
782 VOLUME 4J O U R N A L O F H Y D R O M E T E O R O L O G Y

q 2003 American Meteorological Society

Estimating Rainfall Intensities from Weather Radar Data: The
Scale-Dependency Problem

EFRAT MORIN

Department of Hydrology and Water Resources, The University of Arizona, Tucson, Arizona

WITOLD F. KRAJEWSKI

IIHR–Hydroscience and Engineering, University of Iowa, Iowa City, Iowa

DAVID C. GOODRICH

USDA–ARS, Southwest Watershed Research Center, Tucson, Arizona

XIAOGANG GAO AND SOROOSH SOROOSHIAN

Department of Hydrology and Water Resources, The University of Arizona, Tucson, Arizona

(Manuscript received 19 September 2002, in final form 31 January 2003)

ABSTRACT

Meteorological radar is a remote sensing system that provides rainfall estimations at high spatial and temporal
resolutions. The radar-based rainfall intensities (R) are calculated from the observed radar reflectivities (Z ).
Often, rain gauge rainfall observations are used in combination with the radar data to find the optimal parameters
in the Z–R transformation equation. The scale dependency of the power-law Z–R parameters when estimated
from radar reflectivity and rain gauge intensity data is explored herein. The multiplicative (a) and exponent (b)
parameters are said to be ‘‘scale dependent’’ if applying the observed and calculated rainfall intensities to
objective function at different scale results in different ‘‘optimal’’ parameters. Radar and gauge data were analyzed
from convective storms over a midsize, semiarid, and well-equipped watershed. Using the root-mean-square
difference (rmsd) objective function, a significant scale dependency was observed. Increased time- and space
scales resulted in a considerable increase of the a parameter and decrease of the b parameter. Two sources of
uncertainties related to scale dependency were examined: 1) observational uncertainties, which were studied
both experimentally and with simplified models that allow representation of observation errors; and 2) model
uncertainties. It was found that observational errors are mainly (but not only) associated with positive bias of
the b parameter that is reduced with integration, at least for small scales. Model errors also result in scale
dependency, but the trend is less systematic, as in the case of observational errors. It is concluded that identi-
fication of optimal scale for Z–R relationship determination requires further knowledge of reflectivity and rain-
intensity error structure.

1. Introduction

Rainfall estimation based on meteorological radar
data is one of the most intensely studied topics by radar
meteorologists and hydrologists (Atlas et al. 1997). The
challenge is to produce accurate, high-resolution, large-
extent rainfall-intensity and/or accumulation maps
based on the radar data. These maps provide essential
information for a variety of hydrologic applications,
such as estimating and forecasting floods, streamflows,
and water budgets.
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A key issue in radar-based rainfall estimation is to
identify the relationships between reflectivity (Z) and
rain intensity (R). In ideal conditions, reflectivity is
closely related to backscattered radar energy from rain-
drops in the atmosphere. Both Z and R are defined as
different moments of the drop size distribution (DSD)
in a sampled volume (Sauvageot 1992). However, these
definitions alone do not imply a straightforward func-
tional relationship between the two variables. Studies
in the past 60 yr indicate that on average Z and R can
be related by a power law:

bZ 5 aR , (1)

where Z is reflectivity (mm6 m23), R is rainfall intensity
(mm h21), and a and b are empirical parameters. In an
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early study, Marshall and Palmer (1948) found that the
DSD is approximately exponential with a slope param-
eter that is a function of R, which leads to the power-
law relation with the parameters a 5 200 and b 5 1.6.
Many subsequent studies indicate a power-law Z–R re-
lationship but suggest different values for the parameters
(see, e.g., Battan 1973). Among those are a 5 300, b
5 1.4 [used in the United States in the Weather Sur-
veillance Radar-1988 Doppler (WSR-88D) system for
rainfall associated with deep convection], and a 5 250,
b 5 1.2 (recommended for tropical rain events) (Ro-
senfeld et al. 1993). Typical values of the a parameter
may range from a few tens to several hundreds, while
b is usually limited to 1 # b # 3 (Battan 1973; Smith
and Krajewski 1993). The large variation in the param-
eters is attributed to different rain types associated with
different DSDs, and to the statistical nature of the DSD,
which varies widely between and within storms. Stable
exponential DSDs, such as those found by Marshall and
Palmer (1948) and others, are based on highly averaged
data that hide some of the variability (Atlas et al. 1997).
Therefore, while it is clear that physical processes re-
lated to the nature of precipitation affect the Z–R re-
lationship, the statistical effects are no less important.
Joss and Gori (1978) show that the shape of the DSD
depends on sample size. Campos and Zawadzki (2000)
found that the Z–R relation depends on instrument sen-
sor and on the method for data analysis. Jameson and
Kostinski (2001) claimed that Z–R relations are actually
physically linear but are identified as power law because
of statistical inhomogeneity. In spite of the above dif-
ficulties, and although in recent years other relations
were suggested (e.g., Rosenfeld et al. 1994), the power-
law Z–R still remains the most popular relationship used
in research and in practice.

