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Estimating Random Effects via Adjustment
for Density Maximization1

Carl Morris and Ruoxi Tang

Abstract. We develop and evaluate point and interval estimates for the ran-

dom effects θi , having made observations yi |θi
ind∼ N [θi,Vi], i = 1, . . . , k

that follow a two-level Normal hierarchical model. Fitting this model re-
quires assessing the Level-2 variance A ≡ Var(θi) to estimate shrinkages
Bi ≡ Vi/(Vi +A) toward a (possibly estimated) subspace, with Bi as the tar-
get because the conditional means and variances of θi depend linearly on Bi ,
not on A. Adjustment for density maximization, ADM, can do the fitting
for any smooth prior on A. Like the MLE, ADM bases inferences on two
derivatives, but ADM can approximate with any Pearson family, with Beta
distributions being appropriate because shrinkage factors satisfy 0 ≤ Bi ≤ 1.

Our emphasis is on frequency properties, which leads to adopting a uni-
form prior on A ≥ 0, which then puts Stein’s harmonic prior (SHP) on the k

random effects. It is known for the “equal variances case” V1 = · · · = Vk

that formal Bayes procedures for this prior produce admissible minimax esti-
mates of the random effects, and that the posterior variances are large enough
to provide confidence intervals that meet their nominal coverages. Similar re-
sults are seen to hold for our approximating “ADM-SHP” procedure for equal
variances and also for the unequal variances situations checked here.

For shrinkage coefficient estimation, the ADM-SHP procedure allows an
alternative frequency interpretation. Writing L(A) as the likelihood of Bi

with i fixed, ADM-SHP estimates Bi as B̂i = Vi/(Vi + Â) with Â ≡
argmax(A ∗ L(A)). This justifies the term “adjustment for likelihood max-
imization,” ALM.

Key words and phrases: Shrinkage, ADM, Normal multilevel model, Stein
estimation, objective Bayes.

1. INTRODUCTION

This concerns approximate frequentist, Bayesian,
and objective Bayesian inferences for a widely applied
two-level Normal hierarchical model. At Level-1, for
i = 1, . . . , k, unbiased estimates yi are observed with
means θi and with known variance Vi . In practice the
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{Vi} usually are unequal, perhaps with Vi = σ 2/ni and
σ 2 known or accurately estimated. Thus

yi |θi
ind∼ N [θi,Vi], i = 1, . . . , k.(1)

In practice each Level-1 value yi here represents a suf-
ficient statistic or a summary unbiased estimate based
on the ni observations taken from the ith of the k units
(e.g., a hospital, a small area, or a teaching unit).

Level-2 specifies a Normal model for the random
effects θi , each with its own r-dimensional predictor
variables xi so that for β and an unknown variance
A ≥ 0,

θi |β,A
ind∼ N [μi = x′

iβ,A], i = 1, . . . , k.(2)

The case r = 0 corresponds to β fully known and then
it may be convenient to set β = 0 and μi = 0, WLoG.
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If r ≥ 1, X ≡ (x′
1, x

′
2, . . . , x

′
k)

′ as a known k× r matrix,
assumed to have full rank r .

The marginal distribution of y = (y1, . . . , yk)
′, given

β and A, and the conditional distribution of θi follow
from the above, so that

yi |β,A
ind∼ N [x′

iβ,Vi + A], i = 1, . . . , k,(3)

θi |yi, β,A
ind∼ N [(1 − Bi)yi + Biμi,Vi(1 − Bi)],

(4)
i = 1, . . . , k,

where μi ≡ x′
iβ , and Bi ≡ Vi

Vi+A
is a “shrinkage factor.”

When r ≥ 1, the vector β is assumed throughout to
follow Lebesgue’s flat prior on [0,∞), so

p(β,A)dβ dA ∝ dβπ(A)dA.(5)

Using this flat prior density for β is equivalent to re-
stricted maximum likelihood (REML). When π(A) is
proper, the posterior distribution for this prior is proper
(it integrates finitely) if k ≥ r . When π(A) is improper,
a larger k is needed, with k ≥ r + 3 sufficing for the
main distributions π(A) of interest here. When r = 0,
as assumed initially, or when r ≥ 1 and with β inte-
grated out, we can focus on the main issue of dealing
with the (nuisance) variance component A = Var(θi)

and how to make inferences about the shrinkages Bi .
Widely used programs like HLM, ML3 and SAS use

MLE/REML methods to fit this model, while software
for fully Bayesian inferences is available via BUGS
and MLwiN (Rasbash et al., 2001). Maximum likeli-
hood and REML obtain an estimate Â that maximizes
the likelihood function of A (or marginal likelihood in
the REML case). Asymptotically (k large), maximum
likelihood provides optimal estimates of A, leading to
convergence of estimates via frequentist and Bayesian
approaches. However, the standard errors assigned by
MLE and REML methods to the random effect es-
timates and the corresponding interval estimates can
lead to confidence intervals with much smaller than
their nominal confidences, even asymptotically. This
happens with MLE and REML methods not only be-
cause A can be underestimated so that shrinkages are
overestimated, but also because these procedures do
not account for the fact that A has been estimated.

Maximum likelihood and REML estimates of A not
infrequently produce Â = 0, in which case shrink-
age MLEs are B̂i = 1. Examples occur in every field,
as for the 8 schools data (Gelman et al., 2004), and
in small area estimation (Bell, 1999). Then, per typi-
cal usage, the variance estimates may be taken to be
Vi(1 − B̂i) = 0 when r = 0, leading to zero-width or

overly narrow confidence intervals of θi . As will be
seen in Section 4, even when Â > 0 and this situation
is avoided, overfitting via MLE and REML can be con-
siderable and nominal 95% confidence intervals for θi

might have true coverages in the 50–80% range.
The procedures developed here to fit the two-level

model above offer computational ease comparable to
maximum likelihood and REML methods, being based
on differentiating the (adjusted) likelihood function
twice. When k is small or moderate, however, the ad-
justment provides much better standard errors and in-
terval coverages. “Better” coverage is meant in the
Level-2 frequentist sense of averaging over the data
and the Level-2 model (2), for all fixed β,A, as illus-
trated in the equal variances case of Figure 6, Section 4.

Central to this development is the ADM proce-
dure, “adjustment for density maximization” (Morris,
1988b), albeit not then with the ADM label. ADM can
be used with any Pearson family (Normal, Gamma, In-
verted Gamma, Beta, F , t or skew-t) to approximate
another distribution with a one-dimensional density.
One merely multiplies the density by an adjustment
which is determined by the Pearson family, and then
makes the argmax function produce the mean, not the
mode, of the Pearson distribution. As seen in (4), pos-
terior means and variances of the random effects are
linear functions of the shrinkage factors Bi , not of A,
so it is desirable to estimate the posterior mean of Bi ,
and not the mode of Bi or the mean of A. Shrinkage
factor distributions are skewed and lie in [0,1], both
of which make a Beta distribution approximate better
than a Normal. Fitting Beta distributions via ADM is
described in Section 2.3.

Estimating shrinkage factors via ADM will be seen
to reduce to maximizing the posterior density of A

(or the marginalized density, if necessary), after having
multiplied this density by A. This adjustment has sev-
eral benefits, which include prevention of estimating A

as 0, and overestimating A by just enough to account
for the convex dependence of Bi on A. ADM methods
have been used successfully before to improve infer-
ences of random effects in other multilevel models, as
in Christiansen and Morris (1997) for a Poisson multi-
level model.

