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Abstract Recent studies have documented that global posi-
tioning system (GPS) time series of position estimates have
temporal correlations which have been modeled as a combi-
nation of power-law and white noise processes. When esti-
mating quantities such as a constant rate from GPS time series
data, the estimated uncertainties on these quantities are more
realistic when using a noise model that includes temporal
correlations than simply assuming temporally uncorrelated
noise. However, the choice of the specific representation of
correlated noise can affect the estimate of uncertainty. For
many GPS time series, the background noise can be repre-
sented by either: (1) a sum of flicker and random-walk noise
or, (2) as a power-law noise model that represents an aver-
age of the flicker and random-walk noise. For instance, if
the underlying noise model is a combination of flicker and
random-walk noise, then incorrectly choosing the power-law
model could underestimate the rate uncertainty by a factor
of two. Distinguishing between the two alternate noise mod-
els is difficult since the flicker component can dominate the
assessment of the noise properties because it is spread over
a significant portion of the measurable frequency band. But,
although not necessarily detectable, the random-walk com-
ponent can be a major constituent of the estimated rate uncer-
tainty. None the less, it is possible to determine the upper
bound on the random-walk noise.
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1 Introduction

One of the key products derived from GPS observations is
the velocity and its uncertainty for a suite of sites distributed
over a geographical region. From the velocities, a first-order
inference is whether there is detectable deformation within
the network of GPS monuments. For instance, in the area
straddling the Mississippi River in the central US, there is a
debate about whether there is significant deformation associ-
ated with the New Madrid Seismic zone, where, on one hand,
Calais and Stein (2009) argue that within the uncertainty of
the data, there is no significant deformation; but, on the other
hand, Frankel and Smalley (2011) detect some deformation
that is consistent with creep at depth on the fault that last
ruptured in the sequence of ∼M7 earthquakes in 1811–1812
(Hough and Page 2011). To understand the differences in the
inference for detectable deformation, a critical examination
of the ingredients and assumptions that go into estimating
the uncertainty in rate is required. As I shall demonstrate, the
choice of a model that characterizes the background noise of
GPS time series can lead to a factor of two difference in the
rate uncertainty, which, if applied to a region with low defor-
mation rate, could skew ones interpretation of the mechanism
for deformation. Lacking a robust method for characterizing
the noise in the data at its longest period, I provide here one
means of obtaining an upper bound for noise where it has the
most impact for calculating the rate uncertainty.

It is now widely recognized that time series of positions
derived from GPS measurements have temporal correlations
for both global networks (e.g. Mao et al. 1999; Williams et al.
2004; Amiri-Simkooei et al. 2007; Santamaría-Gómez et al.
2011) and regional networks (e.g. Zhang et al. 1997; Williams
et al. 2004; Beavan 2005; Langbein 2008). These temporal
correlations are modeled as a combination of white and col-
ored noise. In the frequency domain, the white noise (WN)
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is frequency independent, while the colored noise is repre-
sented as a function of 1/ f n . In special cases, when n = 1,
the noise model is termed flicker (FL), and, when n = 2,
the noise model is termed random walk (RW); otherwise,
it is termed power-law noise (PL). The difference in defi-
nition between global and regional networks has to do with
the network’s spatial extent and the data processing meth-
ods. Global networks typically span more than one continent
while regional networks span an area that is smaller than
a continent. In addition, for sites that comprise a regional
network, the time series of position change exhibit common-
mode displacements, and these can be removed by some form
of stacking and averaging over a suite of time series (e.g.
Wdowinski et al. 1997). By removing the common-mode
signal, the RMS scatter in the time series tends to be less for
the regional networks than for the global networks.

For data from regional GPS networks, which is the sub-
ject discussed in this paper, the indices estimated for the PL
model range between 1 and 2 (Williams et al. 2004; Langbein
2008). But Langbein (2008) also demonstrated that an alter-
nate noise model could be a combination of FL and RW
noise (FLRW). As demonstrated below, the choice of model
between PL and FLRW has a significant impact on the esti-
mated uncertainty in rate even though, through maximum
likelihood estimation (MLE), either noise model success-
fully characterizes the background noise.

