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Introduction 
 
The availability of genomic estimated breeding 
values (GEBV) allows the selection of young 
bulls with relatively high reliability before 
phenotypic performance of daughters is 
recorded. Reported absolute gains in reliability 
for those young bulls, compared to using 
pedigree indexes only, are up to 20% (Hayes et 
al., 2009). In the countries where GEBV are 
currently used in the national evaluation, 
GEBV are calculated using the usual 
procedures, but replacing a pedigree based 
relationship matrix by a genomic relationship 
matrix (GRM) (Berry et al., 2009, VanRaden, 
2008). Subsequently, reliabilities of GEBV are 
obtained by inverting the left-hand sides of the 
mixed model equations (Berry et al., 2009, 
VanRaden, 2008). An alternative method to 
obtain reliabilities is cross-validation (e.g. De 
Roos et al., 2009). Since the availability of 
correct reliabilities of GEBV is important both 
for national and international genetic 
evaluations, the objective of this paper was to 
provide a method to validate reliabilities of 
GEBV. 
 
 
Material and Methods 
 
Reliabilities were estimated based on 1) 
prediction error variances obtained from the 
left-hand side of the mixed model equations 
(REL_LHS) and 2) from Monte Carlo 
simulation (REL_MC). To assess the bias in 
individual REL_LHS, a procedure is 
developed to obtain REL_MC, i.e. a reliability 
for each individual using Monte Carlo 
sampling. This procedure is based on the idea 
that for a given dataset, a large number of 
independent samples for both the breeding 
values and the phenotypes can be generated 
using Monte Carlo simulation (Fouilloux and 
Laloe, 2001).  

In applications for ‘classical’ breeding 
values, x sets of true breeding values are 
simulated through the existing pedigree 
(Fouilloux and Laloe, 2001, Hickey et al., 
2009). Phenotypic records are consequently 
drawn from N(0, ZGZ' + R). Similarly, we 
developed an approach for SNP data, that used 
the same data structure to simulate x sets of 
true breeding values and phenotypic records. 
The steps are (per replicate) as follows: 

 
1. Draw some SNP loci from existing SNP 

data to be QTL, and assign simulated QTL 
effects to those loci. QTL effects are 
calculating using equation 1 (see simulated 
scenarios). 

Repeat the following steps x times: 
2. Sample the sign ( - or + ) of each QTL-

locus with equal probability, 
3. Calculate the true breeding value for each 

animal as the sum of all simulated QTL-
effects, using the appropriate signs from 
step 2, 

4. Predict GEBV for each animal with REML, 
5. Calculate for each animal the prediction 

error variance (PEV) based on the inverse 
of the LHS and based on this a reliability 
(REL_LHS) as REL_LHS = 1 – ( PEV / 

2ˆ aσ  ), where 2ˆ aσ  is the estimated genetic 
variance. 

Across the x generated data sets: 
6. Calculate for each animal REL_MC as the 

squared correlation between its TBV and 
EBV across the x generated data sets, 

7. Calculate LHSREL _  for each animal 
across the x generated data sets . 

 
When the number of generated datasets is 

large enough, the distributions of GEBVi and 

iBVEG ˆ  (the simulated and estimated GEBV 
of animal i) converge to their true distributions 
(Hickey et al.,  2009).    Therefore,   when   the  
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number of samples is large enough, REL_MC 
approaches the ‘true’ reliability of an animal’s 
GEBV. This allowed to evaluate REL_LHS by 
comparing LHSREL _ to REL_MC. 
 
 
Simulated scenarios 
 
The SNP data contained 576 cows with 43,080 
SNPs after editing. In each run, the 400 oldest 
animals were used as reference population (i.e. 
training data), while the phenotypes of the 
youngest 176 animals were supposed to be 
unknown. Overall, 10 replicates were 
performed. Within each of the 10 replicates, 
the above mentioned steps were used to 
generate 5000 datasets, for four scenarios: 10, 
100, 1000 or 43,080 QTL. In the first 3 
scenarios, the SNP that were drawn to be QTL, 
were excluded from the SNP data to mimic 
real life where QTL are supposed to be 
between markers. In the fourth scenario, all 
SNP were used as QTL, and all of them were 
also used to calculate the GRM matrix. This 
mimics the situation of an infinitesimal model 
and avoids the loss of accuracy of GEBV due 
to that markers explain only part of the genetic 
variance. In all scenarios, the contribution of 
each QTL to the genetic variance was 
considered to be equal. Therefore, for QTL 
locus i, the simulated allele substitution effect 
was calculated as: 
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where 2

aσ  is the total additive genetic variance, 
#QTL is the number of simulated QTL and p is 
the frequency of one of both alleles at locus i. 
Two traits were simulated with heritabilities of 
0.6 and 0.9. 
 