A major problem in estimating Z–R relations based
on observations is that both variables are subjected to
uncertainties. Steiner et al. (1999) show the effect of
using erroneous rain gauge data on adjusted radar rain
estimates, and Ciach and Krajewski (1999) examine the
effect of observational radar–gauge errors on deter-
mined power-law parameters. Joss and Gori (1978) and
Campos and Zawadzki (2000) examine uncertainties in
distrometer data and their effect on the determined Z–
R relation. A possible way to reduce some of the un-
certainties is by space–time integration of rain inten-
sities and/or reflectivities. As a result of the reduction
in uncertainty, as well as for other reasons, the Z–R
relation identified for the integrated data may be dif-
ferent from the one identified for the originally observed
data. If so, we indicate that the Z–R relations are scale
dependent. Although the effect of integration on ob-
servational errors was studied in the past (e.g., Zawadzki
et al. 1986; Seed and Austin 1990; Ulbrich and Lee
1999; Jordan et al. 2000), its direct effect on the de-
termined Z–R relation was not comprehensively ex-
amined.

The main purpose of our paper is to experimentally

demonstrate the scale dependency of the power-law Z–
R relation and to examine its causes for convective
storms in the U.S. Department of Agriculture (USDA)-
Agricultural Research Service (ARS) Walnut Gulch Ex-
perimental Watershed (WGEW), located in southeastern
Arizona. The watershed is covered with a very dense
network of rain gauges and has been the site of many
previous hydrologic studies. The paper outline is as fol-
lows. In section 2 we describe the process of identifying
power-law parameters based on observations and elu-
cidate the meaning of scale dependency in this context.
In section 3 we give details about the study area, the
data, selected storms, and the analysis methods. In sec-
tion 4 we present and discuss the analysis results. We
examine the causes of the scale dependency found using
both observations and rainfall models, which allow rep-
resentation of observational errors. We close with con-
cluding remarks in section 5.

2. Identification of Z–R power-law relations at
different scales

The analysis of observations is an integral part of
identifying Z–R relations. Often, rain gauge rainfall ob-
servations are used in combination with the radar data
to find the most appropriate a and b parameters to be
used in a power-law function [Eq. (1)]. The form of the
Z–R power law in Eq. (1) is the conventional way of
representing this relationship; however, since it is used
for estimating rainfall intensities (R) from the observed
reflectivities (Z), the more appropriate form is

1/b1
1/bR 5 Z . (2)1 2a

[See Ciach and Krajewski (1999) and Campos and Za-
wadzki (2000) for illustrations of the implication of ex-
pressing the relationship in this form.] The optimal a
and b parameters are then estimated from measurements
of radar reflectivity and gauge rainfall intensity. The fit
between the observed gauge and estimated radar rainfall
intensities is evaluated using some objective function.
The parameters that optimize this function are selected.
For example, the root-mean-square difference (rmsd) is
a commonly used objective function, defined by

n1
2rmsd 5 (G 2 R ) , (3)O i i!n i51

where Gi is the observed gauge rainfall intensity, Ri is
the estimated radar rainfall intensity with given values
of a and b, and n is the number of data pairs compared.
The optimal a and b parameters are those that minimize
the rmsd function. In addition to the rmsd, other possible
objective functions are the mean absolute difference,
the conditional bias (Ciach et al. 2000), and others. Also,
in many studies rmsd is used with log transformation
of Eq. (1), which makes it linear, but introduces other
difficulties (see section 4c, e.g.).
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FIG. 1. (a) Vertical profile view of the axis between the Tucson,
AZ radar system and the Walnut Gulch Watershed (Tombstone, AZ)
and the blockage in the two lowest radar elevation angles. (b) Rain
gauge network (74 gauges passed the quality control), radar cells (18,
1-km resolution), and 1-km buffer around the watershed boundary.
Thick dashed line shows the axis line at which the vertical profile
was generated, which extends 1108 clockwise from radar north.

We focus on scale dependency of the power-law func-
tion parameters using the rmsd objective function. For
example, the rmsd can be calculated between hourly
integrated gauge rainfall and hourly integrated radar
rainfall. The a and b parameters that minimize the rmsd
with the hourly integration are those that generate the
best (in terms of the rmsd) estimates of radar-derived
hourly rainfall. In general, for a given timescale T and
a space scale S,

nTS1
2rmsd 5 (G 2 R ) , (4)OTS TS TSi i!n i51TS

where is the observed gauge rainfall intensity in-GTSi

tegrated to timescale T and space scale S, is theRTSi

calculated rainfall intensity integrated to timescale T and
space scale S for given a and b parameters, and nTS is
the number of compared values in these specific time-
and space scales. As before, the optimal a and b pa-
rameters for timescale T and space scale S are those that
minimize the rmsdTS function. The parameters are said
to be scale dependent if their optimal values change
with scale, which means that there are different optimal
parameters for different scales.

The space–time integration of the radar data can be
performed for the rainfall intensities, as we presented
above, or for the reflectivity data. In the first case, which
we term R(Z) averaging, the Z–R transformation is ap-
plied to the highest-resolution reflectivity data (the mea-
surement scale), and then the calculated rainfall inten-
sities are integrated to the specific time- and space
scales. In the second case, which we term Z averaging,
the radar reflectivity (in terms of Z) is integrated and
the Z–R transformation is applied to the integrated re-
flectivities. The two cases result in different optimal
solutions due to the nonlinear nature of the Z–R trans-
formation and represent two different goals of optimi-
zation. In R(Z) averaging, the observations are collected
at the same scale, but we wish to optimize the rain-
intensity estimations for different scales for different
applications. On the other hand, Z averaging represents
the comparison of Z–R based on different measuring
devices with different domain size and interval.