The main procedure here approximates a formal pos-
terior distribution stemming from the flat prior π(A) =
1 on A ≥ 0 in (5). This flat prior on A, in conjunc-
tion with (2), induces Stein’s harmonic prior (SHP)
(30) on the random effects (Stein, 1981) and a mini-
max admissible estimator. (Stein’s prior on θ for k ≥ 3,
dθ/‖θ‖(k−2), is harmonic except at the origin, so it
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actually is “superharmonic.” The shorter term “har-
monic” is used here for simplicity of discourse.) The
ADM approximations are seen in Section 3 to approx-
imate closely the exact posterior means and variances
of the random effects. Buttressed with the examples of
Sections 3 and 4, our assessments show, by frequency
standards, so for all fixed hyperparameters A ≥ 0 and
β , that the ADM-SHP combination outperforms com-
monly used MLE and REML procedures for estimating
the random effects (1)–(5).

The ADM approximations of Section 2.7 apply to
any smooth prior density π(A), including the scale-
invariant prior densities π(A) on A

π(A)dA ∝ Ac−1 dA, c > 0.(6)

These receive some specific attention, but our fre-
quency evaluations are limited to the special choice
in (6) of c = 1 for which A ∼ Unif(0,∞). Stein’s har-
monic prior not only produces safe frequency proce-
dures for squared-error point estimation, but the pos-
terior variances of θi are large enough to serve as a
basis for confidence intervals centered at the posterior
means (Stein, 1981; Morris 1983b, 1988a; Christiansen
and Morris, 1997). Hierarchically, the uniform for-
mal prior π(A) = 1 is suggested by the fact that the
renowned James–Stein estimator is the posterior mean,
exactly, if this flat prior is extended (inappropriately) to
A ∼ Unif[−V,∞) (Morris, 1977, 1983b).

Section 2 starts with the “equal variances case,”
Stein’s setting (James and Stein, 1961) for which V1 =
· · · = Vk(≡ V ). Although equal variances are unusual
in practice, this situation provides a rich and meaning-
ful structure that has been studied widely because of
its relative simplicity for mathematical investigation.
Among other advantages, when r > 0 and the unknown
means μi must be estimated, the equal variances situa-
tion allows easy recovery of risks and coverage proba-
bilities merely by translating these quantities from the
simpler (k − r)-dimensional situation when shrinkages
are toward known means μi = 0. Also with equal vari-
ances, ADM approximations to Bayes rules are easily
developed for the range of scale-invariant priors (6),
merely by solving a quadratic equation for A.

Section 2 continues by extending these ADM rules
for the “unequal variance case” (the variances Vi dif-
fer, as is common in practice). Section 2.8 introduces
a new, more general approximation for the posterior
means and variances, which allows any r ≥ 0 so that
shrinkages can be toward an estimated regression. With
computational and programming methods similar to

those of REML, noticeably more accurate procedures
emerge.

Section 3 examines how well ADM methods approx-
imate the exact Bayes rule. These approximations are
good for small values of k and they become exact as
k → ∞. Even the data analyst who insists on exact
computations can find such approximations useful be-
cause of increased speed, even if only for doing pre-
liminary analyses.

For the case c = 1 when A is flat, Section 4 evaluates
the resulting ADM-SHP procedure’s performance in
repeated sampling for relative mean squared errors and
for interval coverages. In the equal variances case, and
in the unequal variance examples considered, nominal
coverages are achieved or exceeded for any k ≥ r + 3.
MLE and REML procedures cannot do this.

2. ADJUSTMENT FOR DENSITY MAXIMIZATION

This section starts by examining the inadequacy of
MLE methods as a basis for inferences about shrink-
age factors Bi and random effects, and why the ADM
approach for shrinkage constants should be better. For
most of this section r = 0, the dimension of β , so that
β and all μi ≡ E(θi) are assumed known. Thus, the
only unknown Level-2 (nuisance) parameter is A, the
between groups variance that governs the shrinkage
factors Bi ≡ Vi

Vi+A
. With r = 0, (3) and (4) simplify

slightly to

yi |A ∼ N(μi,Vi + A),

with shrinkage factor Bi = Vi

Vi + A
, and(7)

θi |yi,A ∼ N
(
(1 − Bi)yi + Biμi,Vi(1 − Bi)

)
.

Let Si ≡ (yi − μi)
2 ∼ (Vi + A)χ2

1 independently.
S ∼ (S1, . . . , Sk)

′ is a (minimal, if all Vi differ) suf-
ficient statistic for A ≥ 0. Then Âi ≡ Si − Vi for i =
1, . . . , k are independent unbiased estimates of A with
Var(Âi) = 2(Vi + A)2. One could average these Âi ,
weighted by the reciprocal of these variances to esti-
mate A, iteratively until convergence, with a negative
estimate of A reset to 0. This produces ÂMLE, the MLE
of A (Efron and Morris, 1975).

In the equal variances case, S+ ≡ ∑k
i=1 Si is com-

plete and sufficient for A, S+ ∼ (V + A)χ2
k . Then

Âunb ≡ 1
k

∑
Âi = S+

k
−V is unbiased for A. Of course,

Âunb can be negative, and P(Âunb < 0) = P(χ2
k ≤

kB), where the equal shrinkages are B ≡ V
V +A

. Be-
cause k exceeds the median of χ2

k , P(χ2
k ≤ kB) > 1/2
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if B is near 1 so that A is near to zero. This inequal-
ity holds for any k if A ≤ 2V

3k
, in which case Âunb < 0

and ÂMLE = 0 more often than not. This issue of ÂMLE
being zero or quite small has received theoretical atten-
tion at least since Morris (1983b), and has been recog-
nized for some time in practice (Bell, 1999), because
its occurrence is not rare. Still, the problem has yet to
be sufficiently recognized so as to be avoided in prac-
tice, and avoided in widely used software.

When r = 0 the likelihood function is proportional
to

L0(A) ≡
{

k∏
i=1

(Vi + A)−1/2

}
(8)

· exp

{
−1

2

k∑
i=1

Si/(Vi + A)

}
.

This is positive at A = 0 and decreasing near 0 if the
Si ’s are small enough to make the exponential term
be nearly constant. Then 0 is a local maximum and
if ÂMLE = 0 Fisher’s information cannot be used to
assess the variance of the MLE. Furthermore, when
ÂMLE = 0, the MLE of Var(θi |y,A) = Vi(1 − Bi) also
is zero. An unwary data analyst who uses this for the
width of a confidence interval would assert that θi = μi

with arbitrarily high confidence.
The left panel of Figure 1 illustrates a case when the

logarithm of the posterior density of A, equivalently
the log-likelihood log(L0(A)) since A has a flat prior,
cannot use Fisher’s observed information to estimate
the variance of A since ÂMLE = 0, there is no station-
ary point, and the second derivative is not negative.
The situation for these data is much improved by us-
ing ADM to arrive at the adjusted log-likelihood in the
middle and right panels of Figure 1.

2.1 Comparing ADM and MLE Methods

MLE methods, viewed from a Bayesian (posterior
probability) perspective, amount to finding the poste-
rior mode of a parameter’s distribution and its variance
(reciprocal of observed information) when the parame-
ter has a flat prior distribution. Normal distributions are
used to approximate the MLE’s distribution based on
two derivatives of the log-likelihood. That works well
when the likelihood is approximately Normal, for ex-
ample, with large samples, but it works poorly when
likelihoods are quite non-Normal, as can happen when
estimating shrinkage factors.