Other than typically obtaining more conservative esti-
mates of the rate uncertainty, the FLRW model is attrac-
tive since one could claim that the constituent flicker and
random-walk terms each have a physical basis. In part, this
argument is based upon logical deduction, since it is difficult
to unambiguously parse GPS noise into specific, physical
mechanisms. Ultra-high precision data from long-baseline
strainmeters (Wyatt 1982, 1989; Agnew 1992), borehole
strainmeters (Johnston and Linde 2002), and creepmeters
(Langbein et al. 1993) all contain a strong component of
random-walk noise. This noise vastly exceeds the precision
and stability of the transducer and is due to random fluctu-
ations in the local, crustal volume that surrounds the inter-
face of the instrument to the Earth. Unlike GPS with perhaps
0.1 mm sensitivity, the sensitivity is of the order 0.01 mm
for creep and 10−4 mm for long-baseline strain. Like the
ultra-precise instrumentation, GPS receivers are coupled to
the Earth’s surface through its monuments and these mon-
uments are prone to the same random fluctuations that are
best characterized as RW noise. Subtracting a RW compo-
nent from a background noise model of either PL or FLRW
leaves a residual noise model that is closer to a combination
of flicker and white noise. Therefore, the logical deduction
is that the residual FL and WN is due to the GPS system,
including the electronics of the receiver and satellites, the
paths between the satellites and the receiver, and the models
used to adjust the path length.

The calculation of rate uncertainty is provided in both
Williams (2003) and Langbein (2004). If A is the design
matrix relating the observations to a model vector x , where
one of the model components is rate and its corresponding
column of A is made up of the time of each observation,
and C is the data covariance, then the variance of the model
vector is [At C−1 A]−1. The data covariance is constructed
using the specified values of white and power-law noise using
the method outlined in both Williams (2003) and Langbein
(2004).

Figure 1 illustrates two problems with estimating the
rate uncertainty. First, while the PL and the FLRW noise
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Fig. 1 Power density and rate-uncertainty spectra for noise models of
GPS data. The noise model is representative of GPS data for sites for
which common-mode signals have been removed. That model consists
of 1.1 mm white, 1.9 mm/year0.25 flicker, and 1.3 mm/year0.5 random-
walk noise. a Power density as a function of period is shown. In gray,
the spectra from a 40-year long synthetic time series shows the vari-
ability in estimates of power density. b Uncertainty in rate is shown
as a function of length of time series. Indicated by circles, in a and b,
crossover between flicker and random-walk noise for rate uncertainty
is about one quarter of the crossover in power spectrum
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have nearly identical power spectra for periods of less than
10 years, the estimated rate uncertainty deviates significantly
between the two models for time spans in excess of 1 year.
The power spectrum estimated from simulated data having
FLRW noise illustrates the variability in estimating the spec-
trum as it deviates by 5 db, which is equivalent to the max-
imum deviation between the FLRW and PL model of noise.
Even though either the PL or FLRW is a satisfactory repre-
sentation of the background noise of the data, the choice of
one over the other will affect the calculated rate uncertainty.
Thus, the rate uncertainty could be biased either too high or
too low depending upon the true underlying noise model.

The second problem is independently resolving both the
FL and RW amplitudes and the impact of RW noise upon cal-
culating the rate uncertainty, assuming that the FLRW model
is the correct choice. Figure 1a shows for the periods between
0.16 and 0.71 years (or 60 and 260 days indicated by circles
in Fig. 1) that the power level for RW noise is less than the
FL noise level. Yet, when the rate uncertainty is computed
for the FLRW model over these periods, the effect of the RW
noise dominates. Thus, although RW noise is not necessarily
detectable, its presence should be acknowledged as it impacts
the rate uncertainty.

This paper examines both these problems using examples.
In Sect. 2, the bias in rate uncertainty is explored through
simulation. Section 3 offers suggestions to the problem of
underestimating the RW noise component, and, importantly,
provides a method to determine the upper bound of the RW
noise. Computations are based upon the MLE methods using
algorithms presented by Langbein (2004) and Williams et al.
(2004).