We also emphasize that the two parameters in the
power-law relations are not independent of each other.
In fact, by deriving (4) with respect to a it can be shown
that for any given b 5 b0, (4) is minimized with a 5
a0:

n 2bTS 0 
G R(1, b )O TS 0 TSi i 

i51 a 5 , (5)0 nTS

2 R(1, b )O 0 TSi
i51 

where R(1, b0)TS is the calculated rainfall intensity in-
tegrated to timescale T and space scale S with param-
eters a 5 1 and b 5 b0. Equation (5) implies that a is
a function of the dataset, the desired scale, and b. For

that reason, in some of the analysis we show the effect
on b only. Note that Eq. (5) does not guarantee removal
of bias between radar- and gauge-derived rainfall.

3. Data and methodology

a. Study area

Ground rainfall observations were obtained from a
dense network of rain gauges located in and near the
149 km2 USDA-ARS WGEW (318439N, 1108419W)
(Fig. 1). Elevation of the watershed ranges from 1250
to 1585 m MSL. Mean annual temperature at Tomb-
stone, Arizona, located within the watershed, is 17.68C,
and mean annual precipitation is 324 mm, with consid-
erable seasonal and annual variation in precipitation.
Osborn (1983) reported, based on records from 1956–
80, that annual precipitation varied from 170 mm in
1956 to 378 mm in 1977; summer rainfall varied from
104 mm in 1960 to 290 mm in 1966; and winter pre-
cipitation varied from 25 mm in 1966/67 to 233 mm in
1978/79. Approximately two-thirds of the annual pre-
cipitation occurs as high-intensity, convective thunder-
storms of limited areal extent. Winter rains (and occa-
sional snow) are generally low-intensity events asso-
ciated with large-scale cyclonic storms embedded in the
prevailing westerlies (Sellers and Hill 1974) and are
typically of greater areal extent than summer rains. Run-
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TABLE 1. Selected storms’ characteristics (based on gauge data).

Storm Local start time
Duration

(h)
Areal storm
deptha (mm)

Max 1 minb

(mm h21)
Max depthc

(mm)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

17 Jun 1999 1400
25 Jun 1999 1400
6 Jul 1999 1100

14 Jul 1999 1100
25 Jul 1999 1700
2 Aug 1999 1600

18 Aug 1999 1400
28 Aug 1999 1700
31 Aug 1999 1500
16 Sep 1999 1700
18 Jun 2000 1600
29 Jun 2000 1100
16 Jul 2000 1700
6 Aug 2000 1900

11 Aug 2000 1200

2
4

12
28

3
6
2
5
5
7
3
4
6
6
4

2.4
0.9

11.3
48.9

1.6
10.7

2.4
20.4
17.1

6.0
3.3

15.5
7.6

25.6
24.9

150
47

148
260
232
152
166
230
219
136
129
182
113
326
391

27.9
5.6

29.1
93.3
25.6
29.8
16.2
38.3
49.1
25.9
24.3
58.3
30.7
56.7
91.2

a All-gauges average.
b Maximum 1-min rainfall intensity recorded at a gauge.
c Maximum storm depth recorded at a gauge.

off is generated almost exclusively from convective
storms during the summer monsoon season via infiltra-
tion excess. Using the modified Koppen method (Tre-
wartha 1954), the climate at Tombstone is classified as
semiarid or steppe with a dry winter but is quite close
to being an arid or desert climate. For a more detailed
description of the WGEW see Renard et al. (1993),
Kustas and Goodrich (1994), or Goodrich et al. (1997).

The initial rainfall and runoff instrumentation on Wal-
nut Gulch was installed in 1954–55 and was expanded
in the early 1960s to the 85-gauge network currently in
place on the watershed (Osborn and Reynolds 1963).
This network enabled the first detailed characterization
of airmass thunderstorms in the Southwest and has re-
sulted in a significant body of research on this type of
storm phenomena (Osborn and Reynolds 1963; Osborn
and Hickok 1968; Osborn et al. 1972; Osborn and Lane
1972; Osborn and Laursen 1973; Smith 1974; Osborn
et al. 1979; Eagleson et al. 1987; Osborn and Renard
1988). Even though the rain gauge mechanical clocks
were calibrated on a yearly basis, time synchronization
across the network was not better than roughly a 5–10-
min interval. To overcome these limitations and others
the USDA-ARS Southwest Watershed Research Center
(SWRC) began a watershed instrumentation moderni-
zation effort in the mid-1990s. The staff of the SWRC
developed a new load-cell-weighing rain gauge de-
signed to record at 1-min time intervals on modern da-
taloggers with significantly smaller timing errors. This
was accomplished using telemetry commands in which
all the datalogger times are set to coordinated universal
time (UTC) every 24 h. With this approach, synchro-
nization errors between functioning rain gauges are typ-
ically several seconds or less and absolute time errors
may be on the order of 5–10 s. The new digital rain
gauge network became fully operational in 1999, 3 yr
after the Tucson Doppler radar became operational.

b. Rain gauge data processing and storm selection

Detailed examination of the rain gauge data resulted
in elimination of 11 rain gauges for quality control pur-
poses. Observations from 74 rain gauges were compared
to radar-derived rainfall observations. Since some of the
WGEW rain gauges are located on the watershed bound-
ary or just outside of it, we added a buffer of 1 km to
the watershed boundary (Fig. 1b). The studied area was
therefore increased to 220 km2.

