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Abstract. Over the last decade, several authors have questioned the validity of the hedonic travel
cost model, arguing instead that the random utility model is a superior method for valuing recrea-
tional site attributes. This paper demonstrates that the two methods emanate from a similar utility
theoretic framework; yet in practice these methods differ in the assumptions made in their appli-
cation. Constraining the underlying utility functions to be consistent, both models are applied to the
valuation of recreational site attributes in the Southeastern United States. The way in which each
method estimates preferences for site attributes is shown to depend critically on the method and the
functional form of the underlying utility function.
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1. Introduction

Micro-economic theory began as an attempt to describe, predict, and value the
demand and supply of consumption goods. Quality was largely ignored in initial
theoretical treatises; goods were assumed to be homogeneous. Over the last two
decades, however, economists have started to address quality within the theory
of demand. Environmental economists have extended the theory further to value
the quality of recreational sites – an important component of land management.
Two distinct approaches for incorporating quality into recreational analyses have
emerged: the hedonic travel cost method (HTC) and the discrete choice random
utility methods (RUM). The hedonic method views site attributes as though they
were individual goods which are bundled together in a single purchase. The random
utility model treats quality as an index which is estimated by examining a discrete
choice of alternative sites facing a consumer.

Because the mathematical derivations for the hedonic (Rosen 1974) and random
utility models (McFadden 1978) are quite different, many practitioners do not
recognize that both models are based on a common utility theoretic foundation.
In the first section of this paper, we show how the hedonic and random utility
methods are consistent with the same utility framework.
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Curiously, practitioners of the two methods have often made differenta priori
assumptions about utility when applying the methods. Many studies using the
RUM method have assumed linear utility functions (see Morey et al. 1993, for
an exception) while studies using the hedonic method frequently rely on quad-
ratic utility functions (e.g. Brown and Mendelsohn 1984; Englin and Mendelsohn
1991; Pendleton et al. 1998b). The choice of functional form imposes important
restrictions on the way the researcher believes that consumers value site quality. In
Section 2 of the paper, we examine linear and quadratic functional forms for utility
and show explicitly how these functional forms effect preferences.

Although both methods are based on the same utility theoretic framework,
assumptions made in the econometric estimation of the models differ significantly.
Each method makes very different assuptions about (a) the nature of the error
terms in consumer decisions, (b) the smoothness of available attributes, and (c)
the consumers’ choice sets. These econometric assumptions can significantly influ-
ence the way the models estimate consumer preferences for site attributes. Since
there may be little theoretical justification for certain underlying assumptions,
it is important to consider how different assumptions influence the econometric
performance of the models. Of course, one could compare results. In Section 4 we
estimate consumer preferences for wilderness attributes in the Southeastern United
States. The two models also differ greatly in the assumptions in the calculation of
welfare change. We leave a discussion of this matter for another paper.

2. The Utility Framework

It is well known that the quantity of goods purchased are arguments in the utility
function of consumers. Although common utility theory glosses over quality, it
is equally plausible that quality also is an argument in the utility function of
consumers. Lancaster (1966) provides a rigorous framework for the role of charac-
teristics as arguments in the utility function. Following Lancaster’s characteristics-
based utility model, applied economists now value quality in terms of a good’s
attributes. Two approaches have emerged to model the role of characteristics in
consumer utility and choice. The hedonic approach estimates the demand for
attributes after first uncovering the implicit prices of attributes. The random utility
approach treats quality as an attribute-based index to be attached to goods. In both
cases, the techniques attempt to place values on these attributes by observing how
consumers choose from amongst the packages of available goods. In this section,
we demonstrate that the underlying theoretical foundation for both methods is the
same utility maximization subject to budget constraints. We argue that the theoret-
ical foundations of both approaches are the same and consequently cannot be used
to argue for one rather than the other approach.
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2.1. THE HEDONIC TRAVEL COST METHOD

The theoretic derivation of the demand for goods from utility maximization subject
to a budget constraint is a well established part of basic micro-economic theory.
Without loss of generality, we extend this derivation to include quality. We begin by
considering a set of Hicksian demand functions for a vector of site attributes (quali-
ties),Z, described by a vector of attribute prices,P, utility u, and an estimation error
term,φ.

