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Abstract

Background: The range of influence refers to the average distance between locations at which the observed

outcome is no longer correlated. In many studies, missing data occur and a popular tool for handling missing data is

multiple imputation. The objective of this study was to investigate how the estimated range of influence is affected

when 1) the outcome is only observed at some of a given set of locations, and 2) multiple imputation is used to

impute the outcome at the non-observed locations.

Methods: The study was based on the simulation of missing outcomes in a complete data set. The range of

influence was estimated from a logistic regression model with a spatially structured random effect, modelled by a

Gaussian field. Results were evaluated by comparing estimates obtained from complete, missing, and imputed data.

Results: In most simulation scenarios, the range estimates were consistent with ≤ 25% missing data. In some

scenarios, however, the range estimate was affected by even a moderate number of missing observations. Multiple

imputation provided a potential improvement in the range estimate with ≥ 50% missing data, but also increased the

uncertainty of the estimate.

Conclusions: The effect of missing observations on the estimated range of influence depended to some extent on

the missing data mechanism. In general, the overall effect of missing observations was small compared to the

uncertainty of the range estimate.
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Background
In spatial data, the range of influence refers to the average

distance between locations at which the observed out-

come is no longer correlated. The range of influence can

be estimated from a variogram or based on a regression

model with a spatially structured random effect, modelled

by a Gaussian field. Traditionally, the regression model

has posed a computational challenge in all but very small

data sets, due to the need to invert a dense covariance

matrix. However, the recent development of the so-called

stochastic partial differential equation (SPDE) approach

[1] along with the Integrated Nested Laplace Approxima-

tion (INLA) [2] approach to Bayesian inference have made

thesemodels computationally feasible. The SPDE links the

Gaussian field to a Gaussian Markov random field given
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by a sparse precision matrix, and INLA is a computation-

ally efficient alternative to MCMC for Bayesian inference,

particularly since no sampling is required. Regression

models with a spatial component could be applied in sev-

eral different settings where modelling a spatial pattern

is of interest. Examples include rainfall in a geographic

area and pricing of houses, as well as health, disease, and

lifestyle outcomes, for example the spread of an infectious

disease.

Many (if not the majority of ) studies are subject to miss-

ing data. For example, the price of a house is only known if

the house has been sold within the study period. Similarly,

all studies based on survey data will only include informa-

tion on those who participated in the survey. This study

will focus on the situation where a binary outcome, dis-

ease status for example, is missing at some of a given set

of locations.

Missing data are often classified in three categories [3]:

1) missing completely at random (MCAR): the probability

© 2015 Bihrmann and Ersbøll; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication
waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated.

mailto: krbi@sund.ku.dk
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Bihrmann and Ersbøll International Journal of Health Geographics 2015, 14:1 Page 2 of 13

http://www.ij-healthgeographics.com/content/14/1/1

of data being missing does not depend on the observed

or the unobserved data, 2) missing at random (MAR):

the probability of data being missing does not depend on

the unobserved data, conditional on the observed data,

and 3) missing not at random (MNAR): the probability

of data being missing does depend on the unobserved

data, conditional on the observed data. This categorisa-

tion is based on assumptions about the missing data and

cannot be tested. It is well-known that missing data can

cause biased and/or inefficient estimates of, for example,

regression parameters and standard errors - if not han-

dled adequately. A popular tool for handling missing data

is multiple imputation (MI) [4], at least if the missing data

are not MNAR. In MI, the distribution of the observed

data is used to estimate a set of values of the missing

data. To our knowledge, the effect of missing data (and

in particular missing outcomes) on the estimated range of

influence has not been studied.

The objective of this study was to investigate how the

estimated range of influence is affected when 1) a binary

outcome is only observed at some of a given set of loca-

tions, and 2) multiple imputation is used to impute the

outcome at the non-observed locations. For simplicity,

complete information on covariates was assumed. The

investigation was based on the simulation of missing data

in a complete data set with known locations.

Results and discussion
The range of influence was estimated to 12.7 km (stan-

dard deviation (SD) 4.4) in the complete data set. All the

reported analyses included the only significant covariate

((log-) herd size) in the regression model. The estimation

was based on a triangulation of the considered region,

and a finer triangulation did not change the estimate,

but did markedly increase computing time. Reducing the

region to make the shape of the area more regular slightly

decreased the estimated range of influence. A sensitivity

analysis to determine the effect of the prior distribution

of the hyperparameters showed no effect on the estimates

obtained from the complete data. With missing data, the

range estimate did not change when increasing the pre-

cision of the prior from 0.00001 to 0.001. In the majority

of missing data scenarios, however, a precision of 0.1 pro-

duced a range estimate further from the estimate obtained

from the complete data, as well as a larger standard devi-

ation, compared to the results obtained with precision

0.001. The maximum difference in median range within

scenarios was 1 km, and in most scenarios it was less

than 0.5 km. These differences are small considering the

uncertainty of the range estimate. They do, however, indi-

cate that a precision of 0.1 was a potentially informative

prior when the information within the data was reduced

by missing observations. Therefore, a prior with precision

0.001 was preferred in the analyses. As a consequence,

however, various computational problems were encoun-

tered with 75% missing data. These problems were solved

by simply changing the precision to the default value of

0.1. This was done in all analyses of data sets with 75%

missing data, and the results may not, therefore, be fully

comparable to scenarios with fewer missing observations.

The same computational problemswere encountered with

both 50% and 75% imputed data. In these scenarios, the

precision 0.1 was also used. Overall, the variance param-

eter σ 2 (part of the spatial covariance function) was

unaffected by the prior distribution.