The digital rain gauges have a threshold sensitivity
requiring 0.254 mm (0.01 in.) of rainfall depth to be
exceeded before the gauge starts to record data. This
threshold implies that 1-min rainfall intensities lower
than 15.2 mm h21 (0.254 mm min21) are not accurate,
because the exact duration of the rain depth that is lower
than the threshold is not known. We assumed the first
0.254 mm appearing after a period of no data to be
equally spread over the duration of time since the pre-
ceding record, but no longer than 15 min. Similar to
tipping-bucket gauges (Habib et al. 2001), there is sig-
nificant uncertainty associated with low rainfall inten-
sities due to limited sensitivity of the instrument.

Fifteen convective storms from the 1999 and 2000
summer monsoon seasons were selected for in-depth
analysis. The selected group of storms represents the
airmass thunderstorms typical of the U.S. Southwest.
Selected characteristics of these storms are contained in
Table 1. All 15 storms contain high rainfall intensities
and are characterized by high spatial variability. The 15
storms have a total of 199 mm of rainfall. The maximum
1-min intensity and maximum storm depth recorded by
any single gauge range from 47 to 391 mm h21 and
from 6 to 93 mm, respectively. Correlation coefficients
of rain intensities for 5, 15, 30, and 60 min based on
data from all 15 storms are presented in Fig. 2. At 1-
km gauge separation distance the average correlation
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FIG. 2. Correlation of gauge rain intensities as a function of gauge-separation distance. The analysis is
based on the 15 storms used in this study for durations of (a) 5, (b) 15, (c) 30, and (d) 60 min.

coefficients are 0.84, 0.87, 0.90, and 0.91 for 5-, 15-,
30-, and 60-min rain intensities, respectively. At 3-km
gauge separation distance the correlations are reduced
to 0.53, 0.59, 0.68, and 0.71, respectively, for the same
durations.

c. Radar data processing

The radar data used in the analysis are the Level II
reflectivity data from the Tucson WSR-88D radar
(318549N, 1108389W; 1616 m MSL). The watershed is
located 50–70 km east-southeast of the radar (see Fig.
1a). At this distance, the area of the basic radar cells
over the watershed is in the range of 0.88 to 1.23 km2

(18 in azimuth and 1-km radial length). The radar com-
pletes a volume scan in about 5 min. The lowest scan
elevation angle (0.58), as well as a large part of the
second tilt (1.58) is blocked by terrain over the entire
WGEW (see Fig. 3). Therefore, data from the third scan
angle (2.48) were used for the analysis. The elevation
of these radar data above the WGEW is approximately
3000 m on average.

The relatively high altitude of the radar data above
the surface is known to impose some difficulties that
need to be addressed. The first difficulty is the possible
presence of hail particles aloft, which results in high
radar reflectivity returns. We dealt with this problem by
using the operational approach, which applies an upper
threshold to the reflectivity data, with the common value
of 53 dBZ. Comparison of occurrences of high reflec-
tivities with occurrences of high observed gauge inten-
sities in a reasonable distance and time delay is pre-

sented in Fig. 4. For each radar pixel, the conditional
probability (over all 15 storms) of rain intensity is
shown to be equal to or larger than 104 mm h21 at a
gauge located at a distance of no more than three pixels
and within the 10 min following the radar recording
time, given that the reflectivity equal to or larger than
53 dBZ is observed at the pixel. The threshold rain-
intensity value of 104 mm h21 was selected according
to Eq. (2) with Z 5 53 dBZ, a 5 300, and b 5 1.4.
Only radar pixels that have at least one gauge in each
quadrant are included in the analysis. Out of the 1115
occurrences of high reflectivity, 986 were associated
with high ground rain intensity (88%). Based on this
result, we suggest that, after applying the upper thresh-
old to the reflectivity data, hail contamination has no
significant effect on the analysis presented in the paper.

Another problem caused by the high altitude of the
radar observations is the difference between reflectivi-
ties aloft and at the surface, both in value and in location
and timing. The first is a result of vertical gradients,
which can be caused by evaporation (typically high in
the region) among other reasons. The second results
from horizontal advection and can cause synchroniza-
tion errors of 5–15 min in time and a few kilometers
in space that may vary between storms. The effect of
synchronization errors on scale dependency is examined
in the analysis presented in section 4b.

We would like to emphasize that, although the use of
the third tilt radar data may result in the above sources
of uncertainties (caused by advection, vertical profile
changes, evaporation, and hail contamination), these un-
certainties exist in any operational or research radar–
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FIG. 3. Accumulated rain depth for 15 storms calculated from radar data using the Z 5 300R1.4 relationship
for the first three radar tilts: (a) 0.58, (b) 1.58, and (c) 2.48. The blockages of the first and the second (partially)
tilts are evident.

FIG. 4. For each radar pixel, the conditional probability (over all
15 storms) of rain intensity to be equal to or larger than 104 mm h21

at a gauge located no farther than three pixels distance and within
the 10 min following the radar recording time, given that reflectivity
equal to or larger than 53 dBZ is observed at the pixel. Only radar
pixels that have at least one gauge in each quadrant are included in
the analysis. The value of R 5 104 mm h21 corresponds to Z 5 53
dBZ assuming a power-law relationship with parameters a 5 300 and
b 5 1.4. Gauge location is marked by plus sign.

gauge dataset. For example, in the precipitation product
of the National Weather Service, data from the best out
of the lowest four radar tilts are used (in terms of block-
age and ground clutter). The complex terrain in the west-
ern United States implies that a large part of the pre-
cipitation product is based on data from 3 km or more
above ground level (see Maddox et al. 2002).

d. Time and space integration

In the analysis, we integrated radar and gauge data
at different time- and space scales. We describe the in-
tegration method used for each data type below. How-
ever, it should be noted that, because of the high vari-
ability of rainfall in space and time (especially in semi-
arid environments; see Fig. 2, e.g.), there are significant
uncertainties in the value of the integrated rainfall.

