the parameters

of (2), namely the size of the measurement error, the correlation of the measurement error with the

latent price, and the intraday heteroskedasticity in the measurement error. We have discussed how

some of these quantities may be estimated. The results we have presented may be generalized to

cover MSRV estimators and to allow for serial correlation in the error terms, although in both cases

the notation becomes very complicated.
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A Appendix

For deterministic sequences An; Bn we use the notation An � Bn to mean that An is equal to Bn
plus something of smaller order than Bn; i.e., An=Bn ! 1:

To follow easier the notation regarding all subscripts, it is convenient to think in terms of grids.

The time indices of the full dataset with n data points are on a grid G = f1; 2; 3; : : : ; ng : For
the �rst few lemmas we take the �rst subsample only, which has time indices on the �rst subgrid

G1 = f1; K + 1; 2K + 1; : : : ; (n� 1)K + 1g, where n = n=K: This translates into (i � 1)K + 1;

i = 1; : : : ; n: Hence, for summations like the one de�ning [Y; Y ]n1 we will need to take(
K + 1; 2K + 1; : : : ; (n� 1)K + 1

1; K + 1; : : : ; (n� 2)K + 1

)
=

(
iK + 1; i = 1; : : : ; n� 1

(i� 1)K + 1; i = 1; : : : ; n� 1

)
:

Similarly, the jth subgrid is Gj = fj;K+ j; 2K+ j; : : : ; (n�1)K+ jg; j = 1; 2; : : : ; K: This translates
into (i� 1)K + j; i = 1; : : : ; n: Hence,(

K + j; 2K + j; : : : ; (n� 1)K + j

j;K + j; : : : ; (n� 2)K + j

)
=

(
iK + j; i = 1; : : : ; n� 1

(i� 1)K + j; i = 1; : : : ; n� 1

)
:

We assume for simplicity that � � 0 in the sequel. Drift is not important in high frequencies as it
is of order dt, while the di¤usion term is of order

p
dt (see, for example Aït-Sahalia et al.(2006)).With

the assumptions of Theorem 1, the same method as in the proof can be applied to the drift, yielding

the conclusion that it is not important statistically.

Proof of Theorem. Expectations are taken conditional on the whole path of �t: We have

n1=2
�dQV X �QVX� = n1=2 [Y; Y ]avg � n

3=2

n
[Y; Y ]n � n1=2QVX

= n1=2 f[X;X]avg + 2 [X; u]avg + [u; u]avgg

�n
3=2

n

n
[X;X]fng + 2 [X; u]fng + [u; u]fng

o
� n1=2QVX

� C1 + C2 + C3� C4� C5� C6:

We calculate the order in probability of these terms by computing their means and variances and

using Chebychev�s inequality. We show below that:
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mean variance

C1 n1=2 [X;X]avg� n1=2QVX 0 O(1)

C2 2n1=2 [X; u]avg O(n�=2) o(1)

C3 n1=2 [u; u]avg O(n1=2) O(1)

C4 n3=2

n
[X;X]fng o(1) o(1)

C5 n3=2

n
2 [X; u]fng O(n�=2) o(1)

C6 n3=2

n
[u; u]fng O(n1=2) O(1):

(C1) The term n1=2 [X;X]navg� n1=2QVX has zero mean and variance O(1) from the result in

Zhang et al. (2005) (eqn. 49, pp. 1401), and:

n1=2
�
[X;X]navg �QVX

�
=) N

0@0; 4
3

1Z
0

�4tdt

1A :
(C2,C5) In Lemma A5 we show that E [C2� C5] = op(1): Lemma A2 shows that variance of C5

is small. From Lemma A6, 4nvar[X; u]avg = O
�
nn��2

�
= O (n�1) :

(C3,C6) In Lemma A7 we show thatE [C3� C6] = op(1). From Lemma A4, var
�
n3=2

n
[u; u]fng

�
=

O(1) and from Lemma A8, var
�
n1=2 [u; u]navg

�
= O(1):

(C4) By Jacod and Protter (1998), [X;X]n�QVX = Op
�
n�1=2

�
and so n3=2

n
[X;X]n = Op

�
n3=2

n

�
=

Op
�
n��1=2

�
= op (1) : Since [X;X]

n � [X;X]fng = Op (K=n), we have also n3=2

n
[X;X]fng = op (1) :

It follows that the limiting distribution of n1=2(dQV X � QVX) is that of C1 + C3 � C6: The
covariances between these terms are calculated in Lemmas B1, B2, and B3. Therefore, the asymptotic

variance is

V = lim
n!1

(
nvar [X;X]avg + nvar [u; u]avg +

�
n3=2

n

�2
var [u; u]fng � 2n

2

n
cov

�
[u; u]fng; [u; u]avg

�)

=
4

3

1Z
0

�4tdt+ 2c
�3 �12�4 + 4E�4 R !4 (u) du+ 24�2 R !2 (u) du�� 2c�3 �8�4 + 4 �E�4 � 1� R !4 (u) du�

=
4

3

1Z
0

�4tdt+ c
�3 �8�4 + 48�2 R !2 (u) du+ 8 R !4 (u) du� :
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A.1 Lemmas

Here we give the lemmas needed in the proof of the Theorem.