As part of the INLA procedure used to estimate param-

eters, eigenvalues of a Hessian matrix are computed. Neg-

ative eigenvalues, which may affect the accuracy of the

approximation, were seen in three simulation scenarios

(MAR0OR=3,MAR1OR=3, andMNAROR=1/3; simula-

tion scenarios are described in theMethods section) when

50% or more of the observations were missing. This hap-

pened in only 1 or 2 out of 1000 data sets. In imputed data,

the problem was slightly more evident, especially with

75% imputed data where on average it happened in three

out of 1000 data sets. Due to the limited extent, however,

the problem was disregarded.

In some of the incomplete data sets, an unrealistically

large estimate of the range of influence was obtained, e.g.

360 km - despite the maximum distance between loca-

tions being only 76 km. A large range estimate is the result

of a small estimate of the scaling parameter κ in (5), which

means the correlation between locations decreases slowly

with increasing distance. Hence, an estimated range of

influence that extended beyond the observed data was

interpreted as an essentially constant correlation within

the observed data, i.e. there was no detectable spatial cor-

relation present. The situation corresponds to obtaining

a flat variogram. In the overall results of the simulation

study (Tables 1 and 2), data sets with an estimated range of

influence larger than 75 km were excluded. Furthermore,

medians (rather than means) were used to summarise the

simulation results.

Missing data

The effect of missing observations on the regression

parameter estimates was dependent upon the missing

data mechanism (Table 1). In the MCAR and MAR0 sce-

narios, the values of the estimates were not substantially

affected. In the MAR1 scenarios, both parameters (inter-

cept and covariate effect) were affected. These results

were all expected, since the missing observations were

dependent upon the covariate in the MAR1 scenario,

whereas the missing observations did not depend upon

either the covariate or the outcome in theMAR0 scenario.

In the MNAR scenarios, only the intercept was affected.

The covariate effect was not affected, since only the out-

come was MNAR.
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Table 1 Summary of parameter estimates obtained from complete and simulatedmissing data

Data1 N Intercept (SD) RMeSE2 Covariate3 (SD) RMeSE2 σ 2 (SD) RMeSE2 Range4 (SD) RMeSE2