For spatial integration we utilized Cartesian grids
ranging from 1 3 1 km2 to 5 3 5 km2. To map the
radar rainfall data from the polar to the Cartesian grid
we calculated the area-weighted sum of the radar data
in each grid cell. For spatial integration of gauge data,
we first generated a high-resolution grid (100 3 100 m2

cell size), calculating the cell values using the gauge
point data. For each 100 3 100 m2 grid cell, we inter-
polated the data of the four closest gauges, one in each
quadrant, using the inverse distance weighing (IDW)
method (e.g., Creutin and Obled 1982). We then inte-
grated the 100 3 100 m2 grid to the desired spatial
scale. The interpolation was conducted only within the
extended catchment (Fig. 1b), weighting the contribu-
tions from the grids according to their area.
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FIG. 5. (a) The a–b parameters space (a represented in log scale)
with points indicating the optimal power-law parameters for the ex-
amined time- and space scales for the two types of averaging: R(Z )
averaging (filled circles) and Z averaging (open triangles). (b) Change
of the optimal b parameter with timescale using R(Z) averaging. Each
line represents a specific space scale. (c) Same as (b) but for Z av-
eraging.

For temporal integration, we calculated equal time-
interval data (for each grid cell), for timescales of 5,
10, 15, 20, 30, 60, and 120 min. We generated these
data by averaging the 5-min intervals for the WSR-88D
radar data and the 1-min intervals for the gauge data.
For each storm the data include the duration of observed
rain within the catchment (by gauge or radar), extended
(with zeros) to include an even number of hours. As a
result, each storm contains a whole number of time in-
tervals for all the examined timescales.

4. Study results and discussion

a. Scale dependency of the power-law parameters

Using all the radar–rain gauge observation pairs from
the 15 storms selected (see Table 1) we estimated the
optimal parameters a and b for space scales of 1, 2, 3,
4, and 5 km and timescales of 5, 10, 15, 20, 30, 60,
and 120 min. Figure 5 shows the optimal parameters
for the examined time- and space scales for the two
types of averaging (see section 2). It is clearly shown
that the a and b parameters are scale dependent, because
they are shifted in parameter space systematically as the
time- and space scales change (Fig. 5a). For R(Z) av-
eraging (Fig. 5b), parameter b decreases as scale in-
creases from 5 to 120 min and from 1 to 5 km. In the
case of Z averaging (Fig. 5c), b generally decreases by
up to 30 min and then starts to increase. Figure 5a also
demonstrates dependency between the a and b param-
eters. In general we see that as b decreases a increases.
This type of dependency is known and has been reported
previously (Ciach et al. 1997). The optimal parameters
for the two types of averaging are different. For Z av-
eraging the optimal b parameter tends to be smaller.
This is not surprising since the power-law relation is
not linear.

Figures 6 and 7 present comparison of gauge rain
intensities with radar rain intensities [R(Z) averaged]
obtained with the determined optimal parameters for
four selected time- and space scales. Figure 6 shows a
scatterplot of the gauge and radar rain intensities, and
Fig. 7 shows distribution of the residuals. At very small
scales (1 km, 5 min; Fig. 6a) the scatter is large and the
relationships between the gauge and radar data are very
weak, especially for gauge rain intensities lower than
50 mm h21. In addition, for gauge intensities higher
than 50 mm h21 there is an underestimation by the radar.
As scale increases, the scatter is reduced and a better
fit between the gauge and radar rain intensities is ob-
served (Figs. 6b–d). Figure 6 also demonstrates why
higher values of b are better fitted to data with large
scatter. Consider a situation where the radar reflectivity
and gauge intensity are totally uncorrelated. In that case,
the best-fit curve is a constant radar rain intensity equal
to the average gauge rain intensity. For radar intensity
to be as close as possible to constant, b must be as large
as possible [Eqs. (1) and (2)] We examine in detail the

effect of data errors on the optimal parameters in the
next section.

In the above analysis the scale dependency of the a
and b parameters is examined for the 15 storms as one
group. In a second step, the same analysis is conducted
for individual storms and for groups of three and five
storms. Figure 8 presents the change in the optimal pa-
rameter b with timescale (for space scale 1 km), for
separate storms and groups of storms. When single
storms are analyzed (Fig. 8a) we see a large diversity
of the parameter value. Although part of this diversity
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FIG. 6. Gauge rain intensities compared with radar-based rain intensities using optimal parameters for
four space–time scales: (a) 1 km, 5 min, a 5 458, b 5 1.56; (b) 2 km, 15 min, a 5 821, b 5 1.34; (c)
3 km, 30 min, a 5 1239, b 5 1.20; and (d) 4 km, 60 min, a 5 1563, b 5 1.12.

FIG. 7. Histogram of residuals for the same four space–time scales as in Fig. 6.
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FIG. 8. Analysis of scale dependency of parameter b for (a) each
storm separately, (b) groups of three storms, and (c) groups of five
storms.