2 Bias in estimating rate uncertainty

The problem of estimating the rate uncertainty based upon
the choice of noise model is explored through simulations,
and those results are shown in Figs. 2 and 3. The simula-
tions use a background noise model consisting of 1.1 mm
WN and 1.3 mm/year0.5 RW noise. In addition, either 0 or
1.9 mm/year0.25 FL noise is added to the simulated time
series. The power spectrum of the resulting FLRW noise is
shown in Fig. 1a. For the simulations, several intervals were
considered ranging from 1 to 20 years. For each simulated
time series, a noise model consisting of PL was fit to the
data using MLE techniques. The power-law amplitude, its
index, white-noise amplitude, the estimated rate uncertainty,
and the logarithm of the likelihood were saved. Likewise, a
FLRW noise model was fit to the same time series, and the
amplitudes of the FL and RW, white-noise amplitude, the
estimated rate uncertainty, and the logarithm of the likeli-
hood were also saved. For each length, 200 simulations were
done and some of the statistics for the results are shown in
Figs. 2 and 3.
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Fig. 2 Distribution of estimated rate uncertainty using either a PL
model (blue) or a FLRW model (red). a Underlying time series is ran-
dom walk plus white noise. b Underlying model is FLRW plus white
noise. The black line is rate uncertainty for the underlying time series as
a function of time-series length. The solid dots are the median estimated
rate uncertainty from 200 simulations. The thick bars are the interquar-
tile range of estimated rate uncertainty, while the thin lines are the total
range of estimated rate uncertainty from simulations

In the case where the underlying noise model is RW plus
WN, the statistics of the rate uncertainty are similar inde-
pendent of whether FLRW or PL is specified (Fig. 2a). For
example, with a length of 1 year, specifying either FLRW
or PL noise yields a rate uncertainty of about 0.5 mm/year.
However, the true rate uncertainty is closer to 1.5 mm/year
(black line). Although the range of the estimated uncertainty
includes the true uncertainty, the central tendency is that the
MLE algorithm will underestimate the rate uncertainty. The
smaller rate uncertainty can be understood either by exam-
ination of the underlying power spectrum (red and magenta
lines in Fig. 1) or the distribution of the estimated power-law
index in Fig. 3. In the power spectrum, the cross over where
RW exceeds WN is 0.3 year, which is a sizable fraction of the
1-year long interval of the simulations. Consequently, there
are not enough data to resolve the longer-period deviations
as the estimated index of PL noise ranges between 0 and 2.5
with a sizable cluster with n < 0.5 (Fig. 3a).

However, as the length of the data set becomes longer,
≥5 years, then estimated rate uncertainty is nearly equal to
the uncertainty in the underlying data independent of the
specified noise model for the MLE algorithm (Fig. 2a). The
distribution of power-law indices for the longer intervals clus-
ters around 2, in agreement with the underlying RW noise
(Fig. 3a).
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Fig. 3 Distribution of differences between log(MLEPL) − log
(MLEFLRW) and the power-law index for the case where the under-
lying time series is RW plus WN (a) and FLRW plus WN (b). Each
dot represents the results from a single simulation of data that was used

in Fig. 2. From each simulation, two different noise models were con-
structed: one being PL and the other being FLRW. The red dot and red
boxes in (b) indicate the median and interquartile range for differences
in likelihood and power-law index
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On the other hand, if the underlying data include a sig-
nificant amount of FL noise, estimating the rate uncertainty
reveals substantial bias (Fig. 2b). Discounting the shorter
intervals, in particular the 1- and 2-year intervals, the rate
uncertainty estimated using PL noise is about one half of the
rate uncertainty estimated using the FLRW assumption for
noise.

Unfortunately, for the intervals ≥5 years, using the dif-
ference in the logarithm of the likelihood function does not
provide guidance for which of the two models is better. Both
models have three parameters, including the WN amplitude.
Langbein (2004) introduced a method to test the difference in
log(MLE) between two noise models, where the null hypoth-
esis noise model has N unknowns and the alternative has
N +1 unknowns. To reject the null hypothesis in favor of the
alternate model at the 95 % level, δlog(MLE) needs to exceed
2.6. In our case here, since both noise models have the same
number of parameters, this statistical test is not valid. None-
theless, it can provide a rough guide to distinguish between
two competing models, for which these examples show that
neither model is necessarily better since the δlog(MLE) clus-
ter around zero.

However, as the time series becomes longer, in excess
of 20 years, there is a tendency for the differences to
suggest that the FLRW model is a better description of the
underlying distribution (Fig. 3b, bottom panel): that is,
| log(MLEPL) − log(MLEFLRW)| > 2.