Complete -4.3 (0.31) - 0.63 (0.052) - 0.49 (0.21) - 12.7 (4.4) -

MCAR

5% 1000 -4.3 (0.32) 0.047 0.62 (0.053) 0.0094 0.49 (0.21) 0.028 12.8 (4.7) 0.8

10% 1000 -4.3 (0.32) 0.066 0.62 (0.055) 0.013 0.48 (0.22) 0.039 12.9 (4.8) 1.3

15% 1000 -4.3 (0.33) 0.087 0.63 (0.056) 0.018 0.49 (0.22) 0.049 12.8 (4.9) 1.4

25% 1000 -4.3 (0.35) 0.12 0.63 (0.060) 0.025 0.47 (0.24) 0.069 13.1 (5.4) 2.0

50% 994 -4.3 (0.42) 0.21 0.63 (0.074) 0.041 0.45 (0.30) 0.13 13.1 (6.8) 3.7

75%5 940 -4.3 (0.56) 0.35 0.63 (0.11) 0.073 0.44 (0.48) 0.22 12.9 (10.7) 5.4

MAR0 OR=1/3

5% 1000 -4.2 (0.32) 0.055 0.61 (0.053) 0.012 0.49 (0.21) 0.033 13.0 (4.9) 1.1

10% 1000 -4.3 (0.33) 0.078 0.63 (0.056) 0.017 0.48 (0.22) 0.042 12.6 (4.7) 1.4

15% 1000 -4.3 (0.34) 0.097 0.64 (0.058) 0.020 0.48 (0.22) 0.046 12.6 (4.8) 1.6

25% 1000 -4.3 (0.36) 0.16 0.64 (0.062) 0.028 0.50 (0.25) 0.061 13.1 (5.6) 2.1

50% 1000 -4.4 (0.44) 0.21 0.66 (0.074) 0.045 0.55 (0.32) 0.11 13.8 (6.8) 3.1

75%5 985 -4.5 (0.58) 0.33 0.67 (0.098) 0.067 0.63 (0.48) 0.20 13.4 (9.0) 4.1

MAR0 OR=3

5% 1000 -4.1 (0.33) 0.17 0.57 (0.058) 0.048 0.47 (0.23) 0.059 13.8 (5.7) 1.7

10% 1000 -4.3 (0.33) 0.078 0.62 (0.056) 0.017 0.47 (0.22) 0.048 12.8 (5.0) 1.4

15% 1000 -4.2 (0.33) 0.10 0.62 (0.058) 0.020 0.46 (0.23) 0.062 13.1 (5.2) 1.6

25% 1000 -4.2 (0.35) 0.13 0.61 (0.062) 0.028 0.44 (0.25) 0.087 13.2 (5.8) 2.3

50% 987 -4.2 (0.41) 0.20 0.60 (0.074) 0.041 0.41 (0.31) 0.13 11.9 (7.1) 3.9

75%5 976 -4.2 (0.51) 0.31 0.58 (0.10) 0.066 0.35 (0.42) 0.21 10.6 (9.2) 5.3

MAR1 OR=1/3

5% 1000 -4.7 (0.36) 0.46 0.72 (0.061) 0.093 0.50 (0.22) 0.030 12.6 (4.6) 1.0

10% 1000 -4.9 (0.38) 0.65 0.75 (0.066) 0.13 0.51 (0.23) 0.038 12.2 (4.5) 1.1

15% 1000 -5.1 (0.40) 0.80 0.78 (0.071) 0.16 0.52 (0.24) 0.047 11.8 (4.4) 1.4

25% 1000 -5.3 (0.44) 1.03 0.83 (0.079) 0.21 0.53 (0.25) 0.055 11.1 (4.1) 1.9

50% 1000 -5.6 (0.55) 1.36 0.89 (0.098) 0.27 0.58 (0.29) 0.10 9.5 (3.5) 3.3

75%5 1000 -5.9 (0.73) 1.57 0.94 (0.13) 0.31 0.61 (0.35) 0.14 9.4 (4.0) 3.5

MAR1 OR=3

5% 1000 -4.1 (0.33) 0.17 0.57 (0.058) 0.048 0.47 (0.23) 0.059 13.8 (5.7) 1.7

10% 1000 -4.0 (0.33) 0.28 0.54 (0.062) 0.082 0.46 (0.25) 0.074 13.8 (6.1) 2.0



B
ih
rm

a
n
n
a
n
d
E
rsb

ø
llIn

tern
a
tio

n
a
lJo

u
rn
a
lo
fH

ea
lth

G
eo
g
ra
p
h
ics

2
0
1
5
,1
4
:1

P
a
g
e
4
o
f
1
3

h
ttp

://w
w
w
.ij-h

e
a
lth

g
e
o
g
ra
p
h
ics.co

m
/co

n
te
n
t/1

4
/1
/1

Table 1 Summary of parameter estimates obtained from complete and simulatedmissing data (Continued)

15% 998 -3.9 (0.34) 0.38 0.51 (0.065) 0.11 0.46 (0.26) 0.091 13.9 (6.5) 2.5

25% 985 -3.7 (0.36) 0.54 0.46 (0.072) 0.16 0.47 (0.31) 0.10 13.7 (6.7) 2.7

50% 942 -3.4 (0.40) 0.84 0.35 (0.089) 0.27 0.53 (0.43) 0.14 11.9 (7.5) 4.1

75%5 932 -3.2 (0.46) 1.10 0.25 (0.12) 0.38 0.55 (0.61) 0.22 10.3 (7.9) 4.9

MNAR OR=1/3

5% 1000 -4.2 (0.31) 0.051 0.62 (0.052) 0.0072 0.49 (0.21) 0.019 12.8 (4.6) 0.6

10% 1000 -4.2 (0.32) 0.091 0.62 (0.053) 0.012 0.49 (0.21) 0.033 12.8 (4.7) 1.0

15% 1000 -4.1 (0.32) 0.14 0.62 (0.054) 0.014 0.49 (0.22) 0.037 12.9 (4.8) 1.2

25% 1000 -4.0 (0.33) 0.24 0.62 (0.056) 0.017 0.49 (0.23) 0.056 13.0 (5.1) 1.6

50% 997 -3.8 (0.37) 0.52 0.61 (0.065) 0.032 0.47 (0.27) 0.099 13.4 (6.1) 2.6

75%5 977 -3.4 (0.47) 0.87 0.61 (0.085) 0.047 0.45 (0.38) 0.18 12.7 (8.4) 4.2

MNAR OR=3

5% 1000 -4.4 (0.32) 0.092 0.62 (0.055) 0.013 0.48 (0.22) 0.040 12.6 (4.7) 1.3

10% 1000 -4.5 (0.34) 0.17 0.63 (0.058) 0.023 0.48 (0.23) 0.058 12.9 (5.0) 1.7

15% 1000 -4.5 (0.35) 0.26 0.63 (0.061) 0.026 0.48 (0.24) 0.071 13.0 (5.4) 2.2

25% 999 -4.7 (0.40) 0.42 0.64 (0.068) 0.039 0.46 (0.27) 0.10 12.6 (5.7) 3.1

50%5 983 -5.0 (0.53) 0.69 0.64 (0.093) 0.068 0.44 (0.38) 0.19 12.2 (8.2) 4.9

75%5 905 -5.3 (0.83) 1.00 0.65 (0.15) 0.18 0.34 (0.62) 0.44 14.8 (19.3) 6.7

1Simulation scenarios described in the Methods section.
2Square root of the median of (est. incomplete data - est. complete data)2 .
3 log(Herd size).
4Range of influence in km.
5Precision of prior distribution of hyperpar. changed from 0.001 to 0.1.

All results are medians of N data sets.
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Table 2 Summary of parameter estimates obtained after multiple imputation of simulatedmissing data

Data1 N Intercept (SD) RMeSE2 Covariate3 (SD) RMeSE2 σ 2 (SD) RMeSE2 Range4 (SD) RMeSE1