FIG. 9. (a) The effect of time shifting of the radar data on the
minimum value of the rmsd objective function for the 17 Jun 1999
storm. (b) Change of the optimal b parameter with timescale for
different time shifts of the radar data. Open squares represent the
best space–time shift for each storm. Filled circles and open triangular
symbols represent no time shift and a 25 min time shift, respectively.could be attributed to differences in the storm’s nature,

it is more likely that the sample size of one-storm data
is not large enough for identifying stable parameters.
As sample size increases (by grouping the storms) the
diversity is reduced. The integration also reduces the
span of the parameters.

b. Observational errors effect

Observational errors include errors in radar measure-
ment of reflectivity (resulting from blockage, attenua-
tion, partial beam filling, hardware problems, and oth-
ers), errors in gauge measurement of rain intensity, er-
rors in interpolation to the desired time- and space
scales, synchronization errors, errors between reflectiv-
ity aloft to near-surface reflectivity, etc. Some of the
errors are reduced with scale. Here we consider syn-
chronization errors as an example. Synchronization er-
rors evolve from the different altitudes at which radar
and gauge data are measured. The data observed by the
radar aloft is associated with rain intensity at the ground
with some time delay and shift in space. The magnitude
of these time–space shifts depends on the vertical ve-
locity of the raindrops and the horizontal advection. In
the current case study, with a 3-km vertical difference
between radar and gauge data, we can expect a time lag
on the order of 5–15 min (radar data precede gauge
data) and horizontal displacement of 3–9 km. Synchro-

nization errors in the data were identified by examining
how the minimum of the rmsd function varied for dif-
ferent shifts of the radar data in time and space. Com-
parison was done between 3-min gauge rain intensity
and radar data at the pixel above the gauge (after ap-
plying a space shift). For example, in the 17 June 1999
storm (Fig. 9a), the time shift that minimizes the rsmd
is 15 min. Using radar data that are 5 min later than
the recorded time provides, therefore, the best match
between the radar and gauge rain intensities. In the same
way, the best time and space shifts for each of the stud-
ied storms were found. For all but two storms we found
clearly determined best shifts in the range of 0–4 km
in space and 3–9 min in time [these results agree qual-
itatively with those obtained by Habib and Krajewski
(2002)]. For two storms (storms 2 and 5 in Table 1) a
clear best shift could not be identified. Although in-
cluding these storms in the analysis did not change the
results, they were excluded from the following analysis
for consistency.

We investigated the change in b with scale for three
levels of synchronization error: 1) no shift, 2) the best
shift for each storm, and 3) a 25 min shift for all storms.
The negative time shift in the third level increases the
synchronization error because we use the radar data ear-
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lier than their recorded times, which already precede the
gauge times by several minutes (see Fig. 9a). Figure 9b
illustrates that as radar–gauge synchronization errors are
minimized the change in b with timescale is minimal.
On the other hand, when error is enhanced (a negative
time shift is applied) the change in b is larger. In sum-
mary, these results demonstrate a close relation between
scale dependency and observational errors. Moreover,
they suggest that the estimated exponent parameter b is
positively biased by the errors, and this bias is reduced
with scale as the level of error decreases.

Using two simplified rainfall models, we examine
next the effect of observational error and changes of
scale on the b-parameter bias. In the first model, we use
the log transformation for Z and R with linear regression
theory to estimate the parameters in Eq. (1). Although
used quite often, regression of the log function for es-
timating the power-law parameters should be done with
caution. This is because the optimal parameters might
be different from those identified by nonlinear regres-
sion, and zeros cannot be handled by the log transfor-
mation.

The model assumes that the ‘‘true’’ Z and R are related
to each other through a power law [Eq. (1)], but each
one of the variables is independently corrupted by a
multiplicative observational error. Using the log trans-
formation for Z and R we get

log(a) 1
log(R ) 5 2 1 log(Z ),tr tr[ ]b b

log(R ) 5 log(R ) 1 «, log(Z ) 5 log(Z ) 1 d,ob tr ob tr

(6)

where the abbreviations tr and ob stand for the true and
observed variables, respectively. The error variables «
(of rain intensity) and d (of reflectivity) are assumed to
be independent of each other and for the different ob-
servations and to be normally distributed with zero mean
and constant variance:

2 2« ; N(0, s ), d ; N(0, s ).d (7)

Following linear regression theory with errors in the
predictor (Draper and Smith 1981), the b parameter is
estimated with a bias with respect to the true parameter
b0:

2s 1 sd log(Z )dtrE(b̂) 5 b 1 1 , (8)0 2[ ]s 1 slog(Z ) log(Z )dtr tr

where is the variance of log(Ztr) and s is2s log(Z ) log(Z )dtr tr

the covariance of log(Ztr) and d. Due to the assumption
of independence of errors in reflectivity and in rain in-
tensity, the latter do not affect the bias. Each of the three
terms in the bias factor in Eq. (8) changes with scale.
We use reflectivity time series data from one radar pixel
(at the watershed’s center) as the true reflectivity, and
we contaminant the data with three types of observa-

tional errors: 1) random error (3 dBZ), 2) synchroni-
zation error (5-min time shift), and 3) hail contamina-
tion. The hail contamination error is generated by keep-
ing the reflectivities above the 53-dBZ hail threshold
(see section 3c) with their original observed value and
assuming that 53 dBZ is the true reflectivity. Rainfall
intensities are simulated (with no error) as a power law
of the true reflectivity with a 5 300 and b 5 1.4. For
each timescale, the reflectivity and the rain intensity data
are averaged (Z averaging for the radar data) and the
linear regression is applied to the averaged time series.
Table 2 contains the parameters found by regression of
rain intensity with the true reflectivity (indicated by atr

