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The development of assessment instruments in psychol-

ogy has the central goal of assessing the general construct 

of interest, which is assumed to be a single construct. Such 

a measure is termed a unidimensional measure. The dimen-

sion of the measure is important for interpreting the ob-

tained score. Unidimensional measures require only simple 

interpretation, since all items on the scale represent a single 

attribute. In contrast, multidimensional measures require 

complex interpretation. Therefore, the literature suggests 

that, in the first step of analysis, scale developers should 
run a factor analysis to determine the dimensionality of their 

measure, before examining reliability (Armor, 1974). 

Several studies have shown that the assumption of uni-

dimensionality is likely difficult to be fulfilled since factor 
analysis tends to produce new emerging factors that contrib-

ute to the explained scores variance. Some authors believe 

that it is hard to locate a single factor when measuring a 

broad ability or trait, especially when the measure contains 

several items with different levels of precision (Kamata, 

Turhan, & Darandari, 2003). A single factor can be achieved 

only when items on a scale are homogenous: this means that 

items measure similar content with small number of items, 

focus on narrowly defined content, and have the same level 
of precision (Graham, 2006). Scales developed in psychol-

ogy usually measures broad constructs that cover various 

aspects of trait manifestation. To achieve this purpose, scale 

developer increases the number of items to expand the do-

main being measured. Ideally, measures are assigned on the 

basis of a single dimension of individual differences, but in 

practice researchers often deal with clusters of items that 

represent different constructs. Therefore, measurement in 

psychology is a complex process that aims at providing in-

formation about constructs or aspects of behavior (Raykov 

& Shrout, 2002).

There are several factors that cause scales to be multidi-

mensional. First, constructs in psychology tend to be multi-

dimensional rather than unidimensional in nature (Drolet & 

Morrison, 2001). In contrast to the natural sciences, which 

usually deal with observable constructs that can be meas-

ured using a single instrument (e.g., measuring length with a 

ruler), variables in psychology are non-observable (latent), 

and can be measured using several facets or indicators. For 

example, to measure self-esteem, DeVellis (2011) suggests 

that scale developers utilize several items to represent the 

various indicators of self-esteem. However, using many 

items can have adverse consequences, as each item might 

potentially measure another attribute, depending on the 

scale and the level of precision of measurement. 
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Scales usually consist of several items differing in the 

size of correlation with the attribute, which in turn can con-

tribute to the emergence of new factors. These items gen-

erally should be removed from the scale, but the situation 

becomes problematic when the content of items contributes 

substantially to the assessment of the attribute being meas-

ured. In such a situation, a scale can be considered a multi-

dimensional rather than a unidimensional measure.

Sometimes the emergence of new factors is attribut-

able to measurement administration rather than the content. 

Crocker and Algina (1986) gave an example of an aptitude 

test administered under strict time limits. The score of the 

test is potentially affected by the irrelevant variable (here, 

speed), which reflects another attribute than the construct 
being measured. In this situation, applying a factor analysis 

will produce several factors, one of them related to an indi-

vidual’s ability to function under time pressure. 
Finally, the number of items on a scale can change a uni-

dimensional measure into a multidimensional one. Drolet 

and Morrison (2001) showed that number of items on a 

scale can affect the factor structure of the measure. A larger 

number of items tend to generate a greater potential for fac-

tor analysis to yield multiple dimensions, in addition to the 

original dimension intended to be measured. 

Empirical results have shown that the assumption of the 

unidimensionality of measures usually does not seem to 

hold (Brunner & Süβ, 2005). On a practical level, research-

ers usually employ Cronbach’s alpha coefficient to estimate 
reliability in an arbitrary way, even though the unidimen-

sionality assumption is violated (Schmitt, 1996). However, 

alpha for a scale comprising several dimensions will gen-

erally underestimate true reliability (Gerbing & Anderson, 

1988), and is therefore suited only for estimating the reli-

ability for a set of items that assess a single latent construct 

(i.e., unidimensional scales). Thus, when applying an alpha 

coefficient to a multidimensional measure, researchers are 
advised to separately estimate reliability for the composite 

dimensions; if, for example, a scale comprises five dimen-

sions, then the reliability should be estimated in five separate 
alpha coefficients. For example, a five-factor personality 
scale is a single scale that measures five separate dimen-

sions. The alpha coefficient then is employed to estimate 
the five dimensions separately, as using a single alpha to 
estimate all items on the entire scale would increase the bias 

estimation of the true reliability. Alternatively, instead of 

estimating reliability separately for each factor, researchers 

can apply a multidimensional reliability coefficient, which 
can incorporate all scale factors into a single measure of 

reliability.