MCAR

5% 998 -4.3 (0.32) 0.046 0.62 (0.053) 0.0095 0.49 (0.22) 0.031 13.2 (5.3) 1.0

10% 998 -4.3 (0.33) 0.071 0.62 (0.055) 0.015 0.49 (0.23) 0.042 13.4 (5.5) 1.4

15% 998 -4.3 (0.33) 0.090 0.62 (0.057) 0.019 0.48 (0.23) 0.055 13.3 (5.8) 1.6

25% 997 -4.3 (0.35) 0.12 0.63 (0.060) 0.025 0.46 (0.24) 0.077 13.2 (6.0) 2.1

50%5 924 -4.3 (0.38) 0.22 0.62 (0.066) 0.042 0.40 (0.28) 0.13 15.1 (9.2) 3.6

75%5 571 -4.2 (0.39) 0.37 0.62 (0.069) 0.069 0.44 (0.38) 0.18 15.2 (15.0) 4.2

MAR0 OR=1/3

5% 1000 -4.3 (0.32) 0.054 0.62 (0.053) 0.012 0.49 (0.22) 0.038 13.4 (5.4) 1.3

10% 1000 -4.3 (0.33) 0.091 0.64 (0.056) 0.021 0.47 (0.22) 0.047 13.1 (5.4) 1.3

15% 1000 -4.3 (0.33) 0.10 0.64 (0.057) 0.022 0.46 (0.23) 0.058 13.1 (5.6) 1.5

25% 1000 -4.3 (0.35) 0.13 0.64 (0.060) 0.026 0.46 (0.24) 0.064 13.9 (6.4) 2.4

50%5 990 -4.3 (0.37) 0.20 0.65 (0.064) 0.041 0.42 (0.25) 0.10 14.1 (7.4) 2.7

75%5 846 -4.3 (0.39) 0.31 0.65 (0.068) 0.060 0.41 (0.30) 0.14 15.0 (9.9) 3.6

MAR0 OR=3

5% 1000 -4.1 (0.33) 0.17 0.58 (0.056) 0.047 0.46 (0.24) 0.067 14.7 (6.7) 2.3

10% 1000 -4.2 (0.33) 0.084 0.61 (0.056) 0.018 0.47 (0.23) 0.051 13.5 (5.9) 1.6

15% 1000 -4.3 (0.33) 0.10 0.62 (0.057) 0.021 0.46 (0.25) 0.076 13.4 (6.2) 1.5

25% 986 -4.2 (0.34) 0.13 0.61 (0.059) 0.027 0.41 (0.27) 0.11 14.5 (7.3) 2.7

50%5 821 -4.0 (0.35) 0.25 0.58 (0.063) 0.047 0.36 (0.29) 0.15 14.9 (11.0) 3.8

75%5 536 -4.0 (0.37) 0.32 0.58 (0.067) 0.069 0.44 (0.52) 0.19 16.1 (20.3) 4.6

MAR1 OR=1/3

5% 1000 -4.8 (0.34) 0.48 0.72 (0.059) 0.096 0.50 (0.23) 0.033 12.6 (5.0) 1.1

10% 1000 -4.9 (0.38) 0.61 0.75 (0.065) 0.12 0.51 (0.24) 0.041 12.4 (5.1) 1.2

15% 1000 -5.1 (0.38) 0.85 0.79 (0.066) 0.17 0.52 (0.25) 0.052 12.1 (5.0) 1.5

25% 1000 -5.4 (0.40) 1.08 0.84 (0.071) 0.22 0.53 (0.26) 0.060 11.2 (4.7) 1.9

50%5 1000 -5.6 (0.45) 1.30 0.88 (0.080) 0.26 0.54 (0.29) 0.081 10.5 (4.6) 2.5

75%5 995 -5.8 (0.51) 1.52 0.93 (0.090) 0.30 0.52 (0.32) 0.093 10.5 (5.2) 2.8

MAR1 OR=3

5% 1000 -4.1 (0.33) 0.17 0.57 (0.055) 0.051 0.46 (0.24) 0.069 14.5 (6.7) 2.4

10% 990 -4.0 (0.33) 0.28 0.54 (0.057) 0.079 0.43 (0.25) 0.087 15.4 (8.0) 2.9

15% 934 -3.9 (0.33) 0.39 0.52 (0.058) 0.10 0.42 (0.26) 0.10 15.8 (8.7) 3.4
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Table 2 Summary of parameter estimates obtained after multiple imputation of simulatedmissing data (Continued)

25% 880 -3.7 (0.34) 0.54 0.45 (0.058) 0.17 0.44 (0.30) 0.10 14.6 (8.0) 2.8

50%5 644 -3.4 (0.34) 0.85 0.36 (0.059) 0.26 0.46 (0.35) 0.14 15.7 (11.2) 3.7

75%5 566 -3.1 (0.33) 1.18 0.25 (0.062) 0.37 0.57 (0.50) 0.16 13.6 (12.6) 3.6

MNAR OR=1/3

5% 1000 -4.2 (0.31) 0.064 0.62 (0.052) 0.0087 0.49 (0.22) 0.026 13.2 (5.3) 0.9

10% 1000 -4.2 (0.32) 0.092 0.62 (0.053) 0.011 0.49 (0.22) 0.038 13.3 (5.3) 1.2

15% 1000 -4.1 (0.32) 0.17 0.62 (0.054) 0.015 0.48 (0.22) 0.045 13.4 (5.6) 1.4

25% 1000 -4.1 (0.33) 0.22 0.62 (0.056) 0.018 0.46 (0.23) 0.064 13.7 (6.0) 1.8

50%5 972 -3.7 (0.33) 0.62 0.60 (0.057) 0.033 0.40 (0.23) 0.12 14.7 (7.3) 2.8

75%5 727 -3.3 (0.34) 0.98 0.59 (0.061) 0.051 0.34 (0.24) 0.18 15.4 (10.1) 3.9

MNAR OR=3

5% 1000 -4.4 (0.32) 0.097 0.63 (0.055) 0.014 0.47 (0.22) 0.045 13.0 (5.3) 1.3

10% 1000 -4.5 (0.34) 0.18 0.63 (0.056) 0.023 0.49 (0.24) 0.057 13.6 (5.9) 1.8

15% 1000 -4.5 (0.40) 0.26 0.63 (0.061) 0.028 0.47 (0.25) 0.074 13.6 (6.3) 2.3

25% 983 -4.7 (0.40) 0.39 0.64 (0.067) 0.040 0.45 (0.29) 0.11 13.3 (7.0) 3.0

50%5 727 -5.0 (0.45) 0.46 0.64 (0.080) 0.046 0.50 (0.46) 0.14 13.9 (11.8) 3.6

75%5 485 -5.3 (0.55) 0.98 0.63 (0.096) 0.10 1.16 (5.5) 0.67 15.9 (27.3) 4.5

1Simulation scenarios described in the Methods section.
2Square root of the median of (est. incomplete data - est. complete data)2 .
3 log(Herd size).
4Range of influence in km.
5Precision of prior distribution of hyperpar. changed from 0.001 to 0.1.