Morris (1988b), on approximating posterior distribu-
tions, showed how to fit any prespecified Pearson fam-
ily (Normal, Gamma, F, Beta, t, etc.) to a density (but
also a likelihood function) by calculating two deriva-
tives of the “adjusted” (posterior) density function. The
adjustment, multiplying by the quadratic or linear func-
tion that generates the particular Pearson family, makes
the maximizer approximate the mean of the parameter,
and not its mode. For a nearly symmetric bell-shaped
distribution or likelihood, the Normal is the best Pear-
son approximation, the adjustment is a constant. Then
the mode agrees with the mean and the MLE is the
ADM. For skewed likelihoods, the statistician may be
able to choose a better approximating Pearson family,
for example, the Beta family for shrinkage factors.

The following factors compare the ADM and its fit-
ting process, perhaps starting with a flat prior on A,
with that of the MLE.

1. Simplicity. An ADM fit is accomplished via a com-
plexity level comparable to the MLE, that is, both
require two derivatives.

FIG. 1. An equal variances example (Vi = 1) with the MLE on the boundary, S+ = 8, k = 10, r = 0. The left panel plots the log posterior
density for A, which is the log-likelihood for a flat prior on A. The middle panel plots the log adjusted density against A, log(A ∗ L0(A))

in this case, L0-likelihood function (see text and Section 2.4). The right panel shows the log adjusted density versus α ≡ logA, which looks
more quadratic.
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2. Normality. If a Normal distribution is chosen for
the matching Pearson family, the ADM approach
agrees exactly with the MLE, and the variances in
both cases are estimated by using Fisher’s observed
information.

3. Asymptotics. No matter which Pearson distribution
is chosen, ADM provides the same asymptotic in-
ferences (for large k) as the MLE. This holds be-
cause each Pearson family has an asymptotic Nor-
mal limit.

4. Linear expectations. While various transformations
of a parameter can be considered for the MLE,
ADM targets the mean. For example, shrinkage fac-
tors Bi enter linearly in (4), so we approximate their
means and variances, not A or some other function
of Bi .

5. Likelihoods? The ADM procedure could be termed
ALM (Adjustment for Likelihood Maximization),
to parallel with MLE language. ALM and MLE
both work best when a version of the parameter is
chosen to represent vague prior information, giving
a relatively flat prior. We will see that ADM-SHP
amounts to maximizing not the likelihood of A,
as the MLE does, but the likelihood after adjust-
ment via multiplication by A. Li and Lahiri (2010)
proposed using “adjusted maximum likelihood es-
timator” that is identical to ADM if r = 0. They
showed its advantages in small area estimation for
estimating shrinkages and for constructing paramet-
ric bootstrap prediction intervals.

6. Multivariate ADM? Adjustments for density max-
imization agree with the MLE for approxima-
tions via the Multivariate Normal. The paucity of
non-Normal multivariate Pearson families restricts
ADM’s extensions of the MLE to univariate param-
eters. However, hybrid extensions are possible, and
here we use a multivariate Normal to approximate
the r-dimensional vector β and a Beta distribution
for a shrinkage factor.

Given a prior distribution on A ≥ 0, say π(A)dA

(proper or not), and still with r = 0, knowledge of

B̂i ≡ Eπ [Bi |y] and vi ≡ Varπ (Bi |y)(9)

enables computation of two moments of θi , which with
r = 0 (μi known) are

E[θi |y] = (1 − B̂i)yi + B̂iμi,(10)

Var(θ |y) = Vi(1 − B̂i) + vi(yi − μi)
2.(11)

The second variance component in (11) often is not
represented in MLE applications, understating vari-
ances and encouraging overconfidence.

2.2 How Maximum Likelihood Can Distort
Shrinkage and Random Effects Inferences

Each of the following issues can cause overassess-
ment of the information in the data. This perfect storm
can have serious consequences when k is small or mod-
erate.

1. Nonlinearity. The posterior means and variances
of the random effects are linear in Bi , not in A.
Bi(A) = Vi/(Vi + A) is a convex function of A,
even if Â were unbiased for A, one sees, Jensen’s
inequality, which states that Bi(E[A|y]) > E[Bi |y],
indicates that the plug-in shrinkage estimate would
be biased too large. This is why the James–Stein es-
timator that shrinks according to B̂JS ≡ (k−2)V

S+ , uses
the k−2 in its numerator, and not k (as in the MLE),
and leads to smaller mean squared errors than when
using MLE shrinkages B̂ = kV

S+ .
2. Boundary limits. Normal approximations to Bi put

positive probability outside the boundaries of the in-
terval [0,1].

3. Boundary pileup. While 0 ≤ Bi ≤ 1 is guaranteed,
even in the equal variances case V/(V + Âunb) =
kV
S+ > 1 is possible. The MLE cannot exceed 1, but

B̂MLE = min(1, kV/S+) = 1 with positive probabil-
ity. This pileup happens despite there being no prior
distribution on A, other than A = 0 with certainty,
that can allow E[B|y] = 1 for any observation y.

4. Skewness. L0(A) tends to be right-skewed, substan-
tially when the modal value of A is small. Alterna-
tively, choose a fixed i and replace A by Bi in the
likelihood by substituting A = 1−Bi

Bi
Vi in L0(A).

The resulting likelihood function of Bi will be left-
skewed. Approximating such a skewed likelihood
by a symmetric (Normal) distribution overstates the
magnitude of Bi . A Beta density better approxi-
mates an asymmetric likelihood.

5. Zero variances. The MLE approach assesses Var(θi |
y,A) as being Vi(1 − B̂i,MLE). When ÂMLE = 0,
this approach in effect attributes perfect certainty to
A = 0 and that θi = μi .

6. Variance components. Estimating the variance of
θi by plugging into Vi(1 − Bi) overlooks the vari-
ance component vi = Var(Bi |y) which would ac-
count for the uncertainty in A when estimating Bi .
Ignoring the term vi(yi − μi)

2 amounts to setting
vi = 0.

All six of these biases produces overconfidence. The
unknown variance A is underestimated, shrinkage Bi

is overestimated, and Var(Bi |y) is underestimated.
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2.3 ADM, Adapted to Beta Distributions

The applications here require approximating the
means and variances of the shrinkage factors Bi , 0 ≤
Bi ≤ 1. Beta distributions are constrained to [0, 1],
so are the obvious approximating Pearson distribu-
tion. Consider an exact Beta distribution for B with
B ∼ Beta(a1, a0) and density

f (B)dB = �(a1)�(a0)

�(a1 + a0)
Ba1−1(1−B)a0−1 dB.(12)

Maximizing over B gives B̂ = a1−1
a1+a0−2 , the mode

(if a1, a0 ≥ 1), not the mean. The “adjustment” for
the Beta distribution maximizes the product (B(1 −
B))f (B), giving B̂ = a1

a1+a0
, the mean of the Beta(a1,

a0) distribution. Maximizing a Beta density after mul-
tiplying by B(1−B) produces the mean, not the mode.

Now let

	(B) = log{B(1 − B)f (B)}(13)

= a0 logB + a1 log(1 − B).(14)

This is a concave function, maximized uniquely at a
point interior to (0,1). We have 	′(B) = a1

B
− a0

1−B
= 0

at B̂ = a1
a1+a0

. Then

−	′′(B)|
B=B̂

= a1

B̂2
+ a0

(1 − B̂)2
= a1 + a0

B̂(1 − B̂)
.(15)

Thus, given B̂ and −	′′(B̂) > 0 allows one to re-
cover a1 and a0 via a1 + a0 = −	′′(B̂) · B̂(1 − B̂) and
a1 = B̂(a1 + a0).