Z = h(P, u, φ). (1)

In the case of recreation demand, the price is not a market price, but an implicit
price. This implicit price is found by estimating the hedonic price function. The
hedonic price function is the empirical estimation of the hedonic price frontier
across visited sites. The cost of accessing any site on the frontier is a function of
the attributes of that site. Formally, the hedonic price function1 is

C(sitej) = fn(Zj ) (2)

and the vector of implicit prices for the site attributes is given by the gradient of (2)

P= dC/dZ. (3)

If the demand functions of (1) meet the Slutsky Criteria, we can find a set of inverse
demand functions:

P= h−1(Z, u, φ). (4)

HereP reflects the marginal value that the consumer would pay for an incremental
unit of quality. We derive the consumer surplus associated with the consumption
of Z∗ by taking a line integral of (4) fromZ = 0 toZ = Z∗:

CS =
∫ Z∗

0
h−1(Z, u, φ)dZ − C(Z∗) =∫ Z∗

0
h−1(Z, u)dZ − C(Z∗)+ g(φ). (5)

Generally, practitioners take the expectation ofg(φ) to be zero, but the exact struc-
ture of the error term in (5) depends on the nature of the error (e.g. omitted variables
or measurement error; see Bockstael and Strand 1987). Note that the definition of
(5) allows for nonlinearity in the price schedule ofZ. Sinceh(Z, u, φ) is a Hicksian
demand, the consumer surplus measure in (5) is an exact measure of the welfare
associated withZ∗; it is also a money metric utility function,Um,

Um· =
∫ Z∗

0
PdZ =

∫ Z∗

0
h−1(Z, u)dZ − C(Z∗)+ g(φ). (6)
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One criticism of the hedonic method is that it estimates Marshallian demand,
not Hicksian demand. Using a Marshallian demand function for (1) yields an
inexact measure of consumer welfare in (5). However, Hausman (1981) shows
that an exact welfare measure can be recovered directly from the Marshallian
demand function. Alternatively, when the assumed utility function is linear in
income, the Marshallian demand is identical to the Hicksian compensated demand
and consumer surplus is an exact welfare measure. Finally, in most circumstances
which pertain to recreation, policy measures affect only a small fraction of user’s
potential incomes. Consequently, it is reasonable to assume that the Marshallian
measure is a good approximation of true welfare (see Randall and Stoll 1980;
Willig 1976).

2.2. THE RANDOM UTILITY METHOD

The random utility method envisions that site qualities form an index to be asso-
ciated with each good (a visit to a site). The method models how a representative
consumer chooses from a set of discrete sites each of which embodies a vector
of attributes (qualities). Following McFadden (1978), the representative consumer
chooses a site to maximize their conditional utility (conditioned upon making a
visit):

U(ZJ ,X)+ εj
whereεj is known to the consumer, but appears random to the researcher. The
conditional utility of the RUM may have the same functional form asUm from
the hedonic approach. The random utility function consists of a deterministic core,
U(Zj , X), and a random component,εj . This random utility is a function of the
attributes,Zj , of the site chosen,j, and all the remaining goods,X, that can be
consumed.H is the price of other goodsX, ε is a random variable andY is income.
The probability that any site is chosen is the probability that the utility derived from
that site is greater than that from all other sites. Formally,

Prob(choose sitej) = Prob[U(Zj , X)+ εj ] ≥ Prob[U(Zj , X)+ ε\j ]
such thatY = [HX + C(Zj )] (7)

This probability relationship lets the researcher estimate the parameters of the
utility function to approximate the observed probability of site choice. This prob-
ability function and thus the estimation of the RUM depends critically on the
distribution of the error term,ε. Unlike the hedonic approach, the random term is
rarely assumed to have a normal distribution since this distribution makes econo-
metric estimation cumbersome. Instead, practitioners usually assume a generalized
extreme value distribution for the error term. While the deterministic component
of the RUM method corresponds to the underlying utility function in the HTC,
the models differ significantly in important econometric assumptions (e.g. error).
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These differences can seriously effect the way in which each model values quality.
In the discussion that follows, we focus solely on the ability of two models to
estimate consumer preferences for site attributes.

3. Utility Functional Form

Although a small handful of researchers have conducted RUM and HTC studies
on the same data sets, no study has yet made theoretically consistent comparisons.
All of the empirical comparisons made to date have made different assumptions
about the form of the utility function in the HTC and RUM models compared.
In practice, both models usually are estimated in aggregate and for a represen-
tative consumer (see for instance Anderson et al. (1992) for a discussion of the
representative consumer and random utility models and Bockstael (1997) for a
discussion related specifically to recreation demand). Even though the actual utility
functions of individual consumers may deviate from the representative consumer,
it is important to compare the two models assuming at the very least that the utility
functions of the representative consumers are consistent.

Typically, recreation studies assume that utility is linear in RUM models and
quadratic in HTC models. These area priori assumptions made by the researchers,
not theoretical properties of each technique. Both Hanemann (1984) and Mendel-
sohn (1987) warn that the choice of linear in attributes utility functional forms can
lead to severe structural restrictions on preferences for site quality. Quadratic utility
functions are more flexible than linear functions, but also imply negative marginal
values at high levels of attributes. Morey et al. (1993) depart from the standard
linear in attributes utility function. While this utility function is not quadratic, it
still allows for declining marginal returns for site attributes. In this section, we
examine both linear and quadratic utility functions for both the RUM and HTC
models.