Multidimensional Reliability in Various Studies

The multidimensionality of measurement is evidenced 

by the results of factor analyses that generate multiple fac-

tors, or for which inter-correlation among items remains 

zero after controlling for the factors. The multidimensional 

approach was introduced by Thurstone (1931) and promoted 

by Burt (1938), employed as an alternate conceptualization 

of multidimensional measures. When factor analysis for a 

set of items generates multiple dimensions, one possible 

way to specify the structure is by defining new groupings of 
items as sub-attributes. Hence, a multidimensional measure 

basically consists of several unidimensional measures. 

The dimensionality of measures sometimes does not 

merely refer to how many factors are included in the meas-

ure; in addition to being confirmed by the number of fac-

tors inside the measure, dimensionality is also confirmed 
by whether items on the scale support the congeneric meas-

urement assumption. Congeneric measurement is indicated 

when a set of items on the scale have different factor load-

ings and error variances. Parallel model is a special case of 

the congeneric model. Factor loading shows the relationship 

between items and constructs; thus, if congeneric assump-

tions are to hold, items on the scale measure the construct 

differently. When congeneric assumption is held, some 

items might load strongly on the construct being measured, 

while others load only moderately. 

According to this definition, multidimensional measures 
comprise heterogeneous items (McDonald, 1999), and uni-

dimensional measures comprise homogeneous items (Car-

mines & McIver, 1981; Jöreskog, 1971). Using this knowl-

edge, the multidimensionality of a measure can be inferred 

from either the item bundle level (each set of items assesses 

a different domain measure) or from the item level (each 

item has varying factor loading value). The term multidi-

mensional, as used in this article, refers to the first condi-
tion, whereby a set of items (e.g., subscale, item parcel) 

measures a sub-attribute. 

The most popular method of estimating reliability was 

developed under the unidimensionality assumption (i.e., co-

efficient alpha). Hence, one should apply item analysis to 
each dimension. In addition to estimating the reliability of 

each dimension separately, one could estimate the reliability 

of different items together. Forcing a unidimensional meas-

ure approach onto multidimensional measures should be 

avoided, as this will lead to bias. This article will describe 

how to compute several coefficients that are appropriate for 
multidimensional measures.

Many personality scales comprise several components, 

aspects, or facets of the attribute being measured. For ex-

ample, Big-Five Personality Inventory developed under 

five-factor personality theory comprises five subscales, 
each representing one facet of personality: extroversion, 

neuroticism, conscientiousness, agreeableness, and open-

ness to experience (McCrae & Costa, 1996). Learning Style 

Inventory comprises four subscales: diverging, assimilating, 

converging, and accommodating. Coping Strategies Inven-

tory (Lazarus, 1991) reflects two essential styles of coping: 
problem-focused coping and emotion-focused coping. In-

telligence test by Brunner & Süβ (2005) consists of eight 
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factors: mental speed, memory, reasoning, creativity, figural 
ability, verbal ability, and numerical ability. Such factors or 

dimensions can be defined as subscales, subtests, clusters, 
or testlets (Rae, 2007). 

There is only scant literature explaining the using of reli-
ability coefficients for multidimensional measures. One ex-
ample is a study by Olson and colleagues (2011), who used 
a multidimensional reliability coefficient when reporting the 
psychometric properties of their measure, employing a strat-
ified alpha coefficient to estimate the reliability of the Adap-
tive Capacity Index. In addition, they also employed an in-
ternal consistency coefficient (i.e., alpha) for each of their 
four subscales. Hendriks, Kuyper, Lubbers, and Van der 
Werf (2011) also employed a stratified alpha coefficient for 
estimating reliability of the Five-Factor Personality Inven-
tory (FFPI). Another study, conducted by Schretlen, Ben-
edict, and Bobholz (1994), also employed a composite reli-
ability measure for the Wechsler Adult Intelligence Scale, 
and Evans (1996) conducted a study that used the Mosier 
composite reliability measure. Finn, Sawyer, and Behnke 
(2009) also used the Mosier composite reliability coeffi-
cient to estimate the reliability of the Psychological State 
Anxiety Scale. Based on these studies, multidimensional re-
liability testing can clearly be employed for assessments of 
a broad range of psychological attributes. Researchers who 
want to estimate reliability in multidimensional measures 
are advised to use one of the reliability coefficients that ac-
commodate multidimensional measures, discussed in the 
upcoming section. 