Lemma A1. For all n

E[X; u]n1 = �n

n1�1X
i=1

tiK+1Z
tiK

�tdt:

Lemma A2. As n!1,

var[X; u]n1 = O
�
n��

�
+O

�
1

n21

�
4

�
n3=2

n

�2
var [X; u]fng = o (1) :

Lemma A3. As n!1,

E[u; u]n1 = [m;m]n1 + 2n1n
��

1Z
0

!2 (u) du+ 2n1�
2n�� +O

�
n��

�
:

Lemma A4. As n!1,

var[u; u]n1 =
n1
n2�

�
12�4 + 4E�4

R
!4 (u) du+ 24�2

R
!2 (u) du+O

�
n�=2

n1

�
+O

�
n�

n21

��
�
n3=2

n

�2
var[u; u]fng = c�3

�
12�4 + 4E�4

R
!4 (u) du+ 24�2

R
!2 (u) du

	
+ o (1)

Lemma A5. As n!1,

E[X; u]avg =
�n
K

1Z
0

�tdt+O
�
n�

1+�
2

�
n1=2E[X; u]avg =

n3=2

n
E[X; u]fng + o (1)

Lemma A6. As n!1,

var[X; u]avg � 1

K
var[X; u]n1 = O

�
n��2

�
:

Lemma A7. As n!1,

n1=2E [u; u]avg =
n3=2

n
E [u; u]fng + o(1)
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Lemma A8. As n!1,

var[u; u]avg =
n1
Kn2�

�
12�4 + 4E�4

R
!4 (u) du+ 24�2

R
!2 (u) du+O

�
n�=2

n1

�
+O

�
n�

n21

��
= c�3n�1

�
12�4 + 4E�4

R
!4 (u) du+ 24�2

R
!2 (u) du+ o (1)

	
if � =

2

3
(1� �) :

Lemma B1. As n!1,

cov ([X;X]avg; [u; u]avg) = O
�
n��K�1� = o �n�1=2� :

Lemma B2. As n!1,

cov
�
[X;X]avg; [u; u]fng

�
= O

�
n��K�1� = o �n�1=2� :

Lemma B3. As n!1,

cov
�
[u; u]fng; [u; u]avg

�
=
n

n2
c�3
�
8�4 + 4

�
E�4 � 1

� R
!4 (u) du+ o (1)

	
:

A.2 Proofs of Lemmas

Write symbolically [X; u] = [X; v] + [X; "] and [u; u] = [v; v] + ["; "] + 2[v; "]; where the process X is

independent of the process " and the process v is also independent of the process ": Also use for a

function g and lag J = 1; : : : ; K; �Jg(ti) = g(ti)� g(ti�J) with � = �1 for simplicity.

Proof of Lemma A1. We have

E[X; u]n1

=

n1�1X
i=1

E
h�
utiK+1 � ut(i�1)K+1

��
XtiK+1 �Xt(i�1)K+1

�i

=

n1�1X
i=1

E

264 tiK+1Z
t(i�1)K+1

�tdWt

h
�n

�
WtiK+1 �WtiK

�
� �n

�
Wt(i�1)K+1 �Wt(i�1)K

�
+
�
"tiK+1 � "t(i�1)K+1

�i375
= �n

n1�1X
i=1

tiK+1Z
tiK

�tdt:
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Proof of Lemma A2. We have

var[X; u]n1 = var[X; v]n1 + var[X; "]n1 + 2cov ([X; v]n1 ; [X; "]n1)

= var[X; v]n1 + var[X; "]n1 since E
�
(�X)2�W

�
= 0 by normality

= O
�
n��

�
+O

�
1

n2

�
: (11)

We prove (11) below. First part is var [X; v]n1 � n1��
�
1
n
+ n1

n2

�
� n�� by

1

�22n
var [X; v]n1

=
1

�22n
var

"
n1�1X
i=1

�
XtiK+1 �Xt(i�1)K+1

��
vtiK+1 � vt(i�1)K+1

�#

= var

"
n1�1X
i=1

�
XtiK+1 �Xt(i�1)K+1

���
WtiK+1 �WtiK

	
�
n
Wt(i�1)K+1 �Wt(i�1)K

o�#

=

n1�1X
i=1

var
h�
XtiK+1 �Xt(i�1)K+1

� �
WtiK+1 �WtiK

�i
+

n1�1X
i=1

var
h�
XtiK+1 �Xt(i�1)K+1

��
Wt(i�1)K+1 �Wt(i�1)K

�i
+2

n1�2X
i=1

E
h
�KXtiK+1

�
�WtiK+1 ��Wt(i�1)K+1

�
�KXt(i+1)K+1

�
�Wt(i+1)K+1 ��WtiK+1

�i
=

2

n

tn�K+1R
t1

�2tdt+O
�n1
n2

�
;

where for the �nal equality we use:
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n1�1X
i=1

var
h�
XtiK+1 �Xt(i�1)K+1

� �
WtiK+1 �WtiK

�i
=

n1�1X
i=1

E
�
XtiK+1 �Xt(i�1)K+1

�2
E
�
WtiK+1 �WtiK

�2
+

n1�1X
i=1

E2
�
XtiK+1 �Xt(i�1)K+1

� �
WtiK+1 �WtiK

�
by normality

=

n1�1X
i=1

24 tiK+1R
t(i�1)K+1

�2tdt
1

n
+

 
tiK+1R
tiK

�tdt

!235 = 1

n

tn�K+1R
t1

�2tdt+O
�n1
n2

�
;

n1�1X
i=1

var
h�
XtiK+1 �Xt(i�1)K+1

��
Wt(i�1)K+1 �Wt(i�1)K

�i
=

n1�1X
i=1

tiK+1R
t(i�1)K+1

�2tdt
1

n
=
1

n

tn�K+1R
t1

�2tdt;

and

2

n1�2X
i=1

E
h
�KXtiK+1

�
�WtiK+1 ��Wt(i�1)K+1

�
�KXt(i+1)K+1

�
�Wt(i+1)K+1 ��WtiK+1

�i
= 2

n1�2X
i=1

E
�
�KXtiK+1�WtiK+1

�
E
�
�KXt(i+1)K+1�Wt(i+1)K+1

�
= 2

n1�2X
i=1

"
tiK+1R
tiK

�tdt
t(i+1)K+1R
t(i+1)K

�tdt

#
= O

�n1
n2

�
:

21



For the second part of (11), we have var[X; "]n1 = O
�
1
n2

�
+O (n��) by

var[X; "]n1

= var

"
n1�1X
i=1

�
XtiK+1 �Xt(i�1)K+1

��
"tiK+1 � "t(i�1)K+1

�#

=

n1�1X
i=1

var
�
�KXtiK+1�K"tiK+1

�
+ 2

n1�1X
i=2

cov
h
�KXtiK+1�K"tiK+1 ;�KXt(i�1)K+1�K"t(i�1)K+1

i
=

n1�1X
i=1

E
�
�KXtiK+1

�2
E
�
�K"tiK+1

�2
+ 2

n1�1X
i=2

E
�
�KXtiK+1

�
E
�
�KXt(i�1)K+1

�
E
�
�K"tiK+1�K"t(i�1)K+1

�
=

n1�1X
i=1

tiK+1R
t(i�1)K+1

�2tdt
h�
�KmtiK+1

�2
+ n��

�
!2tiK+1 + !

2
t(i�1)K+1

�i
+2

n1�1X
i=2

tiK+1R
t(i�1)K+1

�tdt
tiK+1R

t(i�1)K+1

�tdt
h
�KmtiK+1�Kmt(i�1)K+1 + n

��!2t(i�1)K+1

i
= O

�
1

n2

�
+O

�
n��

�
:

Now we prove the second part of Lemma A2. Note that by substituting n for n1 we get

var[X; u]n = O (n��) + O
�
1
n2

�
; and so

�
n3=2

n

�2
var[X; u]n � (n3=n2n�) + (n3=n5) � n3(1��)�2�� =

n1���3� = n1���2(1��) = n��1 = o (1) : Since [X; u]n� [X; u]fng is of smaller order than [X; u]fng; the
same holds for

�
n3=2

n

�2
var[X; u]fng:

Proof of Lemma A3. We have

E[u; u]n1 =

n1�1X
i=1

E

��
utiK+1 � ut(i�1)K+1

�2�

=

n1�1X
i=1

E

�
�22n

�
WtiK+1 �WtiK

�2
+ �22n

�
Wt(i�1)K+1 �Wt(i�1)K

�2
+
�
"tiK+1 � "t(i�1)K+1

�2�

=

n1�1X
i=1

E

��
"tiK+1 � "t(i�1)K+1

�2�
+
2

n
(n1 � 1) �22n

= [m;m]n1 + 0 + n��
n1�1X
i=1

�
!2
�
iK + 1

n

�
+ !2

�
(i� 1)K + 1

n

��
+
2

n
(n1 � 1) �22n (12)

= [m;m]n1 + 2n1n
��

1Z
0

!2 (u) du+O
�
n��

�
+ 2n1�

2n��:
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We prove (12) below.
n1�1X
i=1

E

��
"tiK+1 � "t(i�1)K+1

�2�

=

n1�1X
i=1

E

"�
mtiK+1 �mt(i�1)K+1 + n

��=2!

�
iK + 1

n

�
�tiK+1 � n��=2!

�
(i�1)K+1

n

�
�t(i�1)K+1

�2#

=
�
mtiK+1 �mt(i�1)K+1

�2
+ n��

�
!2
�
iK + 1

n

�
+ !2

�
(i� 1)K + 1

n

��
:

Proof of Lemma A4. We have

var[u; u]n1

= var [v; v]n1 + var [e; e]n1 + 4var [v; e]n1

= 12�4n�2�n1 +O
�
n�2�

�
(13)

+4n1n
�2�E�4

R
!4 (u) du+O

�
n�3�=2

�
+O

�
n��n�1

�
+24�2n�2�n1

R
!2 (u) du+O

�
n�2�

�
+O

�
n��n�1

�
= 12�4n�2�n1 + 24�

2n�2�n1
R
!2 (u) du+ 4n1n

�2�E�4
R
!4 (u) du+O

�
n�3�=2

�
+O

�
n��n�1

�
=

n1
n2�

�
12�4 + 4E�4

R
!4 (u) du+ 24�2

R
!2 (u) du+O

�
n�=2

n1

�
+O

�
n�

n21

��
:

We prove (13) below in a series of steps, but �rst we derive the second result of Lemma A4. Note

that note by substituting n for n1 we get the following expression for var[u; u]n,

var[u; u]n =
n

n2�

�
12�4 + 4E�4

R
!4 (u) du+ 24�2

R
!2 (u) du+O

�
n�=2

n

�
+O

�
n�

n2

��
:

From this, we have�
n3=2

n

�2
var[u; u]n

=

�
n3=2

n

�2
n

n2�

�
12�4 + 4E�4

R
!4 (u) du+ 24�2

R
!2 (u) du+O

�
n�=2

n

�
+O

�
n�

n2

��
=

n3

nn2�
�
12�4 + 4E�4

R
!4 (u) du+ 24�2

R
!2 (u) du+ o (1)

	
= c�3

�
12�4 + 4E�4

R
!4 (u) du+ 24�2

R
!2 (u) du

	
+ o (1) ;

since n3

nn2�
= c�3n3(1��)�1�2� = c�3n2�2��2

2
3
(1��) = c�3: We get the second result of Lemma A4 by

noting that [u; u]n � [u; u]fng is of smaller order than [u; u]fng, so
�
n3=2

n

�2
var[u; u]n has the same

leading term as
�
n3=2

n

�2
var[u; u]fng:
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Now we prove (13) by calculating separately each of the three components of var[u; u]n1 :