If f (B) is a Beta(a1, a0) density, exactly, then

E(B) = B̂,

v ≡ Var(B) = B̂(1 − B̂)

a1 + a0 + 1
(16)

= B̂(1 − B̂)

1 + B̂(1 − B̂)(−	′′(B̂))
.

If a density f (B) is not exactly Beta but it lies near to
a Beta density, the ADM approach proceeds similarly,
based on two derivatives of log(B(1 − B)f (B)), and
approximates E[B] = ∫ 1

0 Bf (B)dB by B̂ , the maxi-
mizer of this adjusted density. The variance Var(B) is
approximated by (16), starting with

	(B) ≡ log{B(1 − B)f (B)}.(17)

That is, ADM for a Beta approximation first finds
B̂ = argmax(	(B)). Then it determines −	′′(B̂) and

uses that to approximate Var(B) by B̂(1−B̂)

1+B̂(1−B̂)(−	′′(B̂))
.

This Beta distribution approximation to a density on
[0,1] is exact if the original density is a Beta exactly,
and it will be a good approximation if the match is
close. Its asymptotic accuracy can be evaluated favor-
ably (Morris, 1988b, with discussion).

It is useful when fitting shrinkages Bi = Bi(A) to re-
express the results just outlined in terms of A, or equiv-
alently in terms of its logarithm α = log(A), being sure
to include the Jacobian in the posterior density. Instead
of using derivatives of −	(B), the “invariant informa-
tion” will be calculated, defined by

inv.info ≡ − d2	(B)

d{logit(B)}2

∣∣∣∣
B=B̂

.(18)

The derivative d logit(B)/dB = d log( B
1−B

)/dB =
1/(B(1 − B)), which gives

d2	(B)

d{logit(B)}2

= B2(1 − B)2	′′(B)(19)

+ B(1 − B)(1 − 2B)	′(B).

As 	′(B̂) = 0, we have inv.info = (B̂(1 − B̂))2 ·
(−	′′(B̂)).

Thus, if f (B) is (nearly) a Beta density B ∼
Beta(a1, a0), then E[B] = a1

a1+a0
= B̂ with B̂ =

argmax(	(B)), and the (approximate) variance is

Var(B) = B̂(1 − B̂)

a1 + a0 + 1
(20)

= (B̂(1 − B̂))2

inv.info+B̂(1 − B̂)
.

Use of this invariant information is especially valu-
able because of the identity

− d2	(B)

d{logit(B)}2 = −d2	(B(A))

d{log(A)}2

(21)

= −d2	(B(A(α)))

dα2 .

This follows from d{logit(B)} = d log(V
A

) = −dα with
α ≡ log(A). The invariant information is the negative
second derivative with respect to α of 	2(α), being the
log density written as a function of α:

inv.info = − d2	(B)

d{logit(B)}2

∣∣∣∣
B=B̂

= − d2	(B(A))

d(log(A))2

∣∣∣∣
A=Â

(22)

= −d2	2(α)

dα2

∣∣∣∣
α=α̂

.
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Thus, inv.info agrees with Fisher’s observed informa-
tion, but only if the parameter is α ≡ log(A).

2.4 ADM for Estimating Shrinkage Constants

Now return to the Normal model with r = 0 and
likelihood function L0(A). Suppose A ≥ 0 has a prior
density π(A), not necessarily proper, and consider the
shrinkage coefficient for component i, 1 ≤ i ≤ k, Bi =

Vi

Vi+A
. The posterior density for Bi , given y, is pro-

portional to L0(A)π(A)dA ≡ f (Bi) dBi , where A =
Vi(1 − Bi)/Bi and dA = −Vi dBi/B

2
i . Then f (Bi) ≡

L0(A)π(A)Vi/B
2
i is proportional to the density of Bi .

To apply ADM, define

	0(Bi) ≡ log
(
Bi(1 − Bi)f (Bi)

)
(23)

= log(Aπ(A)L0(A)) ≡ 	(A).(24)

Still thinking of A as a function of Bi ,

d	(A)

dBi

= dA

dBi

d	(A)

dA
= −Vi

B2
i

	′(A).(25)

The following theorem summarizes what has just
been demonstrated about the ADM approximation by
a Beta distribution for Bi = Vi/(Vi + A), starting
with a posterior density on A that is proportional to
L0(A)π(A).

THEOREM 1. Given a prior density π(A) and a
likelihood function L0(A), the ADM procedure for a
Beta distribution approximates the first two posterior
moments of Bi as

E[Bi |y] = B̂i = Vi

Vi + Â
,(26)

where Â = argmax(	(A)), 	(A) ≡ log(Aπ(A)L0(A)),
and

vi ≡ Var(Bi |y) = (B̂i(1 − B̂i))
2

inv.info+B̂i(1 − B̂i)
,(27)

with inv.info ≡ −	′′(Â)Â2.

Neither Â nor the invariant information depends on
i or on Vi .

2.5 Priors for Good Frequency Performance

Admissible rules, which are Bayes and extended
Bayes rules (per the “fundamental theorem of decision
theory”), can provide good frequency properties if they
are based on priors that let the data speak. One way
to do that restricts to scale invariant improper priors
π(A)dA = Ac−1 dA, 0 < c ≤ 1. As discussed earlier,
given k, these priors with c ≥ ck > 0 (ck < 1/2, but
not too small) produce estimators of θi whose poste-

rior means are minimax estimators for squared-error
loss in the equal variance setting, so that for all vectors
θ (fixed),

E

k∑
i=1

{(
1 − B̂(S+)

)
yi − θi

}2
/V < k,(28)

B̂(S+) ≡ E

[
V

V + A

∣∣∣S+
]
.(29)

The choice c = 0, so π(A)dA = dA/A, puts essen-
tially all mass at A nearly 0, making B̂(S+) = 1 with
certainty, no matter what the data say. This choice must
be avoided, but sometimes it is not. As c increases,
shrinkages B̂(S+) decrease. For c = 1 and for some
smaller values, down to ck , minimax and admissible
estimators result.

Our preference A ∼ Uniform(0,∞) is equivalent to
Stein’s harmonic prior, that is, for θ ∈ R

k , k ≥ 3, the
(improper) measure on θ is seen to be dθ/‖θ‖(k−2).
This is the density of θ if, independently for i =
1, . . . , k, θi |A ∼ N(0,A) and A ∼ Unif[0,∞), as seen
from ∫ ∞

0
e−1/2‖θ‖2/A dA

Ak/2 ∝ ‖θ‖2−k.(30)

This prior with c = 1, that is, A ∼ Unif[0,∞), is
strongly suggested in the equal variance case by the
fact that the James–Stein shrinkage constant B̂ = k−2

S+
is precisely the posterior mean E[ V

V +A
|S+] if A ∼

Unif[−V,∞). Lopping off the impossible part where
A < 0 leads to A ∼ Unif[0,∞) (Morris, 1983a). That
the James–Stein estimator is asymptotically optimal
for large ‖θ‖ further suggests its use, that is, choosing
c = 1. Still in the equal variances case, some values
of c < 1, for example c = 1/2, shrink harder, which
lowers the summed mean squared error if ‖θ‖2 is sus-
pected not to be large. Experience with this flat prior on
A has borne out its good frequency properties in a vari-
ety of situations, also including for unequal variances.
Supporting evidence is given in Sections 3 and 4.