Reliability Coefficients for Multidimensional Measures

Reliability coefficients described in this section are de-

rived from two approaches: reliability coefficient based on 
classical test theory (CTT; e.g., stratified alpha coefficient) 
and latent trait (common factor) theory which is implement-

ed with factor analytic approach (e.g., omega coefficient). 
Several views, which are promoted by authority like Mc-

Donald (1999), posit that the estimates derived from these 

theories are not very different. This notion is supported by 

the fact that CTT is developed from common factor theory 

which can be traced to Charles Spearman’s concept who de-

scribed how to recognize that tests measure a common factor 

and determine the amount of error in test scores (Bovaird & 

Embretson, 2008). As a consequence, the estimates yielded 

from both theories are comparable. McDonald (1999) men-

tioned omega coefficient to be considered an alternative to 
alpha coefficient. Alpha coefficient is lower bound to omega 
coefficient. They are equal if and only if the items fit the sin-

gle-factor model with equal factor loading. Factor loadings 

can be used to assess item specific as well as scale specific 
reliability, thus, factor analytic approach is consistent with 

CTT. A work conducted by Kamata et al. (2003) comparing 

three multidimensional reliability coefficients based on dif-
ferent theories (CTT vs. common factor) indicates that the 

estimates from both theories are comparable.

In contrast to the above views, several authors (i.e., 

Borsboom, 2005) argue that there is a fundamental differ-

ence between these approaches. Besides, both approaches 

set up a formal structure (i.e., a model) between test scores 

and the attribute being measured. The measurement model 

developed under common factor theory should be evaluated 

against observed data for its adequacy by examining the 

goodness of fit with respect to empirical data before empiri-
cal implications of the model can be deduced. Only if the 

model fit is acceptable then researcher will be allowed to in-

terpret observations as measurements of the latent variables 

that were hypothesized (Borsboom, 2005). Hence, it should 

be noted that because the approaches have been developed 

under different theoretical background, the reliability values 

obtained from the two methods are not directly comparable.

Six reliability coefficients will be presented in the next 
section. The first three coefficients represent the general 
approach for computing reliability of a linear combination 

when reliabilities of the components are known. The formu-

las can readily be obtained from the general definitions of 
reliability and from the properties of the covariance matrix. 

The last three coefficients represent model based estimates 
of reliability.

Reliability coefficient based on CTT

This section presents reliability coefficient for a test 
composed of linear combinations of weighted components 

under the CTT framework. There are three reliability coef-

ficients presented in this section: stratified alpha, Mosier’s 
coefficient, and Wang and Stanley coefficient. Procedures 
for calculating the coefficient in this section include: (a) es-

timating the reliability of each component, (b) calculating 

the variance of each component, (c) calculating the correla-

tion coefficients among components, and then (d) assigning 
weights to individual components to form the composite.

Stratified alpha coefficient. The stratified alpha coeffi-

cient was introduced by Cronbach, Schoneman, and McKie 

(1965). This coefficient is suitable to estimating the reliabil-
ity of measures composed of several subtests, components, 

facets, or dimensions. The equation for the stratified alpha 
coefficient is presented here:

                                                                                     (1)

where    refers to variance of i component, ri is reliability 

of i component, and      is variance of total score (involving 

all item on the test). This equation indicates that conditions 
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fied alpha. Rae (2007) state that Equation 1 indicates: (a) 

α

σ

σ
s

i i

i

k

x

r

= −

−( )
=

∑
1

1
2

1

2
,

σ i

2

σ x

2



114

WIDHIARSO and RAVAND, Reliability coefficient for multidimensional measures, Review of Psychology, 2014, Vol. 21, No. 2, 111-121

when the items within each stratum meet to an essentially 

tau-equivalent model, the value stratified alpha is equal to 
the true reliability; (b) if one or more strata have items that 

meet congeneric model, then stratified alpha will always be 
a lower bound to reliability; and (c) the greater the varia-

tion among the factor loadings, the worse stratified alpha 
performs as a lower bound. 