The other subtle change as the length of the data set
becomes longer is that the PL index becomes larger (Fig. 3b).
For the shortest lengths, the PL index has a bimodal distribu-
tion with peaks at 1.5 and 0.5. However, when the data length
is 5 years in this set of simulations, the median index is 1.31,
and with 20 years, the median index increases to 1.45.

3 Estimating the random-walk component

Assuming that FLRW noise is the underlying model of GPS
time series, it can be difficult to reliably estimate long-period
RW amplitude. This problem is frequently found with GPS
time series of vertical position changes. In these data, both
the WN and the FL amplitudes are typically a factor of two to
three times larger than those found in the horizontal. Conse-
quently, if the RW amplitude for the vertical is approximately
the size found for the horizontal, the FL noise will dominate
the spectrum over the limited observation period. Pictorially,
this is the situation in Fig. 1 with only a year of data avail-
able. However, as Fig. 1 demonstrates, while detecting RW
noise is difficult, its presence will impact the estimate of rate
uncertainty.

In the absence of resolvable RW noise, there are three
alternatives to pursue: (1) for vertical time series, assume
that the RW amplitude estimated for the horizontal data cor-

rectly describes the vertical, too; (2) assume that the RW
noise is a consequence of monument wobble and use the RW
amplitude determined from other studies; or (3) estimate the
upper bound on the RW amplitude. Although none of these
alternatives is a satisfactory solution, I will provide some
guidance to estimate the upper bound for the RW noise.

The approach to obtain an upper bound on the RW ampli-
tude is illustrated in Fig. 4, where the amplitude of RW noise,
as an input to the MLE algorithm, is successively incre-
mented and constrained to be above its optimal value. RW
noise is incremented until the value of the logarithm of the
likelihood function decreases to a value at which the noise
model can be rejected at a pre-set confidence level, for exam-
ple 95 %. In the example of using 1 year of data having the
same FLRW model discussed previously, most of the esti-
mates of optimal RW amplitude are 0 mm/year0.5 (Fig. 4a),
with δlog(MLE) = 0. Increasing the value of RW noise to
0.2 mm/year0.5 and fixing it to that value, then estimating the
FL and WN amplitudes will yield a log(MLE) that is slightly
less than that obtained for the optimal noise model. Succes-
sively increasing the RW noise yields individual curves with
the log(MLE) decreasing from the optimal model. When the
difference between log(MLE) and log(MLEoptimal) is less
than −2.6, then the value of RW noise can be rejected at the
95 % confidence level relative to the optimal model.

For the 20 simulations shown, 19 of the simulations have
estimated RW amplitudes between 1.7 and 5 mm/year0.5

when δlog(MLE) = −2.6; these values exceed the underly-
ing RW amplitude of 1.3 mm/year0.5. With each trial of RW
noise, the rate uncertainty is also calculated (Fig. 4b). Cor-
respondingly, with a rejection threshold of δlog(MLE) =
−2.6, the upper bound of rate uncertainty ranges up to
5 mm/year, well in excess of the underlying value of
1.6 mm/year.

The same set of simulations is repeated for a 10-year
long time series (Fig. 4c, d). With the longer time series,
the upper bound on RW amplitude ranges between 1.5 and
2.3 mm/year0.5, much closer to the underlying value of RW
noise. In addition, the upper bound on the rate uncertainty
is within a factor of two of the underlying uncertainty. The
tighter bound with the longer data is not surprising, as shown
in the power spectrum (Fig. 1) as RW noise becomes resolv-
able.

4 Discussion and conclusions

Motivation for this study was provided by the observation of
Langbein (2008) that the background noise model for many
GPS time series can be either FLRW or PL with the power-
law index ranging between 1 and 2. However, the choice
of noise model will impact the estimate of the rate uncer-
tainty or any other parameter derived from the data that relies
upon a long period of observation. The dependence of rate
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Fig. 4 Determination of the upper bound for RW noise and the corre-
sponding uncertainty in rate for 20 simulations for two different data
lengths, 1 and 10 years. The underlying noise model for all simula-
tions is the same as Fig. 1. a Each curve represents a single, simulated
data set of 1 year in length showing the change in log(MLE) from the
optimal value as the amount of RW noise is increased in increments of
0.2 mm/year0.5. The vertical dashed line is the underlying RW noise