3.1. LINEAR UTILITY

Utility functions that are linear in both attributes and income (cost) are used
commonly in applications of the RUM to recreational quality (e.g. Bockstael et
al. 1987; Hausman et al. 1995; Kaoru et al. 1995; Parsons and Kealy 1992; Parsons
and Needleman 1992). The standard deterministic core of the linear utility function
is

Uj = γZj +X subject toY = HX + C(Zj ), (8)

where subscriptj refers to sitej, Zj , is the vector of quality attributes that describe
site j, C(Zj ) is the cost of accessing sitej with attributesZj , andY, H, andX are as
before. If we assume that utility (8) is linear in income (all other goods), and that
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H is fixed and can be set arbitrarily to unity, then we can use the income constraint
to substituteY− C(Zj ) for X giving us:

Uj = γZj + λ[Y − C(Zj )], (9)

whereλ can be interpreted as the (constant) marginal utility of income. Equation
(9) forms the deterministic core of the RUM in which the conditional random utility
derived from choosing sitej is

vj = Uj + εj (10a)

vj = γZj + λ[Y − C(Zj )] + εj , (10b)

whereεj is a random term. In standard applications of the RUM,λ cannot be
estimated (Y does not vary over choices) and the estimated utility function is

vj = γZj − λC(Zj )+ εj . (11)

Note that (11) also is a conditional indirect utility function in priceC(Z) and
quality,Zj .

The deterministic portion of the linear utility function is not strictly “well-
behaved” in the sense that it is not strictly concave. The linearity of the utility
function means that the marginal value of any attribute remains the same for all
levels of quality (i.e. the marginal value is constant). Since the budget constraint is
assumed to be linear, the marginal utility of income is “minus the marginal utility
of cost”. So, the inverse demand (marginal willingness to pay) function for this
utility is constant and can be given by

marginal willingness to pay=
(
∂U

∂Z

)
/

(
−∂U
∂C

)
= γ

−λ, (12)

∂U/∂Z is a column vector of marginal utilities andγ is a column vector of coeffi-
cients and (−λ) is the marginal utility of income. Using this functional form, the
representative consumer places the same marginal value on attributes, regardless
of the level of attributes.

Since the inverse demand function associated with the linear utility function is
constant, the corresponding hedonic model must be constrained to have a constant
hedonic price. To do this requires that we estimate a single linear hedonic price
function for all markets (origins). The hedonic price function must be the same for
all markets since, by assumption, the marginal utility of another unit is equal to a
constant.

3.2. QUADRATIC UTILITY

Many applications of the hedonic method to recreational quality implicitly assume
a utility function that is quadratic in attributes (Brown and Mendelsohn 1984;
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Englin and Mendelsohn 1991; Mendelsohn 1984; Pendleton et al. 1998b; Smith
and Kaoru 1987; Smith et al. 1991). More sophisticated applications of the HTC
assume quadratic utilities that also contain cross-price terms (e.g. Brown and
Mendelsohn 1984; Englin and Mendelsohn 1991; Pendleton et al. 1998b). The
functional form for the deterministic core of the quadratic utility function is:

Uj = 1/2(Zj − α)′β−1(Zj − α)+ λX, subject toY = HX + C(Zj ), (13)

whereZ is a vector of site attributes,α is a vector of constants, andβ is a matrix to
be estimated. A well-behaved quadratic utility function requires that all elements
of the vectorα are positive and that the matrixβ is negative semi-definite. The
cross-price terms allow attributes to act as substitutes or complements.

With the quadratic utility function, it is theoretically possible to have oversati-
ation if a consumer faces a cheap (nearby) and over-abundant supply of a specific
attribute. For some economists, the potential for negative prices (decreasing utility
with increasing attributes) is sufficient reason to reject a quadratic utility functional
form (Freeman 1993). There are, however, two cases in which a quadratic utility
function might be appropriate for the analysis of recreational quality. The first case
is where the feasible consumption set is one in which all or most consumers have
a utility that lies within the increasing range of the utility function. The second
case is when consumers do not enjoy free disposal and may be forced to consume
some attributes at a level that exceeds complete satiation.2 For example, surfers
may generally find that larger waves are better than smaller waves. Nevertheless,
a surfer may live near a beach that has exceedingly large and dangerous waves.
The suffer cannot sell off these large waves and may be observed to occasionally
travel further (pay more) to go to a beach with smaller waves. The negative prices
often found in applications of the HTC can reflect oversatiation. Results using the
same data that follow in Section 3 and published in another paper (Pendleton et
al. 1998b) show that for hiking in the Southeastern United States, negative implicit
prices are associated with attribute levels that are significantly higher than attribute
levels where prices are positive.

A system of inverse demand and demand functions result from the assumption
of quadratic utility (see LaFrance 1985). The system of demand functions is

Z = α + βCz + φ. (14)

If the matrix β is symmetric and invertable (the Slutsky Conditions) then the
corresponding inverse demand function can be found as

Cz = −β−1α + β−1Z − β−1φ. (15)

The hedonic method estimates the parameters of the quadratic utility function by
first estimating a hedonic price function for each origin in whichC(Z) is regressed
uponZ. Any functional form can be used in the regression.3 Using these hedonic
prices, the system of seemingly unrelated demand functions in (14) is estimated,
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whereZ, α, Cz are the same vectors as before,φ is a vector of error terms, andβ
is a matrix.