2.6 Exact Moments for the Uniform Prior in the
Equal Variances Case

The exact posterior means and variances of B =
V/(V + A) for c = 1, A being uniform (Morris,
1983a), are as follows. Denote m ≡ (k − r − 2)/2, so
m = (k − 2)/2 when r = 0. If r > 0, the dimension of
β , then the one can shrink toward the r-dimensional
fitted subspace determined by β̂ ≡ (X′X)−1X′y. In
the (k − r)-dimensional space orthogonal to the range
of X, shrinkage is toward the 0-vector. We there-
fore can focus on that k − r subspace with r = 0
and k replacing k − r (or think of shrinkage as to-
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ward a known, fixed vector μ as here). Now with
yi ∼ N(μi,V + A), let S+ ≡ ∑k

i=1(yi − μi)
2, and

let T ≡ S+/2V . The James–Stein estimate is B̂JS ≡
m/T = (k − r − 2)V/S+. Let Mm(T ) be the moment
generating function of a Beta(1,m) distribution at T ,
a confluent hypergeometric function (Abramowitz and
Stegun, 1964),

Mm(T ) ≡
∫ 1

0
exp[(1 − B)T ]dBm

(31)
= �(m + 1)T −m exp(T )P (χ2

2m ≤ 2T ).

Then (Morris, 1983a),

B̂exact ≡ E[B|S]
= m

T

(
1 − 1/Mm(T )

)
(32)

= (k − r − 2)V

S+

· P(χ2
2m+2 ≤ S+/V )

P (χ2
2m ≤ S+/V )

,

vexact ≡ Var(B|S)

= 1

m
B̂2

exact − (B̂JS − B̂exact)(33)

·
(

1 − m + 1

m
B̂exact

)
.

With r = 0, it follows that

θ̂exact,i ≡ E[θi |y]
(34)

= (1 − B̂exact)yi + B̂exactμi,

s2
exact,i ≡ Var(θi |y)

(35)
= V (1 − B̂exact) + vexact(yi − μi)

2.

The elegance of these formulas for the equal variances
case is striking. Unfortunately, this disappears in the
unequal variances case that invariably arises in prac-
tice, which motivates the search for relatively simple
alternatives to exact calculations.

2.7 ADM for Shrinkages, Equal Variances Case

Maximum likelihood estimates have optimal asymp-
totic properties, but the small and moderate sample
sizes (k) that arise in hierarchical modeling applica-
tions may be too small for the MLE to perform well.
The mode of A, or more relevantly of B , may be quite
inadequate approximations to the posterior mean that
corresponds to a flat prior that makes the likelihood
agree with the posterior density. Figure 1 provides a
simple example for equal variances, scaled for a sam-
ple size k = 10 with shrinkage toward zero (r = 0) and
a sufficient statistic S+ = 8. S+ = 8 is the mode of a
χ2

10 distribution, and also is the largest value of S that
makes the James–Stein shrinkage estimate B̂JS = 1.
Likelihood graphs like this are not uncommon in prac-
tice, even when unequal variances occur. The right-
most panels, which have made an adjustment to the
likelihood, make it possible for two derivatives to cap-
ture the distribution, whereas there is no hope of this
with the unadjusted left panel.

Figure 2 plots estimated shrinkages B̂ against T =
S+/2V , for values of k = 4,10,20, each panel show-
ing three different estimation methods: the exact
shrinkage estimate for the flat harmonic prior c = 1,
SHP (solid curve); the ADM approximation to the
same prior (dotted); and the MLE = min(1, (m +
1)/T ) = min(1, k/S+). The MLE shrinks much more
heavily than the other two methods when T (or S+) is

FIG. 2. Plot of B̂ versus T ≡ S+/2V from three different methods, with m = 1,4,9 (k = 4,10,20), respectively. The solid line is from the
exact calculation, the dotted line is from ADM, and the dashed line is the MLE.
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small. The ADM shrinkage curves are fairly close to
the exactly computed expected shrinkage in each case,
but are slightly more conservative.

When β is unknown so that r > 0, the marginal dis-
tribution of A is gotten by integrating β out of the joint
posterior density of β and A (which is done in the
next section, and extended to unequal variances). The
marginal density is neatly written in this equal vari-
ances case in terms of the sum of squared residuals,
S+ ≡ ∑

i (yi − ŷi)
2 and ŷ ≡ Xβ̂ as

p(A|y) ∝ (V + A)−(k−r)/2

(36)

· exp
{
− S+

2(V + A)

}
π(A).

For π(A) ∝ Ac−1, the logarithm of the adjusted density
(multiplying by A) is

	2(A|y) ≡ c logA − (m + 1) log(V + A)
(37)

− T V

V + A
,

T ≡ S+/2V . With no covariates, r = 0, this equation
continues to hold with m = (k − 2)/2.

Now,

d	2(α)

dα

= A
d	2

dA

= −(
(m + 1 − c)A2(38)

− (2c + T − m − 1)V A − cV 2)
/(V + A)2.

The numerator of (38) is a convex quadratic function
of A (with m + 1 − c > 0) which is negative at A = 0.
It therefore has two real roots, one negative and unac-
ceptable. The positive root is the ADM estimator Â.
Then,

B̂ ≡ V

V + Â
(39)

= 2(m − c + 1)

T + m + 1 + √
(T − m − 1)2 + 4cT

.

Note that B̂ is monotone decreasing in T and that B̂

reaches its maximum, 1 − c/(m + 1) < 1 at T = 0.
Shrinkage is bounded away from 100% if c > 0, for
example, if c = 1 and r = 0 the maximum shrinkage
is (k − 2)/k. These shrinkages B̂ decrease as c in-

creases and as c → 0 in (39), B̂ → min((m+ 1)/T ,1).
Of course c = 0 is not allowed because then the pos-
terior guarantees 100% shrinkage, no matter what the
data say.

Define α ≡ log(A) and α̂ ≡ log Â. Then for any c,
the invariant information = inv.info satisfies

inv.info = −d2	2

dα2

∣∣∣∣
α=α̂

(40)
= m(1 − B̂)2 + B̂2 + (1 − c)(1 − 2B̂).

Matching the first and second derivatives of the two
densities (i.e., of the adjusted density and of a Beta(a1,

a0) density) gives

a1 = inv.info

1 − B̂
, a0 = inv.info

B̂
,

and this Beta distribution has variance

v = B̂(1 − B̂)

a0 + a1 + 1
(41)

= B̂2(1 − B̂)2

m(1 − B̂)2 + (1 − c) + (2c − 1)B̂
.

When c = 1, the ADM approximations in this equal
variances case to the posterior moments of B =
V/(V + A) are

B̂ = 2(k − r − 2)V

S+ + kV +
√

(S+ − kV )2 + 8S+V
,(42)

v = B̂2(1 − B̂)2

m(1 − B̂)2 + B̂
.(43)

For the SHP case c = 1 in Figure 2, B̂ is plotted as
a function of T , showing that the ADM estimate of
B shrinks slightly less than the exactly computed B ,
while it matches exactly at T = 0, and asymptotes to
the exact value for large T . The MLE produces much
larger shrinkages.

Figure 3, as in Figure 2, also shows graphs for the
SHP (c = 1) and with curves for m = 1,4,9 (e.g., if
r = 0, then for k = 4,10,20). It reveals that the ADM
approximation to v corresponds well with the exact
posterior variance of a shrinkage factor, each as a func-
tion of its own shrinkage B̂ . In both cases the shrinkage
B̂ decreases monotonically as the sufficient statistic S+
rises. Figure 3 shows ADM’s excellent ADM approxi-
mation of the exact variance, and that it becomes exact
as T nears 0 (where maximal shrinkage in both cases
is for B̂ = m/(m + 1) = (k − r − 2)/(k − 2)).
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FIG. 3. Plot of v versus its own B̂ from two different methods. The
solid line is from the exact method, that is, formulas (32) and (33),
and the dotted line is from the approximate method, formulas (42)
and (43).