(1.3 mm/year0.5). b The uncertainty in rate for each simulation as the
RW noise is increased. The vertical dashed line is the rate uncertainty
associated with the underlying noise model. c, d This is the same com-
putation as a and b, but with the interval increased to 10 years. Note that
the rate uncertainty is smaller than the 1-year case since the interval is
longer

uncertainty with the choice of noise model is illustrated in
Fig. 2, with the uncertainty estimated with a PL model being
about one half of the uncertainty estimated with a FLRW
model.

The choice between these two models can be decided by
two ways. The more conservative approach is to accept that
monument wobble is present in the data and the noise for that
process is a random walk similar to the noise characteristics
found in other crustal deformation measuring instruments,
primarily strainmeters and creepmeters, which use transduc-
ers that are more sensitive to displacements than GPS.

However, after evaluating a GPS network and modeling
the rates for a physical mechanism of deformation of the net-
work, one obtains a measure of fit of the physical model to
the data. That fit is characterized as the difference between

the predicted rates and the observed rates normalized by the
rate uncertainty, and is termed the misfit ratio. If one had
used the FLRW noise model and obtained a misfit ratio much
less than unity, it is reasonable to conclude that the FLRW
model of noise is much too conservative or that the model of
deformation is too complex for the quantity and quality of
the observations. Assuming the data were not over fit with a
complex model, one could reasonably conclude that the PL
noise model is the more appropriate choice. However, more
often than not, the misfit ratio is greater than unity suggest-
ing that the more conservative noise model might be more
appropriate or that the assumptions for the physical model
are incorrect.

The other problem due to a combination of high noise and
short time series is that the long-period component of noise is
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not well resolved. The result is that the long-period compo-
nent is underestimated and the corresponding rate uncertainty
is too small. An extreme example is data from campaign-style
GPS, where the observations might be made at yearly inter-
vals. Here, the sampling rate is just too low and precludes any
quantitative estimate of the noise spectra. Consequently, one
often makes an “educated guess” at the noise components.

The ability to resolve the longer-period parts of the noise
spectrum depends greatly on the level of noise over the
shorter periods. At its most basic level, this was discussed
by Langbein and Johnson (1997) and they characterized the
problem in terms of the crossover frequency, where power
from RW noise equals that of WN. In addition, to resolve
the RW component, they stated that the period representing
the crossover frequency should be less than one tenth of the
total time span of the data. With many GPS time series with
time spans in excess of 10 years, the crossover between WN
to the longer-period noise is well resolved (Fig. 1). What
is less clear though, is the character of the longer-period
noise. Is the slope of the noise spectrum in log–log space
constant, with either the slope having an integer value rep-
resenting FL or RW noise, or a constant, non-integer value?
Or, does the slope change with a secondary crossover period
that is longer than the crossover to WN? Is that second-
ary crossover at a period longer than the time span of the
data?

After examining the potential biases potentially built into
the fact that there will never be enough data to accurately
assess the error spectrum, I recommend that error assessment
be carried out as follows:

Remove outliers and bad data. By removing outliers, this
decreases the amount of measured WN and provides better
resolution of the crossover between the white noise and the
power-law part of the noise spectrum. Outliers can be either
identified visually, or after using a robust data-smoother such
as a running median to remove the long-period trends, then
deleting those observations that exceed a specified amount.
Alternatively, Khodabandeh et al. (2011) suggest another
means to mitigate for the presence of the occasional outlier.
At the extreme, there is a possibility that excessive white
noise could mask completely the underlying, longer-period
noise, and because the computed rate uncertainty decreases
with the number of observations under the assumption of
uncorrelated data, the estimate of uncertainty will be less
than the true uncertainty.

Identify offsets, rate changes, periodicities, etc. The pres-
ence of any of these features in the data has the potential to
contribute to the noise spectrum at the longer periods. Con-
struction of periodograms can help in identifying periodic
components in the data. Sometimes, it is required that one
alternately identify and remove the various functional depen-

dencies and go back and remove outliers and bad sections of
data.