The corresponding random utility function can be estimated after expanding the
vector notation of (13). A simplified form of the expanded utility would follow:

U = [βrum
1 z1+ 1/2βrum

2 z2
1+ . . .+ βrum

n−1zn + 1/2βrum
n z2

n + βrum
n+1z1z2]

+αrum . . .+ λ(Y − C(z))+ ε, (16)

where the coefficients,αrum andβrum represent collected terms (i.e. the complex
coefficients that result from the matrix multiplication in (13)). The income
constraint is substituted in for all other goodsX in (13). Unlike the hedonic esti-
mation, there is no need to restrict cross-price terms since only one coefficient
is estimated for each cross-attribute pairing. The constant,αrum, cannot be esti-
mated using the RUM and is irrelevant for welfare and utility calculations. As with
the linear utility function, the income term,Y, is dropped in the standard RUM
estimation.

As before, the inverse demand functions are found by solving for

marginal willingness to pay=
(
∂U

∂Z

)
/

(
−∂U
∂C

)
. (17)

4. An Empirical Comparison

Past comparisons between hedonic and RUM methods have made no attempt to
make consistent assumptions about the underlying form of the utility function (e.g.
Bockstael et al. 1987; Cropper et al. 1993). In this section we estimate both linear
and quadratic utility functions for the HTC and RUM methods. Note that a linear
RUM and a quadratic HTC are not theoretically comparable.

4.1. DATA

Data were collected on 4778 visits to 46 trails in 20 different forest areas near the
Smoky Mountains (see Pendleton et al. 1998b). Visitor data came from permits
collected by the United States Forest Service (USFS) and an independent survey.
We limit the data set to visitors from within 300 miles of the North Carolina and
Tennessee border in order to focus the analysis on single purpose, day trips. The
data were collected between 1992 and 1994. Trails were surveyed in wilderness
areas, non-wilderness areas, the State Park system, and the Great Smoky Mountain
National Park.

Important trail attributes were identified by interviewing hikers and reading
popular trail guides. Standard ecological techniques were used to measure these
attributes along each of the 46 trails in the study. The set of trail attributes includes
“basal area” (a measure of the size of trees and tree density), “elevation” (the
maximum elevation of each trail), “riparian” (percent of trail along a creek), and
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“isolation” (measured as miles from the paved road to the trail head). Appendix A
gives summary statistics for the trail attributes. In addition, the distance from each
origin to a trailhead was calculated using the program ZIPFIP (USDA 1993). All
distances are in one way miles.

4.2. THE METHODS

Both the RUM and HTC methods are estimated according to standard practice. We
give a brief review of the estimation methods here.

4.3. THE HEDONIC COST FUNCTION

We estimate the implicit price of trail attributes by regressing the total travel costs
to sites visited,C(Z), on levels of environmental attributes at these sites. Because
the geographic configuration of sites differs for every origin, a different hedonic
price function is estimated for each origin. Using OLS, we estimate the hedonic
price function only for those sites actually visited by residents of a given origin. It
is assumed that sites that are not visited are not on the hedonic price frontier (i.e.
these sites are inferior). We assume that the hedonic price function is linear:

C(Z) = c0 + C1(basal)+ C2(elevation)+ C3(riparian area)+
C4(isolation)+ ψ. (18)

where Z is a vector of quantities for the selected attributes (basal, elevation,
riparian, isolation) andψ is the estimation error. The coefficients,Ci, represent
the implicit prices for the attributes. Because we run a different regression for each
origin, a different vector of implicit prices,Cz, exists for each origin.

Some critics argue that the hedonic price function cannot be estimated since
the cost of obtaining the recreational good is exogenous. As described earlier,
consumers choose only the sites that lie along the hedonic price frontier. Arguea
and Hsiao (1993) show that if attributes are independent, then consumers will
make choices that are best represented by a linear in attributes price function. The
linearity depends on the production function only to the degree that the attributes
are independent. The linearity of this function is not dependent on the actual offer
function and thus does not require any knowledge of the functional form of the
offer function. To the degree that attributes are not independent in production,
a linear in attributes hedonic price function may represent a mis-specification of
the true hedonic price function. Mis-specification in the hedonic methods is not
qualitatively different from mis-specification in other types of estimation (e.g. the
RUM) and can be tested using standard techniques.

The coefficients of the hedonic cost function represent the implicit prices of
attributes. These implicit prices represent the marginal value of any attribute. The
linear in attributes utility function implies a constant marginal value for each
attribute, regardless of the level of attributes consumed. Therefore, a single hedonic
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cost function also was estimated for all origins simultaneously. The coefficients of
this “universal” linear hedonic cost function are consistent with the marginal values
that would be derived from the linear utility function.