For any r ≥ 0 in this equal variance case, the pre-
ceding estimates of the shrinkages and of their vari-
ances provide the following estimates of the means and
the variances of the random effects θi in terms of the
ADM approximations to the posterior moments B̂ and
β̂ ≡ (X′X)−1X′y:

θ̂i ≡ Ê(θi |y)
(44)

= (1 − B̂)yi + B̂x′
i β̂,

s2
i ≡ V̂ar(θi |y)

= V (1 − B̂) + V
(
x′
i (X

′X)−1xi

)
B̂(45)

+ v(yi − x′
i β̂)2.

Note that s2
i depends on i by increasing proportionally

to the squared residual, as one would expect because
mis-estimation of B hardly matters when (yi − x′

i β̂)2

is small. These results are seen most easily by using a
least squares regression predictor in the r-dimensional
range space of X, and shrinking to 0 in the (k − r)-
dimensional orthogonal subspace. The extension to the
unequal variance case, which is next, is more compli-
cated.

2.8 The Unequal Variances Case With Regression

An ADM approach to fitting our general model starts
by integrating out the {θi} to get, in matrix notation,

y|β,A ∼ Nk(Xβ,DV +A),(46)

where DV +A ≡ diag(Vi + A) is a k-by-k diagonal ma-
trix. With β having a flat prior on Rr , standard calcu-
lations with (46) lead to

β̂A ≡ E(β|y,A) = (X′D−1
V +AX)−1X′D−1

V +Ay.(47)

With A known, β̂A is at once both the posterior mean
and the weighted least squares estimate of β . The full
distribution, given A, is

β|A,y ∼ Nr(β̂A, (X′D−1
V +AX)−1).(48)

The objective is to make inferences about the vector
θ = (θ1, . . . , θk) with conditional distribution

θ |β,A,y ∼ Nk

(
(I − BA)y + BAXβ,

(49)
(I − BA)V

)
.

This is (4) in matrix notation, with I the k-by-k iden-
tity matrix, V ≡ diag(V1, . . . , Vk) and BA ≡ diag(Bi =
Vi/(Vi +A)). Integrating out β , with help from (47), it
follows that

θ |A,y ∼ Nk

(
(I − BA)y + BAXβ̂A,

(I − BA)V(50)

+ V 1/2B
1/2
A PAB

1/2
A V 1/2)

,

where in (50) PA is a k × k projection matrix of rank r ,

PA ≡ D
−1/2
V +AX(X′D−1

V +AX)−1X′D−1/2
V +A.(51)

When A has prior density element π(A)dA, the pos-
terior density of A, given y, follows:

p(A|y) ∝ |DV +A|−1/2|X′D−1
V +AX|−1/2

· exp
(−1

2(y − Xβ̂A)′(52)

· D−1
V +A(y − Xβ̂A)

)
.

The logarithm of this adjusted posterior density, with
α = log(A), is

l(α) = log(Aπ(A))

− 1

2

k∑
1

log(Vi + A)

(53)

− 1

2
log |X′D−1

V +AX|

− 1

2
(y − Xβ̂A)′D−1

V +A(y − Xβ̂A).

Denote α̂ ≡ argmax(l(α)), set Â = exp(α̂), and de-
fine inv.info ≡ −l′′(α̂). Then the ADM approximation,
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with B̂i ≡ Vi/(Vi + Â), is Bi ≡ Vi

Vi+A
∼ Beta with ap-

proximate mean E(Bi) = B̂i = Vi/(Vi + Â) and vari-
ance vi = Var(Bi) = {B̂i(1 − B̂i)}2/{inv.info+B̂i(1 −
B̂i)}, both moments depending on the prior π(A).
Maximizing 	(α) and determining its second deriva-
tive at α̂, the negative of the invariant information, can
be done by numerical methods, by Newton’s method
(which requires matrix derivatives), or by other means
that include an EM technique available in Tang (2002).

Given Â and the values {B̂i, vi}, i = 1, . . . , k, one
could insert Â into (50) to estimate both posterior mo-
ments of the θi . However, that underestimates the vari-
ance and makes no use of the {vi}, so we proceed as
follows, leading to a main theorem.

Define β̂ as β̂A evaluated at Â and ŷ ≡ Xβ̂. Then
from (50), and approximating β̂A by β̂ ,

E(θi |A,y)
.= yi − Bi(yi − ŷi ),(54)

Var(E(θi |A,y))
.= vi(yi − ŷi)

2.(55)

To minimize complications in making our final ap-
proximations to E(θi |y) and Var(θi |y), we neglect
variations of β̂A in (47) and PA in (51) as A varies
around Â. This is exact in the equal variances case
because both β̂A and PA do not depend on A, and it
will be nearly true if the {Vi}, i = 1, . . . , k differ only
slightly. With unequal variances both β̂A and (51) in-
volve weights that depend on {Vi + A}. If Â is near A,

as happens when k is large, then Vi+Â
Vi+A

is near 1. With
data, one can evaluate

Var
{(

Vi + Â

Vi + A

)∣∣∣y}
= Var

(
Bi

B̂i

∣∣∣y)
= vi

B̂2
i

.(56)

These variances may be acceptably small, and vi/B̂
2
i

diminishes as 1/k as k −→ ∞.

THEOREM 2. Assume the model (1), (2), and the
prior in (5). Write B̂i and vi as the ADM approxima-
tions to E(Bi |y) = E( Vi

Vi+A
|y) and to Var(Bi |y). As-

sume E(β̂A|y)
.= β̂ ≡ β̂A and E(PA|y)

.= P
Â

. Then for
i = 1, . . . , k

E(θi |y)
.= (1 − B̂i)yi + B̂ix

′
i β̂ ≡ θ̂i ,(57)

Var(θi |y)
.= (

1 − (1 − pi,i)B̂i

)
Vi

(58)
+ vi(yi − ŷi )

2.

Here pi,i is the ith diagonal term in P
Â

.

PROOF. Equation (57) follows from (50), (54) and
E(β̂A|y) = β̂ , since

E(θi |y) = E{(1 − Bi)yi + Biŷi}|y.

Now use EVE’s law (total variation) to get, from (50)
and (55),

Var(θi |y) = E Var(θi |A,y) + Var(Eθi |A,y)(59)

= E{(1 − Bi)Vi + Bipi,iVi}|y
(60)

+ vi(yi − ŷi)
2,

which is (58).
In our experience, these regression approximations

when π(A) = Ac−1, and c = 1 especially, have been
quite satisfactory. Tang (2002) provides a basis for
making more precise approximations to E(PA|y) and
to E(β̂A|y) based on matrix and determinant deriva-
tives. In the equal variance case, the theorem’s two mo-
ments are exact provided exact formulas for E(Bi |y)

and Var(Bi |y) are used. However, Normality of θi |A,y

does not hold exactly for θi after averaging over A|y,
although that Normal approximation is commonly
made. �

3. APPROXIMATION ACCURACY

3.1 Approximation Accuracy of Shrinkages and
the Random Effects

Figures 2 and 3 show in the equal variance set-
ting that even for small samples like k = 4,10,20, the
ADM approximation of the first two exactly computed
posterior moments of B is quite good. Our end goal,
however, is verifying this leads to good approximations
of the posterior means and variances of each random
effect (θi, i = 1, . . . , k).