Estimate the noise spectrum. Either a maximum-likelihood
technique of fitting trial data covariances to the data or spec-
tral techniques working in the frequency domain can be
employed to quantify the background noise. With MLE tech-
niques, both the parameters of the time dependence iden-
tified in the second step and the parameters of the mod-
eled data covariance are estimated simultaneously. It should
be emphasized, especially based upon the work presented
above, that several different models should be tried and
tested (Langbein 2004). With spectral techniques and the
caveat that the results can depend upon the window length
and the tapers employed, the results should be plotted and
analyzed to extract simple functions that represent the noise
power as a function of frequency. By extracting the param-
eters representing a noise spectrum, the data covariance
can be constructed using Eq. 10 of Williams (2003). Spec-
tral techniques have the advantage of being computation-
ally faster than MLE techniques, but they are restricted to
data with no gaps in observations, although adequate spec-
tra can be estimated for data with a few, short gaps in
observations.

This paper discusses only PL and FLRW noise, but as
Davis et al. (2012) demonstrate, seasonal noise having var-
iable amplitude and phase can be a broad-band signal that,
if not recognized, can corrupt any inference obtained if the
PL or FLRW noise models are the only models evaluated.
Davis et al. (2012) recommend filtering the data, but Lang-
bein (2004) provides methods to accommodate the variable
nature of seasonal noise into the data covariance. Thus, not
only should one evaluate the periodicities that have non-time
varying amplitudes and phase along with offsets and rate
change, other noise models using bandpass filtered noise
(Langbein 2004) should be evaluated along with the basic
PL or FLRW models. Choosing the most appropriate model
is done by comparing the log(MLE) of the competing noise
models.

Assessment of noise model. If the MLE method is employed
to estimate the noise model, then the equivalent power den-
sity spectrum should be plotted using Eq. 10 of Williams
(2003). If the results suggest that the long-period noise is
best characterized by FL noise or PL with an index that is
significantly less than 2, then the absence of RW noise needs
to be evaluated in terms of whether the amplitude of FL pre-
cludes the detection of the RW component, or the time span
of the data is just too short to extract a RW component. Com-
parison with other data, such a multiple, long time-series of
GPS data, could suggest that the RW component is not pres-
ent. In addition to plotting a power density spectrum, vario-
grams (Agnew 1992) should be constructed for the data along
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with simulations of the data using the noise model of the
data. A variogram is a statistical measure of the mean-square
difference of the current observation from previous observa-
tions as a function of the time interval between the observa-
tions. With white noise, the variogram has a constant value,
but with power-law noise, the level of the variogram increases
with longer intervals.

Examination of the noise characteristics of short-base-
line GPS time series does suggest that RW noise is pres-
ent in these data (Hill et al. 2009; King and Williams
2009). Analysis of a 33-m long baseline using braced mon-
uments, which are considered best practice, by King and
Williams (2009) indicates that the RW noise could be at
the 0.5 mm/year0.5 level, or a factor of three less than the
example used in this paper. This conclusion is supported
by Hill et al. (2009) in their examination of another set of
short baselines ranging between 10 m and 1 km using braced
monuments. Analyzing short baselines has the advantage of
removing a number of common-mode sources when estimat-
ing position of one site relative to another. Consequently, the
position estimates from short baselines tend to have small
WN (<0.2 mm) in their observations relative to the position
estimates obtained from regional networks (e.g. King and
Williams 2009).

Further assessment of the reliability of the noise model
can be accomplished by obtaining the maximum value
of RW noise allowed by the data using the method out-
lined in Fig. 4. Whether that constraint is useful or not is
another question. More likely, the upper bound will grossly
exceed the underlying value of RW noise. Consequently, one
should compare the upper bound on the RW noise with that
from the analysis of King and Williams (2009) for short
baselines.

The basic message is contained in Fig. 2. The choice
of noise model can bias the estimate of uncertainty. It is
best to use long periods of data to extract the estimates
of noise at the longest periods. The most conservative
approach in terms of estimating GPS velocities would be
to use the FLRW model to represent noise in GPS time
series of positions. With the current techniques available,
it is usually not possible to distinguish between the two
most likely models of GPS noise, PL and FLRW. Instead,
one should examine other sources of information, includ-
ing whether other GPS data have similar site characteristics,
and other environmental factors that might affect the type of
noise.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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