4.4. THE DEMAND FOR SITE ATTRIBUTES

The second step in the hedonic travel cost analysis is to estimate the demand for
site attributes based on the implicit prices faced by each visitor and the level of
attributes chosen by each visitor. In this study, we estimate a system of demand
functions that are linear in site attributes and socio-economic shift variables. Using
data on all visitors, we estimate the following system of demand functions:

Z = α + βCz + δS+ φ, or
(basal area)= α1+ β11Cbasal area+ β12Celevation+ β13Criparian+

β14Cisolation+ δ1S

(elevation) = α2+ β21Cbasal area+ β22Celevation+ β23Criparian+
β24Cisolation+ δ2S

(riparian) = α3+ β31Cbasal area+ β32Celevation+ β33Criparian+
β34Cisolation+ δ3S

(isolation) = α4+ β41Cbasal area+ β42Celevation+ β43Criparian+
β44Cisolation+ δ4S (19)

whereZ is a vector of quantities for the selected attributes (basal area, elevation,
riparian, isolation),Cz is a vector of hedonic prices from the first stage regressions,
S is a vector of socio-economic variables,φ is a vector of estimation errors, and
α, β and δ are respectively a vector and two matrices of coefficients to be esti-
mated. The socio-economic shift variables are characteristics of each origin and
are derived from U.S. 1990 census data. Interestingly, we could not identify any
socio-economic variables that significantly effected the demand for site attributes
and soSwas dropped from (19). Because the coefficient on income (an element of
S) was not significantly different from zero, we conclude that the income elasticity
of demand for forest attributes is zero and thus compensating variation, equivalent
variation, and consumer surplus are equivalent.

The prices from the first stage and the quantities of site attributes chosen by
hikers allow us to estimate the demand functions of (19). Because hikers from
different origins face different prices, we treat each origin as a separate market.
The existence of multiple markets allows the estimation to be specified and avoids
the pitfalls common to single market hedonic applications (see Mendelsohn 1985).
We estimate (19) using a generalized least squares, seemingly unrelated regression
procedure. We constrain the cross-prices ofβ to be symmetric in order to ensure
that welfare measures are path independent. We also derive the inverse demand
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functions for the HTC based on the quadratic utility function. Following from (19),
we find the marginal benefit (willingness to pay function) as

MB = β−1(Z − α). (20)

4.5. THE RANDOM UTILITY MODELS

We estimate the RUM models using standard non-nested multinomial logit
methods. We choose not to nest since there is no reason to believe that sites can be
grouped to account for possible correlations in the error term. All sites are part
of a contiguous expanse of forest. All trails are included in the choice sets of
individuals. We estimate a linear in attributes conditional random utility function

vj = βlinear rumZj + λlinear rum[C(Zj )] + εj , or
vj = βlinear rum(basal area)+ βlinear rum

2 (elevation)+
βlinear rum

3 (riparian)+ βlinear rum
4 (isolation), (21)

whereZj is defined as before (i.e.Zj = {basal area, elevation, riparian, isolation}).
The inverse demand function associated with the linear in attributes RUM is simply

MB(Z) = (dv/dZ)/− λlinear rum= βlinear rum/− λlinear rum. (22)

We also estimate a quadratic in attributes random utility function

vj = β1(basal area)+ β2(basal area)2+ β3(elevation)+ β4(elevation)2+
β5(riparian)+ β6(riparian)2+ β7(isolation)+ β8(isolation)2+
β9(basal area∗ riparian)+ β10(isolation∗ riparian)+
β11(elevation∗ riparian)+ β12(elevation∗ basal area)+
β13(elevation∗ isolation)+ β14(basal area∗ isolation)+ εj (23)

where all of the coefficients, of course, refer only to the quadratic specification. As
before, we find the inverse demand function as

MB(Z) = (dv/dZ)/− λlinear rum. (24)

4.6. ECONOMETRIC RESULTS

The results of the linear utility estimations are given in Table Ia; the coefficients
of the derived inverse demand function are given in Table Ib. The linear utility
parameters for the HTC model suggest that basal area and elevation are both goods
whereas isolation is an economic bad and riparian is not relevant. (Note that a
single linear in attributes hedonic price function for all origins is an inappropriate
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Table Ia. The estimated parameters of the HTC and RUM: Linear utility.

HTC results Constant Basal area Elevation Riparian Isolation

C(z) = 66.2 0.199 5.81× 10−3 −1.96 −2.12

(t-statistics) (3.90) (1.57) (3.27) (−0.216) (−6.04)

Observations = 4778 Correctedr2 = 0.0201

RUM results Basal area Elevation Riparian Isolation Travel cost

v(z, C) = 2.57× 10−2 −4.99× 10−5 −0.513 0.103 −2.97× 10−2

(t-statistics) (21.6) (−25.6) (−6.64) (24.0) (−46.0)

Observations = 4778 Percent sites correctly Log likelihood =−13197

predicted = 31.65

Table Ib. The parameters of the inverse demand functions: Uniform linear utility.