First, in the equal variance situation with r = 0,
we compare the weighted average of posterior mean
squared error of the θi values via the ADM approxima-
tion with this measure with the “exact” posterior mean.
Let us measure the difference of their mean squared er-
rors, given the data y, by computing

E

{
k∑

i=1

(θ̂i − θi)
2|y

}
(61)

for the ADM approximation, with the expectation cal-
culated exactly, when π(A) = 1. Now

E

{
k∑

i=1

(θ̂i − θi)
2|y

}

= E

{
k∑

i=1

(θ̂i − θ̂e,i)
2|y

}
+ E

{
k∑

i=1

(θ̂e,i − θi)
2|y

}

=
k∑

i=1

(θ̂i − θ̂e,i)
2 +

k∑
i=1

s2
e,i ,
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where the subscript e denotes estimates done exactly
(see Section 2.6), with s2

e,i is given in (35). Therefore∑k
i=1(θ̂i − θ̂e,i)

2∑k
i=1 s2

e,i

(62)

measures how well the ADM approximation works
for random effects estimates, smaller values indicat-
ing better approximations. The highest (worst) ratio is
1.1% which occurs for k near 20, and for 60% shrink-
age. Greater accuracy holds for k < 20 and for k > 20.
Thus, in the equal variances setting, the conditional
mean squared errors of the ADM approximation and
the exact estimator of θ never differ by more than
1.1%.

Now, still with π(A) = 1, consider the unequal vari-
ance case and ADM’s accuracy for approximating the
exact Bayes estimator of θ . The following example in-
volves two groups of variances for the yi values, and
estimates the unknown mean vector μ1 = · · · = μ10 in
the second level (so k = 10, r = 1). Five “small” vari-
ances are set at V1 = V2 = · · · = V5 = 0.55, and five
“large” ones at V6 = · · · = V10 = 5.5. Their maximum-
to-minimum variance ratio is a factor of 10, and their
harmonic mean is 1.0 (for convenience only). Shrink-
ages B1 = · · · = B5 < B6 = · · · = B10 are toward the
nine-dimensional subspace orthogonal to the unit vec-
tor. We calculated exact and ADM means and variances
of these shrinkages, which depend on the separate
values of the two-dimensional statistic T1, T2 (these
two sums of squares are standardized by their respec-
tive 2Vi , each summed over its respective subgroup
of size 5, both centered on their common fitted grand
mean).

Figure 4 concerns shrinkages for the first five com-
ponents with small variances, Vj = 0.55, and Fig-
ure 5 shows shrinkages for the five components with
large variances, Vj = 5.5. The left panels of each fig-
ure show shrinkage factor patterns for three differ-
ent rules: the MLE (dashed curve), the exactly com-
puted shrinkage using the harmonic prior for which A

has a flat density (solid curve), and the ADM ap-
proximations to that shrinkage factor (dotted curve).
These are graphed as a function of T1 (Figure 4)
and T2 (Figure 5) with separate displays, each condi-
tional on one of four different values of the opposite
Tj .

Both figures show that the MLE has quite large
shrinkages, just as for equal variances. The relation-
ship between the ADM approximation and the exactly

computed expected shrinkage that the ADM approx-
imates is similar to what was seen in the equal vari-
ance case. The right-hand panels of each figure show
good agreement between the ADM variance approx-
imation and the exactly computed variances vi when
each is plotted against its own shrinkage. The maxi-
mum shrinkages for ADM and the exact rule are lim-
ited to values < 1, curtailing the horizontal axes for
plots of Var(Bi).

To summarize for the prior π(A) = 1, the ADM ap-
proximations of exact shrinkage factors for posterior
means and variances of shrinkage factors are slightly
conservative, but generally are in good agreement with
the exact values obtained in the equal variance case.
Similar results hold for the unequal variance case when
variances Vi differ by a factor of 10 and when r = 1.

4. COVERAGE PROBABILITIES AND RISK
FUNCTIONS

Confidence interval coverage rates for θi are eval-
uated next for the two main procedures of Section 2,
both based on assuming A > 0 has a flat prior π(A) =
1 so that the posterior density is the likelihood func-
tion. One procedure, labeled “exact” here, evaluates
the exactly computed posterior means and variances
of θi , given y, as in (34) and (35) for the equal vari-
ances case, and otherwise by numerical integration.
It then assigns a Normal distribution with these two
moments to determine a posterior interval. The sec-
ond approach uses Normal distributions in the same
way, but centered and scaled via the ADM approx-
imations of these two moments in (44) and (45), or
when r ≥ 0 and with unequal variances, as in (57) and
(58). Normal distributions are not exact for θi , since
the actual distributions are skewed (right-skewed for
relatively large yi , and left-skewed for small yi ). This
matters less in repeated sampling evaluations that ran-
domize over y, making skewnesses average to zero for
each i.

For all i = 1, . . . , k, we seek two-tailed frequency
coverage probabilities as a function of A:

Pr
[
(θi − θ̂i )

2

s2
i

≤ (z∗)2|A
]
,(63)

when the nominal coverage is 95%, so z∗ = 1.96. Each
procedure studied uses its own estimate s2

i of the con-
ditional variance of θi . A related measure directly as-
sesses how well each s2

i envelops the expected squared
error, given A, with values ≤ 1 indicating that si as-
signs sufficiently large intervals:

E{(θi − θ̂i )
2/s2

i |A}.(64)
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FIG. 4. Approximation accuracy for two groups of variances, here for the small variance group (k = 10, r = 1, V1 = · · · = V5 = 0.55,
V6 = · · · = V10 = 5.5). The left-hand side plots B̂1 against T1, with T2 fixed at various values (which correspond to A = 0,0.55,1,5.5). The
right-hand side plots Var(B1|data) against B̂1. Solid line is from the exact method, dotted line from ADM approximation, long dashed line is
MLE.

Details of the simulation are in Tang (2002), where
Rao–Blackwellization increased the accuracy by eval-
uating some conditional Normal distributions exactly,
given A and y. That is, for (64),

Pr
{
(θ̂i − θi)

2

s2
i

≤ (z∗)2|A
}

= E

[
Pr

{
(θ̂i − θi)

2

s2
i

≤ (z∗)2|y,β,A

}∣∣∣A]

= E

[



{
θ̂i − (1 − Bi)yi − Bix

′
iβ + z∗si√

Vi(1 − Bi)

}

− 


{
θ̂i − (1 − Bi)yi − Bix

′
iβ − z∗si√

Vi(1 − Bi)

}∣∣∣A]
.

4.1 Equal Variances Example

Figure 6 plots the actual coverage probabilities for
the three confidence interval procedures, each against
the possible “true” B values, for three equal variance
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FIG. 5. Approximation accuracy for two groups of variances, here for the large variance group (k = 10, r = 1, V1 = · · · = V5 = 0.55,
V6 = · · · = V10 = 5.5). The left-hand side plots B̂2 against T2, with T1 fixed at various values (which correspond to A = 0,0.55,1,5.5). The
right-hand side plots Var(B2|data) against T2. Solid line is from the exact method, dotted line from ADM approximation, long dashed line is
MLE.

procedures always with r = 0, and for k = 4 (m = 1),
k = 10 (m = 4) and k = 20 (m = 9). For each B =
0.005,0.015, . . . ,0.995, 1000 data sets were generated
and the interval procedures for “exact,” its ADM ap-
proximation, and the MLE were evaluated and aver-
aged to estimate the coverage probabilities. Confidence
intervals for the MLE were determined simply by tak-
ing each variance to be the MLE V (1 − B). These
MLE coverages are plotted with long dashes in Fig-
ure 6. When shrinkage B is large, these MLE intervals

give poor coverages, ultimately dropping to just under
50%, as shown in Section 2.