The �rst component of [u; u]n1 is

[v; v]n1 =

n1�1X
i=1

�
vtiK+1 � vt(i�1)K+1

�2
= �22n

n1�1X
i=1

��
WtiK+1 �WtiK

�
�
�
Wt(i�1)K+1 �Wt(i�1)K

��2
d
= �22n

n1�1X
i=1

Z2i , where Zi are 1-dependent N
�
0;
2

n

�
; cov(Z2i ; Z

2
i�1) =

2

n2
;

and hence,

var[v; v]n1 = �44n (n1 � 1)� 2
�
2

n

�2
+ 2�44n (n1 � 2)

2

n2

= 12�44n (n1 � 1)
1

n2
+O

�
n�2�

�
= 12�4n�2�n1 +O

�
n�2�

�
:

The second component of var[u; u]n1 is

var[e; e]n1 = var

n1�1X
i=1

�
"tiK+1 � "t(i�1)K+1

�2
=

n1�1X
i=1

var
�
"tiK+1 � "t(i�1)K+1

�2
+ 2

n1�1X
i=2

covi;i�1 (14)

=

n1�1X
i=1

�
2!4tiK+1n

�2� �E�4 + 1�+O�n��K2

n2

�
+O

�
n�

3
2
�K

n

�
E�3
�

+2

n1�1X
i=2

n�2�!4tiK+1
�
E�4 � 1

�
+O

�
n�3�=2

�
+O

�
n��n�1

�
= 4n�2�E�4

n1X
i=1

!4tiK+1 +O
�
n�3�=2

�
+O

�
n��n�1

�
= 4n1n

�2�E�4
R
!4 (u) du+O

�
n�3�=2

�
+O

�
n��n�1

�
;

where we denote by covi;i�1 the terms that appear because the sum in var[e; e]n1 involves 1-dependent

terms. For exact expression and calculation of the second term in (14) see below. Before that, the
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�rst term in (14) is

var
�
"tiK+1 � "t(i�1)K+1

�2
= var ("i � "i�1)2 by an obvious change of notation

= var
�
mi �mi�1 + n

��=2 (!i�i � !i�1�i�1)
�2

= var
�
2n��=2 (mi �mi�1) (!i�i � !i�1�i�1) + n�� (!i�i � !i�1�i�1)2

�
= 4n�� (mi �mi�1)

2 var (!i�i � !i�1�i�1) + n�2�var (!i�i � !i�1�i�1)2 +

+4n�
3
2
� (mi �mi�1) cov

�
!i�i � !i�1�i�1; (!i�i � !i�1�i�1)2

�
= 4n�� (mi �mi�1)

2 �!2i + !2i�1�+ n�2� ��!4i + !4i�1� �E�4 � 1�+ 4!2i!2i�1	+
+4n�

3
2
� (mi �mi�1)

�
!3i + !

3
i�1
�
E�3

= O

�
n��

K2

n2

�
+ n�2�

��
!4i + !

4
i�1
� �
E�4 � 1

�
+ 4!2i!

2
i�1
	
+O

�
n�

3
2
�K

n

�
E�3

= 2!4tiK+1n
�2� �E�4 + 1�+O�n��K2

n2

�
+O

�
n�

3
2
�K

n

�
E�3:

The second term in (14) is

covi;i�1 = cov

��
"tiK+1 � "t(i�1)K+1

�2
;
�
"t(i�1)K+1 � "t(i�2)K+1

�2�
= cov

�
("3 � "2)2 ; ("2 � "1)2

�
(change of notation)

= var
�
"22
�
� 2cov

�
"22; "1"2

�
� 2cov

�
"2"3; "

2
2

�
+ 4cov ("1"2; "2"3)

= 4m2
2n
��!22 + n

�2�!42
�
E�4 � 1

�
+ 4m2n

�3�=2!32E�
3

�2
�
2m2m1n

��!22 +m1n
�3�=2!32E�

3
	

�2
�
2m2m3n

��!22 +m3n
�3�=2!32E�

3
	
+ 4

�
n��m1m3!

2
2

	
= n�2�!42

�
E�4 � 1

�
+ 2n�3�=2!32E�

3 f2m2 �m1 �m3g

+4n��!22 (m2 �m3) (m2 �m1)

= n�2�!4tiK+1
�
E�4 � 1

�
+O

�
n�3�=2n�1

�
+O

�
n��n�2

�
;

where we have used var ("2i ) = 4m
2
in
��!2i + n

�2�!4i (E�
4 � 1) + 4min

�3�=2!3iE�
3, cov

�
"2ti ; "ti+1"ti

�
=

2mtimti+1n
��!2ti +mti+1n

�3�=2!3tiE�
3 and cov ("1"2; "2"3) = n��m1m3!

2
2.
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The third component of var[u; u]n1 is

4var[v; e]n1

= 4var

n1�1X
i=1

�
vtiK+1 � vt(i�1)K+1

��
"tiK+1 � "t(i�1)K+1

�
= 4�22nvar

n1�1X
i=1

Zi

�
"tiK+1 � "t(i�1)K+1

�
;

where Zi are 1-dependent N
�
0;
2T

n

�
r.v.�s with autocovariance� 1

n
; Z?"