Cbasal area Celevation Criparian Cisolation

HTC 0.199 5.81× 10−3 −1.96 −2.12

RUM 0.866 −1.68× 10−2 −17.3 3.45

Wald test 24.3 0.335 2.86 239

application of the HTC. We include this estimation solely for comparison.) The
results from the linear RUM analysis suggest that both elevation and riparian are
undesirable whereas basal area and isolation are good. Although the basal area and
isolation results are consistent with prior expectations, the remaining results from
the RUM analysis seem inconsistent with the description of trail attributes in hiking
books.

The results of the quadratic utility estimations are given in Table IIa; the coeffi-
cients of the derived inverse demand functions are given in Table IIb. In general,
both models perform better under the assumption of quadratic utility. More coeffi-
cients are significant and have the expected sign and the models explain a greater
fraction of the observed behavior. The quadratic utility parameters for the HTC
model imply negative own price elasticities (downward sloping demand functions)
for all four attributes. The cross price elasticities between basal area and both
riparian and isolation are positive, implying these attributes are substitutes. Eleva-
tion also has a positive cross price elasticity with respect to isolation. The quadratic
utility parameters for the RUM model yield similar results. All of the linear terms
in the quadratic RUM are of the expected sign, but only the squared terms for basal
area and riparian have the expected sign. All interaction terms between attributes
suggest that the attributes are substitutes. The RUM model suggests that the more
isolation and the more elevation, the better the site becomes at an increasing rate.
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Table IIa. The estimated parameters of the HTC and RUM: Quadratic utility (t-statistics in
parentheses).

HTC Basal area Elevation Riparian Isolation

Constant 79.2 2990 0.284 5.73

(215) (143) (65.6) (100)

Cbasal area −7.18 22.8 0.502× 10−1 0.652

(−11.8) (0.689) (8.95) (16.1)

Celevation 22.8 −8610 −0.154× 10−1 22.7

(0.689) (−3.12) (−0.049) (8.56)

Criparian 0.502× 10−1 −0.154× 10−1 −0.434× 10−3 −0.911× 10−3

(8.95) (−0.049) (−5.13) (−1.83)

Cisolation 0.652 22.7 −0.911× 10−3 −0.43

(16.1) (8.56) (−1.83) (−60.8)

Observations 4778

Corrected,r2 0.135 0.054 0.242 0.505

Wald test on linear restrictions = 264

RUM v = Basal area Elevation Riparian Isolation Travel cost

Coefficient 0.567 2.43× 10−3 42.0 1.62 −2.94× 10−2

(28.0) (7.93) (31.1) (25.3) (−43.5)

(Basal area)2 (Elevation)2 (Riparian)2 (Isolation)2 Basal area∗
riparian

Coefficient −1.95× 10−3 2.08× 10−7 −13.5 1.69× 10−2 −0.346

(−19.6) (7.63) (−27.4) (9.30) (−31.1)

Isolation∗ Elevation∗ Elevation∗ Elevation∗ Basal area∗
riparian riparian basal isolation isolation

Coefficient −0.882 −1.31× 10−3 −3.55× 10−5 −1.75× 10−4 −1.34× 10−2

(−29.1) (−10.4) (−18.7) (−27.2) (−23.2)

Observations = 4778 Percent sites correctly predicted = 31.94

Seventeen of the 20 common coefficients between the inverse demand functions
derived from the HTC and RUM models are of the same sign, but only 11 were
statistically similar by a Wald test.4 All of the coefficients, however, differ by at
least one order of magnitude, even those that passed the Wald test. All but one
of the coefficients which were significantly different between the RUM and HTC
models involved riparian.

4.7. WELFARE AND ERROR

That coefficients in Table IIb can appear to be so dissimilar, yet still pass a Wald
test, highlights the complex role of error in these estimations. Both models contain
estimation error that may have its roots in measurement error or a specification
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Table IIb. The parameters of the inverse demand functions: Quadratic utility (bold face
indicates coefficients are not different at the 5% significance level).

Cbasal area Celevation Criparian Cisolation

Constant HTC 850 6.19 96700 1430

RUM 19.3 8.26× 10−2 1430 55.0

Wald test >1000 4.22× 10−3 >1000 >1000

βbasal area HTC −3.53 −2.39× 10−2 −399 −5.77
RUM −0.133 −1.21× 10−3 −11.8 −0.454
Wald test 0.007 2.50× 10−12 >1000 1.51× 10−2

βelevation HTC −2.39× 10−2 −2.96× 10−4 −2.68 −4.62× 10−2

RUM −1.21× 10−3 1.41× 10−5 −4.46× 10−2 −5.96× 10−3

Wald test 2.50× 10−12 3.34× 10−19 1.36× 10−4 1.14× 10−10

βriparian HTC −399 −2.68 −47500 −647

RUM −11.8 −4.46× 10−2 −920 −30.0

Wald test >1000 1.36× 10−4 >1000 >1000

βisolation

HTC −5.77 −4.62× 10−2 −647 −12.2
RUM −0.454 −5.96× 10−3 −30.0 1.15
Wald test 1.51× 10−2 1.14× 10−10 >1000 2.91

error (e.g. omitted variable error). Obviously, the estimated parameters themselves
are estimated with error.