All results are medians of N data sets.
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The variance parameter estimates were all reasonably

similar, but with a slight tendency to either increase (espe-

cially MAR0 OR=1/3 and MAR1 OR=1/3) or decrease

(especially MAR0 OR=3) with more than 50% missing

data. Both the standard deviation of each parameter

estimate, and the Root Median Squared Error (RMeSE)

increased when the number of missing observations was

increased, regardless of scenario.

The median of the estimated range of influence within

each simulation scenario (Figure 1) ranged from 9.4 km

(SD 4.0) (MAR1 OR=1/3, 75%) to 14.8 km (SD 19.3)

(MNAR OR=3, 75%). In all scenarios except MAR1, the

range estimates were quite similar with less than 50%

missing observations. They tended to be slightly larger

than the estimate obtained from the complete data, but

differences were small, especially taking into account the

uncertainty of the estimates. With ≥ 50% missing obser-

vations, the variation between scenarios increased, yet so

did the standard deviation of each estimate. There was

no strict pattern relating to the number of missing obser-

vations displayed, except in the MAR1 OR=1/3 scenario

where the range decreased with increasing number of

missing observations.

Overall, the most pronounced effect on the range esti-

mate was seen in the MAR1 scenarios, where the missing

observations were dependent upon the covariate. The spe-

cific effect of missing data on the range estimate in these

scenarios is the result of the combination of the covariate

and the outcome, as well as their spatial distribution, and

Figure 1 Range of influence in missing data. Estimated range of

influence in complete data (solid line) and simulated missing data.

Simulation scenarios were: A: MCAR, B: MAR0 OR=1/3, C: MAR0 OR=3,

D: MAR1 OR=1/3, E: MAR1 OR=3, F: MNAR OR=1/3, G: MNAR OR=3.

the effect might therefore be different in another data set.

The range of influence might also actually depend on the

covariate, yet a potential explanation for the observed pat-

tern is not obvious. In the MAR0 scenarios, the missing

observations were directly related to the spatial structure

of the data, and a more distinct effect than the observed

might have been expected.

No detectable spatial correlation (range ≥ 75 km)

occurred mainly among data sets with 50% and/or 75%

missing observations. This is where we would expect

that any spatial correlation would be most depleted by

the missing data. This happened in a maximum of 95

of 1000 data sets, which was in the MNAR OR=3, 75%-

scenario, where observations with a positive outcome

status were most likely to be missing and hence only very

reduced information about model parameters were con-

tained in the data. The MAR1 OR=1/3 scenario was the

only scenario where all data sets displayed a spatial cor-

relation, even with 75% missing data. The MAR1 OR=3

scenario, on the contrary, had more data sets displaying

no spatial correlation than any other scenario. This could

partly be explained by the changed prevalence in the data

(increased prevalence in the MAR1 OR=1/3 scenario and

vice versa), but the pattern was not as pronounced when

the missing data depended on the outcome itself (MNAR

scenarios). This suggests that the observations excluded

in the MAR1 OR=3 scenario exhibited the strongest spa-

tial correlation. This would again be related to the specific

data set.

The RMeSE of the range increased with an increas-

ing number of missing observations in all scenarios. The

increase was especially pronounced with more than 50%

missing data. Hence, even though the overall median of

the range estimates did not change much, more sub-

stantial deviations from the estimate obtained from the

complete data did occur within single data sets with more

than 50% missing data. In the MCAR 75% scenario, for

example, the median range was 0.2 km larger than in the

complete data, but the median deviation was 5.4 km.

Imputed data

Multiple imputation did not remove the bias of the regres-

sion parameter estimates introduced by themissing obser-

vations (Table 2). This was as expected, since only the

outcome was missing. In that case, it is well-known that

imputation will not remedy any bias of regression param-

eter estimates, e.g. von Hippel [5].

The median of the estimated range of influence within

each simulation scenario (Figure 2) ranged from 10.5

km (SD 5.2) (MAR1 OR=1/3, 75%) to 16.1 km (SD

20.3) (MAR0 OR=3, 75%). In general, the estimated

range tended to be larger than the range obtained from

the missing data, and hence also larger than the range

obtained from the complete data set. Overall, the standard
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Figure 2 Range of influence in multiple imputed data. Estimated

range of influence in complete data (solid line) and after multiple

imputation of simulated missing data. Simulation scenarios were: A:

MCAR, B: MAR0 OR=1/3, C: MAR0 OR=3, D: MAR1 OR=1/3, E: MAR1

OR=3, F: MNAR OR=1/3, G: MNAR OR=3.

deviation of each range estimate increased after multiple

imputation. With multiple imputation of less than 50%

missing observations, the RMeSE tended to be slightly

larger than the results obtained from the missing data.

With multiple imputation of ≥ 50% missing observations,

the RMeSE was slightly smaller. Therefore, considering

estimation of the range of influence, at least 50% miss-

ing observations were required to potentially benefit from

multiple imputation, and this was at the expense of an

increased standard deviation. It should be noted, however,

that the results with imputation of ≥ 50% missing obser-

vations were based on the informative prior distribution,

which in case of missing data was only used with 75%

missing observations.