= 4�22n

n1�1X
i=1

var
�
Zi�K"tiK+1

�
+ 8�22n

n1�1X
i=2

cov
n
Zi�K"tiK+1 ; Zi�1�K"t(i�1)K+1

o
= 4�22n

n1�1X
i=1

EZ2i E
�
"tiK+1 � "t(i�1)K+1

�2
+ 8�22n

n1�1X
i=2

�
O

�
1

n

K2

n2

�
+ Tn�1��!2t(i�1)K+1

�
= 24�2n�2�n1

R
!2 (u) du+O

�
n�2�

�
+O

�
n��

K

n

�
:

Proof of Lemma A5. We have

E[X; u]avg =
1

K

KX
j=1

E[X; u]nj =
1

K

KX
j=1

�n

nj�1X
i=1

tiK+jZ
tiK+j�1

�tdt

=
�n
K

nj�1X
i=1

KX
j=1

tiK+jZ
tiK+j�1

�tdt =
�n
K

nj�1X
i=1

t(i+1)KZ
tiK

�tdt

=
�n
K

tnZ
tK

�tdt =
�n
K

1Z
0

�tdt+O

�
n
K

K

n

�

=
�n
K

1Z
0

�tdt+O
�
n�

1+�
2

�
:
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As for the second part of Lemma A5, we �rst calculate E[X; u]fng;

E[X; u]fng =
n�KX
i=K

E [�Xti�uti ] +
1

2

 
nX

i=n�K+1
E [�Xti�uti ] +

K�1X
i=1

E [�Xti�uti ]

!

= cn

n�KX
i=K

tiZ
ti�1

�tdt+
1

2
cn

nX
i=n�K+1

tiZ
ti�1

�tdt+
1

2
cn

K�1X
i=1

tiZ
ti�1

�tdt

= cn

tn�KZ
tK�1

�tdt+
1

2
cn

0@ tnZ
tn�K

�tdt+

tK�1Z
t0

�tdt

1A
= cn

1Z
0

�tdt�
1

2
cnO

�
n�1
�
:

Then,

n1=2E[X; u]avg � n
3=2

n
E[X; u]fng

= n1=2
�n
K

1Z
0

�tdt+ n
1=2O

�
n�

1+�
2

�
� n

3=2

n
�n

1Z
0

�tdt+
n3=2

n
O
�
nn

�1�
= O

�
n�

�+�
2

�
= o (1) :

Proof of Lemma A6. We have

var[X; u]avg

= var

(
1

K

KX
j=1

[X; u]nj

)

=
1

K2

KX
j=1

var[X; u]nj +
1

K2

KX
j 6=m

KX
m=1

cov f[X; u]nj ; [X; u]nmg

=
1

K2

KX
j=1

var[X; u]nj +O
�
n�1��n

�
+O

�
n�1n�1

�
(15)

=
1

K

�
O
�
n��

�
+O

�
1

n2

��
+O

�
n�1��n

�
+O

�
n�1n�1

�
� n���� + n���2+2� + n�1��n1�� + n�1+�n�1 � n��2:
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The above (15) follows by noticing that all covariance terms are of the same order, so we can explore

the magnitude of one of them. Since we are looking at the magnitudes only, assume without loss of

generality that � = 1. Then,

cov
�
[X; u]n(1); [X; u]

n
(2)

	
= cov

"
n�1X
i=1

�
utiK+1 � ut(i�1)K+1

��
XtiK+1 �Xt(i�1)K+1

�
;

n�1X
i=1

�
utiK+2 � ut(i�1)K+2

��
XtiK+2 �Xt(i�1)K+2

�#
:

The latter can be easily shown to be O (n�1��n) +O (n�1n�1) :

Proof of Lemma A7. We have

n1=2E[u; u]avg � n
3=2

n
E [u; u]fng

= n1=2
1

K

KX
j=1

nj�1X
i=1

E

��
utiK+1 � ut(i�1)K+1

�2�
� n

3=2

n
E [u; u]fng

=
n1=2

K

n�KX
i=1

E
h�
"ti+K � "ti

�2i� n3=2
n

1

2

(
n�KX
i=1

E
h�
"ti+1 � "ti

�2i
+

n�1X
i=K

E
h�
"ti+1 � "ti

�2i)
(16)

= n��
n1=2

K

n�KX
i=1

�
!2ti+K + !

2
ti

�
� n��n

3=2

2n

(
n�KX
i=1

�
!2ti+1 + !

2
ti

�
+

n�1X
i=K

�
!2ti+1 + !

2
ti

�)
(17)

= n��
n1=2

K

(
nX

i=K+1

!2ti +
n�KX
i=1

!2ti �
1

2

n�K+1X
i=2

!2ti �
1

2

n�KX
i=1

!2ti �
1

2

nX
i=K+1

!2ti �
1

2

n�1X
i=K

!2ti

)

� n��
n1=2

K
= o (1) ;

where (16) follows because contributions from v are zero,

n1=2

K
(n�K) �22n

1

n
� 1
2

�
n3=2

n
(n�K) �22n

1

n
+
n3=2

n
(n�K) �22n

1

n

�
=

n1=2

K
(n�K) �22n

1

n
� n

3=2

n
(n�K) �22n

1

n
= 0;

and (17) follows because contributions from m (:) are negligible,

n1=2

K

n�KX
i=1

O

�
1

n2

�
� n

3=2

n

1

2

(
n�KX
i=1

O

�
1

n2

�
+

nX
i=K+1

O

�
1

n2

�)

� n1=2

K
n
1

n2
+
n3=2

n
n
1

n2
= n�1=2 +

n3=2

n2
= o (1) :
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Proof of Lemma A8. Using Lemma 4,

var[u; u]avg

= var

(
1

K

KX
j=1

[u; u]nj

)
=

1

K2

KX
j=1

var[u; u]nj (18)