Because welfare calculations, especially for non-marginal changes in attributes,
sometimes require complex mathematical manipulations of the estimated coeffi-
cients, it is often extremely difficult to calculate the standard error (or variance)
of welfare estimates. Welfare measures are rarely given with standard errors in
the literature, especially for non-marginal welfare changes. From Bockstael et al.
(1991), the expected welfare measures from the RUM are derived as

E[1CS] = 1

λ

ln

∑
j

exp{U(Z1
j )}
− ln

∑
j

exp{U(Z0
j )}
 (25)

It is important to note that the expectation of the compensating variation is an
expectation form the perspective of the researcher only, since the researcher cannot
predict perfectly how consumers will chose among attribute bundles (Freeman
1993, p. 471). The probability in this case is in the estimated utility itself and
not in the arguments of the utility function (as in the Von Neumann utility func-
tion). Calculation of welfare standard errors in the RUM requires that we find the
variance of the natural logarthim of the sum of exponentials of the utilities for each
bundle, itself a function of estimated coefficients, and divide by the marginal utility
of income, also estimated with error. The exact definition of the choice set also
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effects welfare estimates through the summation operation over thej choices. In
the end, calculation of a standard error for expected welfare change is exceedingly
difficult and rarely offered in the literature.

The calculation of welfare and standard errors in the HTC is no less difficult,
requiring that we integrate the inverse of the estimated demand function and find
the error distribution of the integrand.

1Consumer Surplus=
∫ z1

j

z0
j

hh−1(z, u)dz − C(z1
j )+ C(z0

i )+

g(φ1)− g(φ0). (26)

(See Bockstael and Strand (1987) for an exposition on the complexities of incor-
porating error in surplus estimates from simple demand functions.) The problems
in the two stage HTC are confounded by the fact that the second stage is estimated
on prices that are themselves estimated with error.

4.8. COMPARING THE WELFARE CALCULATIONS

As illustrated above, the two methods differ fundamentally in the way in which
welfare is calculated. Welfare estimates in the RUM are expected measures that
depend importantly on how the choice set is defined and the distribution of the
random error in the model. Despite Pudney’s observation that the utility function
of the RUM is ordinal and not cardinal (see for instance, Pudney 1989, p. 111),
researchers continue to estimate the RUM and calculate expected welfare change as
given above. While the welfare calculations of the HTC are cardinally comparable,
the HTC suffers from the restriction that it can estimate welfare only for those who
choose the same bundle no matter the level of attributes.

While a complete discussion of the welfare differences in the RUM and HTC
is beyond the scope of this paper, we can make simplifying assumptions to show
how the empirical results of the two models would effect changes in the underlying
level of utility of the representative consumer, irrespective of the treatment of error.

We compare the welfare implications of the way in which the two models
estimate preferences by calculating the value5 of strict utility changes that result
from a 10% decline from the mean for each attribute, separately. The magnitude
of welfare changes in the HTC assuming a linear utility function (note this is not a
valid application for the HTC and is included only for comparison) is given by

Welfare Change for1Zi = 1Ziβi. (27)

The deterministic utility change for the representative consumer using the linear in
attributes RUM is

Welfare Change for1Zi = 1Ziβi/(−λ). (28)

Welfare change calculations under the assumption of a utility function that is quad-
ratic in attributes are necessarily more complex. Comparing only a deterministic
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Table III. Representative welfare measures for changes in individual
attributes (10% decline from mean site attribute levels).

Attribute

Method Basal area Maximum Riparian Isolation

elevation

Linear utility:

RUM 5.64 5.59 −0.59 1.54

HTC 1.30 1.93 −0.067 −0.94

Quadratic utility:

RUM −6.41 −2.27 −2.69 −0.025

HTC −142.42 −17.56 −71.01 −11.54

change in utility, we find that the value for a change in utility in the random utility
model is

Welfare Change for1Zi = 1U(Z1
i − Z0

i )/(−λ), (29)

which is simply the compensating variation for a change in attributes.
Similarly, from Englin and Mendelsohn (1991) and LaFrance (1985) we can

use the compensating variation for a change in attributes to find the deterministic
utility change in the HTC as

CV = ·5(Z1− α)′β−1(Z1− α)− ·5(Z0 − α)′β−1(Z0− α). (30)

Table III gives the results for the deterministic welfare measures using both the
RUM and HTC methods under assumptions of linear and quadratic utility. While
the magnitudes differ considerably, the signs are very similar between the models.