and btr) and the parameters found by regression with
the erroneous reflectivity time series (indicated by aob

and bob). The variances and covariance terms in Eq. (8)
and the bias factor are also contained in the table. The
bias factor is calculated from Eq. (8) and also is derived
by the ratio bob/btr . As can be seen in the table, there
are no differences between the two. The slight change
in btr with scale is due to nonlinearity. Among the three
types of error examined, the synchronization error has
the largest effect on the estimated exponent. There is
an overestimation of b (bias larger than 1) at the small
scale and it is reduced with scale by up to 30 min and
then increases. This is a result of reduction in the var-
iance of the error, , and the increase in variance of2sd

log reflectivities, , as scale increases from 5 to 302s log(Z )tr

min. The resulting effect of fast reduction in the esti-
mated b parameter at scales smaller than 30 min fits the
trend found based on analysis of observed radar reflec-
tivity and gauge intensity (see Fig. 5c).

The second rainfall model we use to examine the
effect of error and scale on bias of the b parameter is
previously described by Ciach and Krajewski (1999). It
assumes multiplicative errors in rain intensity and re-
flectivity and uses nonlinear regression to estimate Z–
R power-law parameters. The intensity and reflectivity
variables and their associated errors are postulated to
have lognormal distributions with mean 1 and constant
variability as well as to be independent of each other.
The resulting bias of b is

2log(s 1 1)tE(b̂) 5 b 1 1 , (9)0 2[ ]log(s 1 1)Z tr

where is the variance of reflectivities and is the2 2s sZ ttr

variance of the errors of reflectivity (in the multipli-
cative form). The independence assumed implies zero
covariance of the reflectivities and their errors, s .Ztr

We used the same dataset as for the first model to
estimate the a and b parameters for the same three types
of error. Table 3 contains the analysis for a nonlinear
regression model. As in the linear model, the positive
bias at the small scale is reduced with integration, at
least initially. In the nonlinear model, however, the ac-
tual bias (the ratio bob/btr) is different from the bias
according to Eq. (9). For the random and hail contam-
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ination errors the actual bias is larger than the calculated,
while it is smaller for the synchronization error. These
differences are possibly a result of the zero covariance
assumption. Relative to Eq. (9), the negative covariance
in the synchronization error reduces the bias, while the
positive covariance increases the bias in the random and
hail contamination errors. Also, it seems that the non-
linear regression model is more sensitive to hail con-
tamination errors. The trend of the calculated bias is
similar to the trend of the actual bias and fits the trend
found using radar and gauge observations (Fig. 5c).
Here again, the rapid decrease of the estimated b pa-
rameter is a result of the rapid reduction in the error
variance with integration.

In summary, according to the above models, obser-
vational errors in reflectivity are responsible for the bias
in the b parameter. The bias is often (but not always)
positive (i.e., larger than 1). Large variance of reflec-
tivities tends to reduce the bias, and large variance of
errors tends to increase it. The covariance between re-
flectivity and reflectivity error also plays a role, but in
a more complicated form. With increasing scale the var-
iance of reflectivity errors drops relatively quickly (fast-
er than the variance of reflectivity) and causes the re-
duction in bias (and in the estimated b) with scale. Both
models assume independence of reflectivity errors in
rain-intensity errors and therefore, the latter do not affect
the bias according to the models. However, in reality
such dependency possibly exists and the rain-intensity
errors can affect the bias as well. In practice the re-
gression of Z–R (linear or nonlinear) is done many times
for the inverse relation; that is, R is the independent
variable and Z is the dependent variable. In that case,
the errors in rain intensities are the major cause of the
bias.

c. The effect of model errors

Model errors result from incorrect assumptions about
the functional relationship of Z and R. If the ‘‘real’’ Z–
R relationship is not a power law, the optimal parameters
are scale dependent, even if the data do not contain
errors. This is demonstrated by generating simulated
rainfall using a Z–R relationship based on the Window
Probability Matching Method (WPMM). The WPMM
method matches a specific Z to a specific R with the
same percentile probability [see Rosenfeld et al. (1994)
for more information]. We first derive the WPMM Z–
R curve from rainfall intensities observed at a gauge
located at the center of the watershed and from observed
radar reflectivities at a pixel above the gauge. The upper
threshold of 53 dBZ (hail threshold; see section 3c) is
applied prior to generating the curve. The analyzed time
series combines for the same radar pixel as the observed
reflectivity (Z) with the simulated R from the WPMM
Z–R curve. We examine scale dependency for 5–120
min using Z averaging. Figures 10a and 10b present the
Z–R dataset and the fitted power-law curve at timescales

of 5 and 30 min, respectively (please note that the log
scale of the figures is for convenience, but the power-
law parameters were derived using nonlinear regres-
sion). At the 5-min scale (Fig. 10a), the high slope of
Z–R exists for the high Z values. That forces the fitted
power law to have a relatively high exponent, which
implies a low b value [Eqs. (1) and (2)]. When the
curves are smoothed with integration (Fig. 10b), that
effect is reduced and b increases.