=
1

K

�
n1
n2�

�
12�4 + 4E�4

R
!4 (u) du+ 24�2

R
!2 (u) du+O

�
n�=2

n1

�
+O

�
n�

n21

���
=

n1
Kn2�

�
12�4 + 4E�4

R
!4 (u) du+ 24�2

R
!2 (u) du+O

�
n�=2

n1

�
+O

�
n�

n21

��
= c�3n�1

�
12�4 + 4E�4

R
!4 (u) du+ 24�2

R
!2 (u) du+ o (1)

	
if � =

2

3
(1� �) :

In above, (18) follows because all covariance terms are zero. For example,

cov f[u; u]n1 ; [u; u]n2g =
n1�1X
i=1

n2�1X
j=1

cov

��
utiK+1 � ut(i�1)K+1

�2
;
�
utjK+2 � ut(j�1)K+2

�2�
:

To show all terms in the summation above are zero, we do the calculation for the term with

indices (i = 1; j = 1)

cov
n�
utK+1 � ut1

�2
;
�
utK+2 � ut2

�2o
= cov

��
�n

�
WtK+1 �WtK

�
� �n (Wt1 �Wt0) +

�
"tK+1 � "t1

��2
;�

�n
�
WtK+2 �WtK+1

�
� �n (Wt2 �Wt1) +

�
"tK+2 � "t2

��2�
= 0

as well as for the term with indices (i = 2; j = 1)

cov
n�
ut2K+1 � utK+1

�2
;
�
utK+2 � ut2

�2o
= cov

��
�n

�
Wt2K+1 �Wt2K

�
� �n

�
WtK+1 �WtK

�
+
�
"t2K+1 � "tK+1

��2
;�

�n
�
WtK+2 �WtK+1

�
� �n (Wt2 �Wt1) +

�
"tK+2 � "t2

��2�
= 0:
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Proof Lemma B1. We have

cov
�
[X;X]navg; [u; u]

n
avg

�

= cov

 
1

K

KX
j=1

[X;X]nj ;
1

K

KX
j=1

[u; u]nj

!

= cov

 
1

K

KX
j=1

nj�1X
i=1

�
XtiK+j �Xt(i�1)K+j

�2
;
1

K

KX
j=1

nj�1X
i=1

�
utiK+j � ut(i�1)K+j

�2!

= cov

 
1

K

KX
j=1

nj�1X
i=1

aij;
1

K

KX
j=1

nj�1X
i=1

(nb1;ij � nb2;ij + b3;ij)
2

!

= cov

 
1

K

KX
j=1

nj�1X
i=1

aij;
1

K

KX
j=1

nj�1X
i=1

�
2nb

2
1;ij + 

2
nb
2
2;ij + b

2
3;ij � 22nb1;ijb2;ij + 2nb1;ijb3;ij � 2nb2;ijb3;ij

�!
= c1 + c2 + c3 + c4 + c5 + c6

= O
�
K�1n��

�
= o

�
n�1
�
as � � � � < � (1� �) holds if � = 2

3
(1� �)

where b1;ij = WtiK+j �WtiK+j�1 ; b2;ij = Wt(i�1)K+j
�Wt(i�1)K+j�1

; b3;ij = "tiK+j � "t(i�1)K+j :
The last line follows because c1 � c2 � K�2 and c3 = c4 = c5 = c6 = 0 by properties of normal

random variables.

Proof of Lemma B2. First, note that cov
�
[X;X]navg; [u; u]

n
�
is of the same order as

cov
�
[X;X]navg; [u; u]

fng� since [u; u]n � [u; u]fng is of smaller order than [u; u]fng: Also, notice that
cov

�
[X;X]navg; [u; u]

n
�
has to be of the same order as cov

�
[X;X]navg; [u; u]

n
avg

�
by similarity in con-

struction of [u; u]n and [u; u]navg: Hence, cov
�
[X;X]navg; [u; u]

fng� = o (n�1) by Lemma B1.
Proof of Lemma B3. We need to prove here that

cov
�
[u; u]fng; [u; u]avg

�
= K�1n1�2�

�
8�4 + 4

�
E�4 � 1

�
�4� + o (1) +O

�
n�+��1

�	
:

We will calculate the expression for cov ([u; u]avg; [u; u]n) : It has the same leading term as
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cov
�
[u; u]avg; [u; u]fng

�
since [u; u]n � [u; u]fng is of smaller order than [u; u]fng:

cov ([u; u]avg; [u; u]n) = cov

 
1

K

KX
j=1

nj�1X
i=1

�
utiK+j � ut(i�1)K+j

�2
;

n�1X
i=1

�
uti+1 � uti

�2!

= cov

 
1

K

n�KX
i=1

�
uti+K � uti

�2
;

n�1X
i=1

�
uti+1 � uti

�2!
=

1

K
cov

�
a21 + a

2
2 + a

2
3 + 2a1a2 + 2a1a3 + 2a2a3;

b21 + b
2
2 + b

2
3 + 2b1b2 + 2b1b3 + 2b2b3

�
=

1

K
cov

�
a21 + a

2
2 + a

2
3; b

2
1 + b

2
2 + b

2
3

�
+
2

K
cov

�
a21 + a

2
2 + a

2
3; b1b2 + b1b3 + b2b3

�
+
2

K
cov

�
a1a2 + a1a3 + a2a3; b

2
1 + b

2
2 + b

2
3

�
+
4

K
cov (a1a2 + a1a3 + a2a3; b1b2 + b1b3 + b2b3)

Denote the terms in last four lines by

cov ([u; u]avg; [u; u]n)