The graph of Figure 6 is redone in the first row of
Figure 7, but without the MLE. That allows an am-
plified scale that shows the slight differences in cov-
erage rates between the “exact” rule and its ADM-
SHP approximation. The ADM-SHP coverages meet
or exceed ≥ 0.95 for all A (within simulation error).
The “exact” procedure’s coverages can be slightly non-
conservative, but its lowest coverage is at least 0.945
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FIG. 6. Plot of coverage probabilities of θi (random effects) for equal variances without regression, each against the true shrinkage
factor. In the three graphs (k = 4,10,20), both the “exact” Bayes (solid curve) and its ADM-SHP approximation (dotted curve) achieve
approximately the nominal 0.95 coverage rates (as indicated by the bold dashed horizontal line), or higher. The MLE (long dashes) can be
markedly nonconservative, especially with large true shrinkages B (A near 0). As A approaches 0, MLE coverages fall below 50%, however
large k might be.

FIG. 7. Plot of coverage probabilities and standardized risk functions for equal variances without regression. The first row plots coverage
probabilities against true values of B = V/(V + A) on a larger scale than in Figure 6, with ADM-SHP coverages being the dotted curves.
The second row plots the expected value of the loss function calibrated by s2

i (64).
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(when k = 20 and B = 0.4) for all k shown. The ADM-
SHP intervals achieve (or exceed) their nominal 0.95
coverage rates by having slightly wider intervals than
“exact,” due to ADM’s reduced shrinkage estimates
and its larger variance estimates v, as studied in Sec-
tion 3. As B increases both methods become quite con-
servative, with coverages well above 0.95.

The bottom row of Figure 7 plots the function (64)
against B to compare the two different methods. Values
less than 1.0 indicate that the estimated variances s2

i

average to as much as or more than the average mean
square. This further suggests that the interval coverages
will (nearly) provide the nominal coverage (95%) for
all values of A > 0.

4.2 An Unequal Variances Example: Two Groups
of Variances

We return to the unequal variances example of Sec-
tion 3 with k = 10, r = 1, V1 = · · · = V5 = 0.55,
and V6 = · · · = V10 = 5.5. For this simulation, 100
data sets were generated for each of 50 values B0 =
0.01,0.03, . . . ,0.99, where B0 ≡ V0/(V0 + A) and
V0 = 1 is the harmonic mean of the Vi . Nominal 95%
confidence intervals for each θi were evaluated for each
data set. The confidence rates and average calibrated
losses (64) then were averaged over the simulated val-
ues.

Figure 8 plots coverages of the ADM-SHP intervals
and calibrated risk functions (64) for θ1 and for θ10 as
B0 = 1/(1 + A) varies. The upper left panel of Fig-
ure 8 plots the coverage probabilities against B0 for the
group of five with small variances Vi = 0.55, and the

FIG. 8. Plot of ADM-SHP coverages and expected value of aver-
age calibrated losses against B0 = 1/(1 + A). Here k = 10, r = 1,
V1 = · · · = V5 = 0.55, V6 = · · · = V10 = 5.5.

upper right for the remaining group of five with large
variances Vi = 5.50. As B0 increases and A decreases,
coverage rates generally increase. Coverages achieve
or exceed their nominal 0.95 levels (within simulation
error), while for small A and big B0, coverages for
the large variance group substantially exceed both their
nominal rate and the coverages for the small variance
group. The calibrated risks are less than 1.0 in Fig-
ure 8 which show that the intervals are wide enough
to be conservative, although they may be excessively
conservative for the large variance group. One remedy
could be using the scale-invariant prior c = 0.5, which
makes

√
A flat. Coverages rates for the exact version of

SHP were not evaluated for this unequal variance case,
and that can be time-consuming for repeated sampling.
Simple and fast computing, plus a procedure’s trans-
parency, are reasons for finding simple and accurate
approximations.

5. CONCLUSIONS

Why might a Bayesian or objective Bayesian statis-
tician who has settled on prior distribution π(A) on A

consider approximating with ADM? There are several
reasons, beyond the general observation that any pro-
cedure used in an application is an approximation.

1. Speed of convergence is valuable with big data sets,
especially if a procedure is to be used repeatedly for
model selection and model checking. The approx-
imations here avoid MCMC burn-ins. Speed also
makes it feasible to simulate many times, for ex-
ample, for bootstrapping, or to check a procedure’s
operating characteristics.

2. Data analysts may need to obtain the same results
each time a particular model is re-fit to the same
data, which stochastic approximations do not do.

3. MLE methods always will play a central role in
statistics. For the model of this paper, ADM main-
tains the spirit of MLE while making small sample
improvements.

4. Using ADM to help fit shrinkage factors extends
to multilevel generalized linear models, for exam-
ple, to fit a Poisson model (Christiansen and Morris,
1997). In such more complicated non-Normal mod-
els, MCMC and exact numerical integration may be
more difficult or impossible, giving MLE and ADM
a greater advantage of ease. Then the frequency
properties of ADM can be checked with each data
application by simulating or bootstrapping from the
fitted multilevel model. However, that will not re-
veal how well ADM approximates the exact Bayes
procedure.
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5. Multiplying a likelihood by A before maximizing
combines neatly with EM methods as used to find
the MLE of A (Dempster, Laird and Rubin, 1977).
With ADM, EM would avoid infinite loops that oc-
cur when the MLE Â = 0.

6. Data analysts always will need well-checked,
prepackaged, documented, widely known and avail-
able procedures for fitting models.

7. Statistical software programmers should find it easy
to program and adopt the ADM-SHP formulas, for
example, the formulas of Section 2.8, in standard
software. For example, ADM could be an option in
SAS PROC MIXED along with MLE and REML.

Barring prior information that A is likely to be small,
the ADM-SHP methods developed here for making in-
ferences, especially interval estimates, about the ran-
dom effects in a two-level Normal regression model
will have better frequency performance over the en-
tire range of A ≥ 0 than MLE and REML methods.
Our derivation has benefited from viewing Stein’s har-
monic prior SHP on the random effects θi as arising
from a uniform mixture over A of the Level-2 Normal
distribution (2), that is, according to π(A) = 1.

With this formal (improper) prior, the posterior den-
sity on A agrees with the marginalized likelihood func-
tion L(A). That justifies the term “adjustment for like-
lihood maximization” when “ALM” is restricted to
point estimation of a shrinkage factor. The results here
go on to use the flat π(A) = 1 prior and conditional
(Bayesian) reasoning as a guide to accounting for vari-
ability of the shrinkage factors Bi and ultimately, of the
random effects θi . ADM approximates the exact Bayes
procedures with considerable accuracy, given that it re-
tains the (relative) ease of MLE/REML calculations,
that is, by using two derivatives of the adjusted log-
likelihood log(A L(A)). Of course the adjustment here
more generally would adjust by using the multiplier
π(A) if π(A) �= 1. While more testing is needed for
unequal variances cases, the confidence intervals for
random effects arising from the ADM-SHP combina-
tion here thus far have met or exceeded their nominal
coverages if k− r ≥ 3. Still, the search should continue
for priors on A that will provide even better frequency
interval coverages.
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