The number of data sets (N) with detectable spatial cor-

relation in Table 2, was not directly comparable to the

corresponding number in Table 1. In multiple imputation,

the incomplete data set is substituted by a set of complete

data sets. If any of the data sets in such a set did not exhibit

spatial correlation (i.e. the range estimate was ≥ 75 km),

then the whole set was excluded from Table 2. This was

done in order to retain the number of imputations in each

incomplete data set. For example, 429 sets of imputed data

were excluded in the MCAR 75% scenario. This means

that at least 429 of 10000 imputed data sets (10 for each

incomplete data set) showed no detectable spatial corre-

lation, as compared to 60 of 1000 incomplete data sets.

In this scenario actually 970 of 10000 imputed data sets

showed no spatial correlation. Overall, a lack of spatial

correlation occurred more frequently with imputed data

than with missing data (data not shown), and mainly with

imputation of more than 50% missing observations.

The parameter estimates obtained after multiple impu-

tation without a spatial component were summarised in

Table 3. Only results with imputation of 50% missing

data were shown. The regression parameter results were

similar to the results obtained with multiple imputation

based on the spatial model. In all scenarios, the variance

parameter estimate was much smaller when not including

the spatial component in the imputation. The estimated

range of influence also tended to be smaller, but the stan-

dard deviation of the estimate was considerable in most

scenarios. Compared to imputation based on the spatial

model, more data sets showed a lack of spatial correlation.

This was expected, since the imputed data had no spatial

structure.

Conclusion
This simulation study investigated how the estimated

range of influence was affected by missing outcomes in

binary spatial data. This is a relevant topic since miss-

ing data are a common feature in many analyses. The

results showed that the effect on the range estimate was

to some extent dependent upon the missing data mech-

anism. When the missing outcomes were MCAR, MAR

depending on a covariate not correlated with the outcome,

or even MNAR, the range estimates were consistent with

≤ 25% missing data. When the missing outcomes were

MAR depending on a covariate which correlated with

the outcome, the range estimate was affected by even a

moderate number of missing observations. In this specific

study, however, the considered covariate was possibly also

related to the range itself. This added to the complexity of

the situation andmay have also contributed to the effect of

themissing outcomes in this scenario. In general, the over-

all effect of missing observations was small compared to

the uncertainty of the range estimate. Multiple imputation

of the missing observations provided a potential improve-

ment in the range estimate in the case of ≥ 50% missing

data, but with increased uncertainty of the estimate as a

consequence.

The range of influence was estimated in a logistic

regression model with a spatially structured random

effect, using the recently developed INLA approach to

Bayesian inference. Overall, this approach worked very

efficiently. The range estimate proved to be sensitive

to the prior distribution of the hyperparameters when

the amount of missing observations was increased. Vari-

ous computational problems sometimes encountered with

many missing observations (≥ 50%), could be solved by

adding prior information to the hyperparameters. Other

possibilities for optimising the INLA procedure do exist
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Table 3 Summary of parameter estimates obtained after multiple imputation of 50% simulatedmissing data

Data1 N Intercept (SD) RMeSE2 Covariate3(SD) RMeSE2 σ 2 (SD) RMeSE2 Range4(SD) RMeSE2

MCAR 732 -4.1 (0.33) 0.28 0.61 (0.062) 0.041 0.14 (0.16) 0.35 11.9 (16.3) 3.5

MAR0

OR=1/3 963 -4.2 (0.33) 0.19 0.64 (0.064) 0.039 0.20 (0.16) 0.30 10.1 (7.4) 3.2

OR=3 628 -4.0 (0.33) 0.29 0.58 (0.063) 0.049 0.12 (0.18) 0.37 11.9 (21.3) 3.7

MAR1

OR=1/3 998 -5.5 (0.44) 1.20 0.87 (0.079) 0.25 0.33 (0.21) 0.16 9.8 (5.3) 3.0

OR=3 625 -3.3 (0.28) 1.03 0.36 (0.057) 0.26 0.10 (0.18) 0.40 9.3 (20.3) 4.3

MNAR

OR=1/3 772 -3.6 (0.29) 0.69 0.59 (0.054) 0.037 0.15 (0.14) 0.35 13.3 (14.1) 3.1

OR=3 636 -4.6 (0.42) 0.47 0.61 (0.078) 0.063 0.14 (0.22) 0.35 10.0 (16.2) 4.4

1Simulation scenarios described in the Methods section 2 Square root of the median of (est. incomplete data - est. complete data)2 3 log(Herd size) 4Range of influence

in km. Imputation was based on a standard logistic regression model without inclusion of a spatial component. All results are medians of N data sets.

and could potentially provide a better solution, especially

when working with a specific data set as opposed to the

automated analyses of a simulation study.

This study was based on the simulation of missing

data in a specific complete data set. The “true” range

of influence was defined by this complete data set and

was not varied within the simulations. To fully explore

a possible dependence on for example the extent of the

range and the strength of the correlation, would require

completely simulated data sets. This should include the

spatial locations of the observations, since different spa-

tial patterns may also influence the effect of missing

observations.

Methods
Data

The study was based on a complete data set with simu-

lated missing outcome. All information (outcome, covari-

ates, and locations) was taken from the complete data

set, and then some of the observations were defined

to be missing, according to different simulation sce-

narios. Data on Salmonella Dublin in Danish cattle

herds were used as the complete data set. These data

were available, since Denmark has a mandatory surveil-

lance program on Salmonella Dublin. The Salmonella

Dublin infection as such was not of any interest in this

study.