A maximum of 5000 generated data sets 
was considered, where LHSREL _ was 
evaluated every 5 generated data sets. In each 
data set, the following model was used to 
estimate the GEBV in ASReml (Gilmour et al., 
2006): 
 
yi = μ + GEBVi + ei 
 

where GEBV and its variance were 
simultaneously estimated using REML. The 
GEBV were distributed as N(0,G 2ˆ aσ ). were G 

is a GRM calculated as 
∑ −

=
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where Z contains the marker genotypes for all 
animals at all loci corrected for the allele 
frequencies per locus, and pi is the frequency 
of one of both alleles at locus i (VanRaden, 
2008). 
 
 
Results 
 
The results for the animals in the validation 
data are presented. Average reliabilities for 
those animals ranged were around 0.22 and 
0.30, for heritabilities of 0.6 and 0.9, 
respectively. In all scenarios after 1,000 
generated data sets both REL_MC and 

LHSREL _  hardly changed (results not  
shown). The correlation between REL_MC 
and REL_LHS came close to 1.0 within 5,000 
generated data sets when either all or 1,000 
SNPs were included as QTL (Figure 1). This 
correlation was much lower for 100 and 10 
QTL, although still slightly increasing at 5,000 
generated data sets for both scenarios. 
Interestingly, the scenarios with 100 or more 
QTL all yielded REL_LHS that were 
overestimated by 0.02 to 0.04 (Figure 2). This 
overestimation was lower for the scenario with 
10 QTL, but in this scenario the correlation 
between REL_MC and REL_LHS was still 
quite low (Figure 1). 
 
 
Discussion 
 
The advantage of REL_LHS is that each 
animal gets an individual reliability, that may 
depend on the relationship to the reference 
population (Berry et al., 2009), while 
reliabilities obtained using regular cross-
validation assumes that GEBV of all animals 
without phenotypic information have equal 
reliability. One of the disadvantages of 
REL_LHS is that it assumes that all genetic 
variation is explained by the markers, while it 
is  likely  that an  important part of  the genetic  
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variance is explained by loci in between the 
markers (VanRaden, 2008). This may lead to 
overestimation of REL_LHS. The cross-
validation method makes no such assumptions. 
Our results indicated that for scenarios with 
100 or more QTL with equal effect, 1,000 
generated data sets is sufficient to assess the 
difference between REL_MC and REL_LHS. 
In these scenarios, the REL_LHS was indeed 
overestimated by 0.02 to 0.04, even when all 
genetic variance was explained by the markers.  
This study provided a method to obtain 
unbiased individual reliabilities for GEBV. An 
important unanswered question is how these 
REL_MC can be calculated from real data 
where the true breeding values and QTL are 
not known. For the model that was used in our 
study, with a GRM assuming equal 
contribution to the genetic variance, this can be 
done as follows. Replace steps 1, 2 and 3 by 
drawing the simulated breeding values from 
N(0, G 2ˆ aσ ). All other steps remain unchanged. 
A similar approach could be taken for models 
that allow unequal contributions of SNPs to the 
genetic variance, by adjusting G for SNP 
specific contributions to the genetic variance. 
 

Although the presented approach to obtain 
REL_MC is computationally demanding, it 
allows to validate calculated reliabilities for 
GEBV, obtained using other methods. 
 
 
Conclusions 
 
The presented method provides a procedure to 
validate GEBV reliabilities. Applying this 
method showed that reliabilities based on the 
inverse of the left-hand side of the mixed 
model equations tend to be overestimated. 
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Figure 1. Correlation between REL_MC and average REL_LHS for the validation animals across 
numbers of generated data sets. 
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Figure 2. REL_MC minus REL_LHS for the validation animals across numbers of generated data sets. 
 
 