It was found that the hail threshold affects the scale
dependency of b. When the 53-dBZ threshold is used,
the observed high intensities are all associated with this
one value, which results in the high slope at the high
end of the curve (Fig. 10a). As explained above, it im-
plies a low-fitted b parameter that increases with scale
(Fig. 10b). When no threshold is used, the observed
high rain intensities are associated with gradually in-
creasing reflectivities, which results in a low slope at
the end part of the WPMM Z–R curve (Figs. 10c,d).
Figure 11 shows the change in b with scale for several
hail thresholds. In general, increasing the hail threshold
results in higher optimal b parameters at the small scale,
and this effect is reduced with integration. The effect
of the hail threshold shown here emphasizes the im-
portance of this parameter and indicates that the oper-
ational value of 53 dBZ might be too low in the current
case. It should be emphasized, though, that changing
the hail threshold value did not affect the trend of the
scale dependency for observational errors (not shown).

5. Concluding remarks

In this paper we explored the scale dependency of
the power-law Z–R parameters when estimated from ra-
dar reflectivity and rain gauge intensity data. In general,
we found that model parameters are scale dependent if
their optimal value, according to a given objective func-
tion, is changed with the time- and space scales at which
the observed and calculated data are applied to this ob-
jective function. In our case, the data are observed
(gauge based) and calculated (radar based) rainfall in-
tensities, and the parameters are the multiplicative (a)
and exponent (b) in the power-law Z–R relationship [Eq.
(1)]. Scale dependency is investigated for 15 convective
storms over the 149-km2 semiarid, well-instrumented
(74 gauges) USDA-ARS Walnut Gulch Experimental
Watershed in the southwestern United States. The main
findings of our study are summarized below.

1) Scale dependency was found for the power-law pa-
rameters. The experimental analysis shows that, in
general b decreases and a increases with scale. The
decrease of b with scale was found both for R(Z)
averaging and for Z averaging, but for the latter, b
starts increasing for timescales larger than about 30
min.

2) Observational errors cause scale dependency of the
power-law parameters. We show both experimentally



OCTOBER 2003 795M O R I N E T A L .

FIG. 10. WPMM-based Z–R and the best-fit power-law curve using the 53-dBZ hail threshold for (a) 5
min (original scale) and (b) 20 min; and without applying the hail threshold for (c) 5 min and (d) 20 min.
The Z and R are presented in log scale using dBZ and dBR [510 log(R)] units.

FIG. 11. Scale dependency of b that resulted from forcing a power-
law relationship on a nonpower-law relation for different hail thresh-
old parameters.

and using two rainfall models that the optimal b is
often positively biased as a result of the observa-
tional errors. According to the models the bias is a
function of the variance of the errors in reflectivity,
the variance of reflectivities, and the covariance of
the two. The decrease of b with scale, at least at the

small scales, is due to rapid reduction in the variance
of errors relative to the change in the variance of
reflectivities.

3) Scale dependency can also be caused by model er-
rors. It is shown that if we force the power-law Z–
R relation on a nonpower-law dataset, the optimal
parameters are changed with scale as the Z–R curve
is smoothed. The trend in b is increasing or decreas-
ing with scale.

The scale dependency found here is based on analysis
of radar and gauge observations, but in principle the
same type of analysis could be conducted for distro-
meter-based data. Although much of the discrepancy is
reduced when distrometer data are used, observational
errors still exist and are expected to affect the deter-
mined Z–R relationship (Joss and Gori 1978; Campos
and Zawadzki 2000).

The different sources of variance in observed radar–
gauge Z–R datasets are well known and investigated in
many papers (e.g., Zawadzki 1975; Austin 1987; Joss
and Waldvogel 1990). However, the problem of scale
dependency resulting from these sources of variance has
not been fully examined. Despite the many difficulties,
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radar–gauge data are often used in both research and
operational settings for estimating rainfall intensities
where the gauge information is only used to estimate
the multiplicative parameter or both of the parameters
of the power-law relationship. There are insufficient
guidelines to suggest the appropriate scale at which ra-
dar and gauge rainfall should be compared, because
different scales are used in research and operational al-
gorithms. For example, the radar–gauge adjustment of
the WSR-88D precipitation product is based on com-
parison of hourly gauge and radar rainfall amounts (Ful-
ton et al. 1998), while the algorithm for ground vali-
dation rainfall for the Tropical Rainfall Measuring Mis-
sion (TRMM) satellite includes comparison of monthly
rainfall amounts (Ciach et al. 1997; Marks et al. 2000).
The current paper indicates that the selected timescales
will likely affect the resulting parameters and, therefore,
the radar rainfall estimates.

Based on the analysis presented, we cannot suggest
strict time- and space scales to estimate parameters of
radar-rainfall estimation algorithms. On one hand, our
results indicate that parameters estimated using small-
scale data are highly biased and that some space–time
integration is needed to reduce the effect of observa-
tional errors. On the other hand, at very large scales,
sample size and reflectivity variance might be too low
and, again, the determined parameters are biased. We
can, however, recommend caution when using param-
eters obtained from rainfall data at a given scale to
estimate radar rainfall at a significantly different scale.
This paper shows that scale dependency is a factor that
should be taken into account in obtaining parameters’
optimal value, in applying the parameters to estimate
rainfall, and in validating the rainfall estimations [see
Krajewski and Smith (2002) for more discussion on the
validation issue]. The transferability of parameters be-
tween scales should be further studied, and additional
investigations should be done, mainly directed to better
understanding of the structure of errors in rain-intensity
and reflectivity observations.
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