The complete data set included all Danish cattle

herds from the beginning of 2003 to the end of 2009.

For all herds, information from the Danish Cattle

Database (hosted by Knowledge Centre for Agriculture,

Aarhus N, Denmark) included unique herd ID number,

geographical coordinates in UTM-format, geographical

region (Figure 3a), herd size (total number of cattle),

Salmonella Dublin ELISA measurements on bulk-tank

milk or blood samples, and date of bulk-tankmilk or blood

sampling. Based on this, the number of herds per km2

within a 5 km radius of each herd was calculated (herd

density), and all herds had a Salmonella Dublin classifi-

cation status (positive/negative) assigned for each quarter

of the year. For details on the definition of herd infection

status, please refer to [6].

For the analysis, all cattle herds located in the south-

ern part of Northern Jutland (region NJS) (Figure 3a) in

the last quarter of 2008 were included (N=1597). Four

herds had no information on herd size (assumed miss-

ing completely at random). Since the focus in this study is

on missing outcomes, these herds were excluded; result-

ing in a total of N=1593 (470 dairy, 1123 non-dairy) herds.

Among these, 278 herds (17.4%) had a positive Salmonella

Dublin status (Figure 3b). The considered covariates

were herd size (Figure 3c) and herd density (Figure 3d).

Herd size was log-transformed since the distribution was

skewed. Herd size correlated with Salmonella Dublin

status (corr=0.35, p<0.0001), whereas herd density and

Salmonella Dublin status did not significantly correlate

(corr.=0.044, p=0.082). Herd size and herd density were

uncorrelated (corr=0.035, p=0.17).

Simulation of missing outcome

Let yi, i = 1, . . . , 1593, denote the Salmonella Dublin

status (positive/negative) of herd i. Based on the com-

pletely observed data vector y = (yi)i=1,...,1593, missing

observations were generated by simulating a vector M =
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Figure 3 Descriptive maps. Denmark divided into 8 geographic regions (a), including NJS (southern part of Northern Jutland) with Salmonella

Dublin status of all cattle herds (b), total number of cattle within herds (c), and number of herds within a 5 km radius (d).

(Mi)i=1,...,1593 with Mi ∈ {0, 1}, i = 1, . . . , 1593. If Mi =
1, the corresponding observation yi was set to missing.

Scenarios with 5%, 10%, 15%, 25%, 50%, and 75% miss-

ing observations were considered. Within each scenario,

1000 replications of M were produced. Through the sim-

ulation of M, observations within y were defined to be

missing in three different ways: 1) missing completely at

random (MCAR), 2) depending on an observed covari-

ate (MAR), and 3) depending on the observation itself

(MNAR).

Each vector M = (Mi)i=1,...,1593 was generated by

drawing from independent Bernoulli distributions with

parameter πi(= probability of being missing). To produce

observations missing completely at random, πi was given

by

logit (πi) = μ, i = 1, . . . , 1593, (1)

where μ was chosen corresponding to the proportion of

missing data in each scenario. To produce missing obser-

vations depending on a completely observed covariate

X = (Xi)i=1,...,1593, πi was given by

logit (πi) = μ + ν ·
(
Xi − X

)
, i = 1, . . . , 1593, (2)

Both herd size (log-transformed) and herd density were

considered as the covariate X. They were essentially dif-

ferent since herd size correlated with the outcome y
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(referred to as the MAR1 scenario), whereas herd density

did not correlate with the outcome y (referred to as the

MAR0 scenario). The parameter μ was chosen as above,

and two values of ν were considered: corresponding to

OR=1/3 and OR=3 of being missing when increasing

the covariate one unit. Missing observations depending

on the outcome y = (yi)i=1,...,1593 were produced by

letting

logit (πi) = μ + ν · (yi − y), i = 1, . . . , 1593, (3)

with parameters μ, ν chosen as above.

Statistical model

Let yi denote the binary outcome (0/1) at location zi, i =
1, . . . ,N . With pi = P (Yi = 1) , i = 1, . . .N , the logistic

regression model is given by

logit (pi) = α + βX i + U(zi), i = 1, . . . ,N , (4)

where X i is a covariate (vector) with corresponding

parameter (vector) β , and U(zi) is a realisation of a

latent stationary Gaussian field (GF) representing the

spatial dependence between observations. Hence, U =
(U(zi))i=1,...,N has a multivariate normal distribution with

spatially structured covariance matrix �. The (r, s) ele-

ment of � is given by the Matérn spatial covariance

function

σ 2

2λ−1Ŵ(λ)
(κ	rs)

λKλ(κ	rs), (5)

where 	rs denotes the distance between location zr and

zs, and Kλ is the modified Bessel function of the second

kind and order λ. The smoothness parameter λ is typi-

cally poorly identified and was fixed at 1, κ is a scaling

parameter, and σ 2 is the marginal variance. This covari-

ance function was verified as providing a suitable model

for the data by fitting it to the sample semivariogram of the

residuals obtained from fitting the logistic regression (4)

without the GF. Based on the covariance function (5), the

range of influence is defined as
√
8λ/κ , as in [1]. This cor-

responds to the distance at which the spatial correlation is

close to 0.1 for all λ.