= B31 +B32 +B33 +B34

= B31 + 0 + 0 +
�
O
�
n��1��

�
+O

�
n�2���

�	
= 8�4K�1n1�2� + 4

�
E�4 � 1

�
K�1n1�2�

1Z
0

!4udu+ o
�
K�1n1�2�

�
+O

�
n��

�
+
�
O
�
n��1��

�
+O

�
n�2���

�	
= K�1n1�2�

�
8�4 + 4

�
E�4 � 1

�
�4� + o (1) +O

�
n�+��1

�	
=

n

n2
�
8�4 + 4

�
E�4 � 1

�
�4� + o (1)

	
if � =

2

3
(1� �) :

This result is similar to Zhang et al. (2005) paper, where the covariance is, apart from normali-

sation factor, cov ([�; �]avg; [�; �]n) = 4var (�2) = 4 (E�4 � 1) :
To obtain the expression for theB31 term, note that the terms cov (a21; b

2
1) ; cov (a

2
1; b

2
2) ; cov (a

2
2; b

2
1) ;

and cov (a22; b
2
2) are all equal to 2�

44nn
�1+o (n1�2�) ; and also cov (a21; b

2
3) = cov (a

2
2; b

2
3) = cov (a

2
3; b

2
1) =
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cov (a23; b
2
2) = 0: The �nal term in B31 is

cov
�
a23; b

2
3

�
= cov

 
n�KX
i=1

�
"ti+K � "ti

�2
;

n�1X
i=1

�
"ti+1 � "ti

�2!

= 4
�
E�4 � 1

�
n1�2�

1Z
0

!4udu+ o
�
n1�2�

�
+O

�
Kn��

�
;

using similar steps as in Lemma A4. Hence,

B31 =
1

K
cov

�
a21 + a

2
2 + a

2
3; b

2
1 + b

2
2 + b

2
3

�
= 8�4K�1n1�2� + 4

�
E�4 � 1

�
K�1n1�2�

1Z
0

!4udu+ o
�
K�1n1�2�

�
+O

�
n��

�
:

The next two terms are zero, B32 = B33 = 0:

Finally, we show how to obtain B34 = O
�
n2��1��

�
+O (n�2�) : We have

cov (a1a2 + a1a3 + a2a3; b1b2 + b1b3 + b2b3)

= 0 + 0 + 0 +

0 +

(
O

�
2n
n2

�
+ �2n��2n

1

n

n�1X
i=K

!2ti+1

)
+

(
O

�
2n
n2

�
� �2n��2n

1

n

n�2X
i=K

!2ti+1

)
+

0 +

(
O

�
2n
n2

�
� �2n��2n

1

n

n�K�1X
i=1

!2ti+1

)
+

(
O

�
2n
n2

�
+ �2n��2n

1

n

n�K�1X
i=0

!2ti+1

)

= O

�
2n
n2

�
+O

�
n��2n

1

n

�
= O

�
n1��n�2(1��)

�
+O

�
n��n1��n�1

�
= O

�
n2��1��

�
+O

�
n�2�

�
:

The �rst equality above follows because cov (a1a2; b1b2) = cov (a1a2; b1b3) = cov (a1a2; b2b3) =

cov (a1a3; b1b2) = cov (a2a3; b1b2) = 0 and we have:
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cov (a1a3; b1b3) = �22ncov

 
n�KX
i=1

�
Wti+K �Wti+K�1

� �
"ti+K � "ti

�
;

n�1X
i=1

�
Wti+1 �Wti

� �
"ti+1 � "ti

�!

= O

�
2n
n2

�
+ �2n��2n

1

n

n�1X
i=K

!2ti+1 ;

cov (a1a3; b2b3) = �22ncov

 
n�KX
i=1

�
Wti+K �Wti+K�1

� �
"ti+K � "ti

�
;
n�1X
i=1

�
Wti �Wti�1

� �
"ti+1 � "ti

�!

= O

�
2n
n2

�
� �2n��2n

1

n

n�2X
i=K

!2ti+1 ;

cov (a2a3; b1b3) = �22ncov

 
n�KX
i=1

�
Wti �Wti�1

� �
"ti+K � "ti

�
;
n�1X
i=1

�
Wti+1 �Wti

� �
"ti+1 � "ti

�!

= O

�
2n
n2

�
� �2n��2n

1

n

n�K�1X
i=1

!2ti+1 ;

cov (a2a3; b2b3) = �22ncov

 
n�KX
i=1

�
Wti �Wti�1

� �
"ti+K � "ti

�
;
n�1X
i=1

�
Wti �Wti�1

� �
"ti+1 � "ti

�!

= O

�
2n
n2

�
+ �2n��2n

1

n

n�K�1X
i=0

!2ti+1 :
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B Proof of Theorem 2.

To prove Theorem 2, we work though all Lemmas for Theorem 1, and then combine them in the

same way to conclude the main result.

Note that Lemmas A1, A3, A5, A6, A7 do not use � = 2
3
(1� �) and and so are valid also for

other choices of �.

In Lemma A2, the �rst part remains exactly the same. The conclusion of the second part also

remains the same since

4

�
n3=2

n

�2
var [X; u](n) � n3

n2

�
n�� +

1

n2

�
� n3

n2
n��

= n3(1��)�2�� = n1�3��� = o(1) because � > 1=3:

In Lemma A4, the �rst part remains exactly the same. The second part now becomes�
n3=2

n

�2
var[u; u]fng = o(1) :

�
n3=2

n

�2
var[u; u]n

=
n3

n2
n1
n2�

�
12�4 + 4E�4

R
!4 (u) du+ 24�2

R
!2 (u) du+O

�
n�=2

n

�
+O

�
n�

n2

��
= o(1);

by straightforward calculations.

In Lemma A8, the �rst part remains exactly the same, and the second changes to nvar[u; u]avg =

o(1).

nvar[u; u]avg =
n21
Kn2�

�
12�4 + 4E�4

R
!4 (u) du+ 24�2

R
!2 (u) du+O

�
n�=2

n1

�
+O

�
n�

n21

��
= o(1)

by straightforward calculations.