5. Conclusion: Lessons Learnt

5.1. BOTH THE RUM AND HTC HAVE THE SAME UTILITY THEORETIC

FOUNDATIONS

We have shown that the random utility and hedonic models both follow from the
same basic premise of utility maximization over a choice of sites that differ in
attributes and costs. Contrary to the claims of Bockstael et al. (1987), the hedonic
methods cannot be dismissed simply because the theory is wrong or the approach to
modeling the demand for attributes is inconsistent with behavior. Choices between
the two models must boil down to econometric considerations.
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5.2. THE TWO MODELS MAKE VERY DIFFERENT ASSUMPTIONS ABOUT THE

ROLE OF ERROR IN THE CHOICE OF SITE QUALITY

In the hedonic framework, consumers have different preferences for site qualities
due to neoclassical assumptions about demand (e.g. declining marginal returns to
consumption and the presence of individual demand shift parameters). Representa-
tive consumers from the same origin may still choose different sites provided that
representative consumers can be disaggregated based on personal characteristics.
Consumers with similar personal characteristics choose different levels of site
attributes only if they face different (marginal) costs of acquiring these attributes.
In short, differentiation in site choice can be explained by deterministic mechan-
isms. In the hedonic method, the apparent randomness of site choice is considered
a result of three things: (1) random behavior on the part of the consumer, (2)
measurement error, and (3) misspecification of the demand model.

In the standard application of the random utility method, the choice of different
sites depends largely on a randomness in consumer tastes. Even if the linear random
utility of the representative consumer results from the aggregation of non-linear
individual random utility functions, it is not possible to recover these individual
utility functions from the estimation. The fact that income routinely is dropped
from the indirect utility function in RUM applications further places the burden of
choice variations on the random term.

Ultimately the dissimilar assumptions about error in the two models are likely
to influence the way each model values site attributes. As long as generalized least
squares methods are used to estimate the demand functions of the HTC, the model
does not require any restrictive assumptions about the distribution of the error term.
The RUM, however, requires strong assumptions about the distribution of error.
Most commonly, the application of the RUM assumes an extreme value distribution
for the error term. As Pudney (1989, p. 117) points out, however, the choice of the
extreme value distribution should be considered only “as an arbitrary device for
generating convenient logistic forms” for estimation.

5.3. THE HEDONIC MODEL SUFFERS FROM A TWO-STEP APPROACH

To date, the greatest perceived limitation of the hedonic travel cost model comes
in the two-stage nature of the demand estimation. We argue in this paper and
others (Pendleton et al. 1998a, 1998b) that there are many reasons to believe
that the hedonic price function (the first stage) can be estimated with precision.
Nevertheless, the two-stage estimation of first hedonic prices and then demand
functions causes a significant loss of econometric information not found in the
RUM. If the HTC is to be used to value non-marginal changes in attributes, then
the development of a joint estimation function for prices and demand must be used.
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5.4. THE ROLE OF FUNCTIONAL FORM IN THE RANDOM UTILITY MODELS IS

IMPORTANT

We hope that we have shown that the choice of functional form for the RUM
should not be taken lightly. Specifically, the linear RUM imposes strong assump-
tions about the way in which the (representative) consumer values larger and larger
levels of attributes. Linear in attributes indirect utility functions may be particularly
restrictive, and even inadequate, in cases where the models are estimating utility
(and welfare change) over a large range of attribute levels. Our results show that
more parameter estimates for the RUM are of the expected sign under the assump-
tion of quadratic rather than linear utility. More attention needs to be given to the
functional form of the indirect utility function in the RUM and the assumptions
implicit in the chosen functional form should be made explicit. When a linear
budget constraint is assumed (i.e. constant marginal utility of income), authors
should be clear that their expected welfare measures are Marshallian as well as
Hicksian.
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Notes

1. In this section, we assume that the true functional form of the hedonic price function is known.
We address questions of estimation in later sections.

2. This idea can be attributed first to Jeffrey Englin’s doctoral dissertation: ‘Backcountry hiking
and optimal forest management’ (p. 57), University of Washington, Seattle, 1986.

3. Arguea and Hsiao (1993) offer reasons why a linear in attributes utility function may be justified
when attributes can be combined independently.

4. Note that standard errors cannot be calculated for the inverse demand function recovered from
the two-stage HTC. Wald tests for the models based on a quadratic utility function assume
standards errors only for the RUM estimates.

5. Values are given in terms of one-way miles. One-way miles can be converted to dollars by
multiplying by two and then by a conversion term (e.g. the AAA value is $0.25/mile; see AAA
1992).
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Appendix A: Summary Statistics

Attribute Description Sample mean (standard deviation)

Basal area Square feet of trees/acre 65.1 (21.0)

Riparian % of trail along riparian 34.4 (34.0)

Elevation Maximum elevation of trail 3330 (1090)

Isolation Miles from paved road to trailhead 4.45 (4.65)
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