Inference about model parameters was based on the

Stochastic Partial Differential Equation (SPDE) approach

proposed by [1]. This approach uses a linear combina-

tion of basis functions defined on a triangulation of the

spatial region to represent the GF by a Gaussian Markov

random field (GMRF). Given a triangulation with V ver-

tices located at (z̃v)v=1,...,V and a set of basis functions

(ψv)v=1,...,V (each chosen to be piecewise linear with ψv =
1 at z̃v and 0 at all other vertices) the GF is represented by

U(z) =
V∑

v=1

ψv(z)Ũ(z̃v), for all z, (6)

where Ũ =
(
Ũ

(
z̃v

))
v=1,...,V

is a GMRF with precision

matrixQ
(
κ , σ 2

)
depending on the parameters κ and σ 2 in

(5) (since λ is fixed at 1). Now model (4) can be rewritten

as

logit (pi) = α + βX i +
V∑

v=1

Aiv(zi)Ũ
(
z̃v

)
, (7)

where the matrix A = (Aiv(zi))i=1,...,N ,v=1,...,V is the pro-

jection from the triangulation vertices to the observation

locations (which are not necessarily included as vertices).

Inference

Based on a triangulation of the spatial region and

the model specified in (7), parameters were estimated

using the Integrated Nested Laplace Approximation

(INLA) approach proposed by [2]. This approach to

Bayesian inference provides deterministic approxima-

tions to the posterior marginals for all parameters and

is based on Laplace approximations [7]. Computations

were done in R version 3.0.2 [8] using the INLA pack-

age (www.r-inla.org), which includes the SPDE approach

as a standard method. The regression parameters α, β

were assigned independent, normal prior distributions

with precision 0.001, and Ũ was assigned the GMRF with

precision Q
(
κ , σ 2

)
as described above. The variance σ 2

was parametrised as σ 2 = 1/
(
2πκ2τ 2

)
, and the hyper-

parameters (log(κ), log(τ )) were assigned normal prior

distributions with known precision. Sensitivity analysis

to assess the effect of the prior distribution was carried

out by considering three values of this precision: 0.1 (the

default of the INLA package), 0.001, and 0.00001.

The INLA package also provides a function for produc-

ing the required triangulation of the spatial region. The

triangulation of the spatial region is shown in Figure 4. All

1593 locations were included as vertices, and additional

vertices were added to produce a regular mesh. The mesh

extends beyond the border of the considered region to

correct for edge effects. The maximum allowed triangle

edge length was 2 km inside the region and 50 km outside

the region. The minimum allowed distance between ver-

tices was 0.75 km. The triangulation consisted of a total of

2248 vertices.

To evaluate the estimates obtained in the simulation

study, the Root Median Squared Error (RMeSE), alter-

native to the traditional Root Mean Squared Error, was

calculated as the square root of the median of (estimate

http://www.r-inla.org
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Figure 4 Triangulation of the spatial region. The mesh extends beyond the border of the considered region to correct for edge effects. The

maximum allowed triangle edge length was 2 km inside the region and 50 km outside the region. The minimum allowed distance between vertices

was 0.75 km. The triangulation consisted of a total of 2248 vertices.

with complete data - estimate with missing data)2 within

each simulation scenario.

The simulated data were analysed using parallel com-

puting. Analyses were run on an external supercomputing

facility (i.e. a cluster of computers), due to the size of

the simulation study. Parallel computing could, however,

be performed on any standard personal computer with

multiple CPU cores. Parallel computing is very useful for

simultaneous analysis of multiple data sets, for example

in simulation studies or with multiple imputed data. It

cannot be used when analysing a single data set.

Parallel computing was performed using the R package

parallel. With the chosen triangulation and the required

output (e.g. predicted values) it took around 12-15 hours

to analyse 1000 data sets (16 cores, 2.66Ghz CPU). R code

is supplied as Additional file 1.

Multiple imputation

Imputation of the simulated missing outcome was based

on model (7), which was fitted to the available data. The

available covariates (herd density and (log-) herd size)

were included in the model. A predicted probability was

sampled from the posterior distribution, and a binary out-

come was then generated based on this probability. This

was done at each location where the outcome was not

observed, whereby a complete data set was created. This

process was repeated to produce a number of imputed

data sets corresponding to each incomplete data set. The

number of imputed data sets created depended on the

amount of missing observations. This was done in an

attempt to ensure the same efficiency of the estimates

across the simulation scenarios. Classical recommenda-

tions [4] suggest that only a small number of imputed data

sets are needed, hence 3 data sets were created when 5%

of data were missing, 5 data sets were created when 10%,

15%, 25% of data were missing, and 10 data sets were cre-

ated when 50%, 75% of data were missing. Each imputed

data set was analysed individually, and estimates were

then combined using Rubin’s rules [3] to obtain the overall

estimates corresponding to each incomplete data set. In

general, each individual estimate should be approximately

Gaussian distributed and otherwise transformed prior to

combination [9]. The estimates of the variance parameter

σ 2 and the range of influence had skewed distributions,

and were therefore log-transformed. The combined esti-

mate on the original scale was subsequently obtained

using standard theory for the lognormal distribution [10].

Hence, if θ̃m is the individual estimate obtained as the

mean value of the log-transformed posterior distribution,

and θ̃ is the combined estimate obtained from θ̃m, m =
1, . . . ,M, then the combined estimate on the original scale

is given by

exp
(
θ̃ + ω2/2

)
,
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where ω2 = Var
(
θ̃
)
. The variance of the combined

estimate on the original scale is given by

exp
(
2θ̃ + ω2/2

) (
exp

(
ω2

)
− 1

)
.

For comparison, the imputation model was changed

from model (7) to a standard logistic regression model

without inclusion of a spatial component.

Additional file

Additional file 1: R code for analysis using the INLA package and

parallel computing.
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