From Lemmas A4 and A8 we know that all the correlation terms as in Lemmas B1 - B3 are o(1):

Theorem 2 follows.
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C Tables and Figures

Table 2. IQR percentage error with K = (2V2=V1)
1=3n

2
3
(1��)

n � � 0 0:05 0:1 0:15 0:2 0:25 0:3 0:35 0:4 0:45 0:5

195 96 186 145 120 145 114 95 78 65 54 N/A

390 94 135 110 200 156 128 143 111 89 71 59

780 67 90 108 137 107 181 151 162 119 100 76

1560 55 74 67 86 94 125 205 161 119 125 92

4680 48 47 56 58 74 96 99 117 201 144 151

5850 44 51 57 57 66 81 76 135 98 160 163

7800 45 46 52 53 68 70 90 94 109 175 134

11700 40 44 45 52 53 59 81 78 141 208 148

23400 36 40 43 46 49 58 61 79 106 123 196

Table 3. K = (2V2=V1)
1=3n

2
3
(1��)

n � � 0 0:05 0:1 0:15 0:2 0:25 0:3 0:35 0:4 0:45 0:5

195 3 2 2 2 1 1 1 1 1 1 0

390 4 3 3 2 2 2 1 1 1 1 1

780 7 5 4 3 3 2 2 1 1 1 1

1560 11 8 7 5 4 3 2 2 2 1 1

4680 22 17 13 10 7 5 4 3 2 2 1

5850 26 19 14 11 8 6 5 3 3 2 1

7800 31 23 17 13 9 7 5 4 3 2 2

11700 41 30 22 16 12 9 6 5 3 2 2

23400 65 47 33 24 17 12 9 6 4 3 2
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Table 4. IQR percentage error with K = n
2
3
(1��)

n � � 0 0:05 0:1 0:15 0:2 0:25 0:3 0:35 0:4 0:45 0:5

195 -21 -16 -13 -7 -7 -3 -1 4 8 13 13

390 -15 -12 -7 -3 -3 1 3 6 7 12 14

780 -13 -11 -4 -2 0 0 4 5 6 11 14

1560 -9 -7 -2 -1 1 3 5 7 8 13 12

4680 -5 -3 -1 -2 1 0 3 5 6 7 11

5850 -4 -3 1 3 5 5 2 4 8 8 8

7800 -2 -2 0 1 3 2 5 3 6 8 10

11700 -3 0 0 2 2 5 4 2 6 3 8

23400 -2 1 2 1 3 4 2 6 6 6 8

Table 5. K = n
2
3
(1��)

n � � 0 0:05 0:1 0:15 0:2 0:25 0:3 0:35 0:4 0:45 0:5

195 34 28 24 20 17 14 12 10 8 7 6

390 53 44 36 29 24 20 16 13 11 9 7

780 85 68 54 44 35 28 22 18 14 11 9

1560 135 105 82 64 50 39 31 24 19 15 12

4680 280 211 159 120 91 68 52 39 29 22 17

5850 325 243 182 136 102 76 57 43 32 24 18

7800 393 292 216 161 119 88 66 49 36 27 20

11700 515 377 276 202 148 108 79 58 42 31 23

23400 818 585 418 299 214 153 109 78 56 40 29
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Table 6. IQR percentage error with K = n
2
3

n � � 0 0:05 0:1 0:15 0:2 0:25 0:3 0:35 0:4 0:45 0:5 K

195 -23 -23 -24 -23 -23 -21 -23 -24 -23 -24 -23 34

390 -17 -19 -19 -17 -19 -20 -18 -16 -16 -18 -18 53

780 -14 -15 -12 -15 -14 -12 -15 -15 -16 -14 -13 85

1560 -12 -9 -10 -10 -12 -11 -11 -9 -11 -12 -9 135

4680 -7 -2 -7 -5 -5 -7 -6 -5 -5 -6 -5 280

5850 -6 -6 -6 -6 -6 -6 -5 -7 -6 -5 -4 325

7800 -5 -6 -4 -4 -3 -4 -5 -4 -5 -6 -5 393

11700 -2 -6 -3 -3 -3 -4 -2 -5 -6 -2 -3 515

23400 -2 -2 -3 -2 -1 -2 -1 -3 -4 -2 -4 818

Table 7. IQR percentage error with KBR = b�nc ; � =
�
3RV

2

n2

2RQ

�1=3
n � � 0 0:05 0:1 0:15 0:2 0:25 0:3 0:35 0:4 0:45 0:5 KBR

195 55 46 34 29 27 21 22 19 16 18 15 6

390 67 49 37 28 23 20 17 18 15 15 14 8

780 94 65 48 32 26 22 19 16 16 14 12 10

1560 124 81 54 36 27 24 15 14 14 13 13 13

4680 243 146 91 54 34 24 18 16 12 14 8 18

5850 263 155 92 53 35 24 18 11 11 11 12 20

7800 300 182 97 60 33 26 15 13 10 11 9 22

11700 381 223 125 68 39 24 17 11 12 9 8 25

23400 539 305 163 86 47 28 15 13 8 8 8 32
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Table 8. E¤ect of �2 on the estimates

�2=�2b corr(�Xti ;�uti) IQR error

0.01 -0.0010 0.0133

0.05 -0.0051 0.0128

0.1 -0.0102 0.0049

0.25 -0.0254 0.0182

0.5 -0.0506 0.0037

1 -0.1000 0.0136

2 -0.1909 0.0100

4 -0.3280 0.0090

10 -0.4869 0.0130

20 -0.5351 0.0105
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