The following section describes how to compute this co-

efficient, using the example of a researcher measuring an 
attitude (comprising three dimensions) toward a political 

policy. The variance and reliability of each dimension are 

presented in Table 1. The variance of each dimension is ob-

tained from the total score of items within the same dimen-

sion. To obtain the variance of Dimension A, an individual’s 
score for three items within Dimension A (subscale score) is 

first summed, and the variance of Dimension A is obtained 
from this score. The variance of the total score is obtained 

from the variance of the sum of all items on the scale. To ob-

tain this variance, readers should sum all of the items on the 

scale then compute the variance. In this example, a variance 

of the total score of 7.87 is obtained from the person’s total 
score on nine items. This value is different when summing 

three of dimension variances that results in 6.54.

Based on the information presented in Table 1, apply-

ing a conventional coefficient alpha to estimate reliability 
of measurements will underestimate the true reliability (α = 
.710). In contrast, applying a stratified coefficient alpha will 
produce a more satisfactory estimation:

This finding is consistent with that of Cronbach, Scho-

nemann, and McKie (1965), who used simulation data to 

demonstrate that the stratified alpha yielded reliability value 
substantially greater than the alpha itself, since each dimen-

sion of the scale measured several independent attributes. 

Using simulation data, Kamata et al. (2003) found that the 

stratified coefficient alpha consistently outperformed the tra-

ditional coefficient alpha when applied to multidimensional 
measures. They reported that the stratified alpha coefficient 
had very low bias in all data conditions of their simulated 

data. Additionally, the stratified alpha tended to underesti-
mate the true reliability when one component of the scale 

was miss-specified in the wrong dimension, or when one of 

the miss-specified components also had a lower reliability 
than the other components. In general, the stratified alpha 
estimates the true reliability with low bias, when test com-

ponents are specified to the correct dimensions. 
Rae (2007) explains why the stratified coefficient al-

pha outperforms the coefficient alpha for multidimensional 
measures; the stratified alpha can handle an instrument that 
is fitted to essentially tau-equivalent models, with a possible 
difference in loading values between dimensions (i.e., con-

generic). In contrast, the traditional alpha coefficient tends 
to perform as a lower-bound estimation of reliability when 

applied to congeneric measures. If the variation among the 

factor loadings of dimensions is high, then traditional alpha 

coefficient will perform worse as a lower-bound estimator.
Mosier’s reliability coefficient for composite scores. 

Mosier (1943) developed a reliability coefficient for meas-

ures with multidimensional structures. This coefficient can 
also be used when measures consist of independent struc-

tures reflected in several dimensions. Mosier noted that this 
coefficient is a general formula for estimating reliability 
with the possible dimensions weighted. The idea to develop 

this coefficient arose from an examination of the effect of 
the interrelationships among the variables on composite va-

lidity (Wang & Stanley, 1970). If the dimensions within a 

measure are mutually uncorrelated, then the reliability of 

the composite score can be estimated using each dimen-

sion’s reliability and weighted dimension. To estimate the 
reliability using Mosier’s coefficient, researchers must de-

fine the weight, reliability, and variability of each dimen-

sion, as well as inter-correlations among dimensions. In 

this example, we compute the reliability for an aptitude test 

composed of several subtests, which perform as independ-

ent measures or separate dimensions. Unlike the stratified 
alpha coefficient, the composite score reliability coefficient 
can accommodate the different weights of each dimension. 

The equation is:

                                                                                     (2)

where     refers to weight for each dimension, rjj is reliabil-

ity for each dimension, rjk is correlation between each two 

dimension, and      is variance of each dimension. To com-

pute the composite score reliability, we require information 

about the reliability, weight value, and variance score of 
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each dimension, as well as the correlation between dimen-

sions. Using data presented in the Table 1, solving for the 

numerator and the denominator elements of Equation 2 we 

obtain:

Combining all the above information, we obtain Mosi-
er’s reliability coefficient for composite scores equal to .862 
which is similar to stratified alpha. The composite score 
reliability coefficient has several characteristics. First, reli-
ability estimate will achieve 1.00 only if the reliability of 
each dimension is 1.00. Second, the greater the correlation 
between the dimensions, the higher the reliability obtained. 
Third, composite score reliability values are higher than the 
average reliability of each dimension, with some excep-
tions. For example, if the reliability of each dimension, vari-
ance, and weighted value remain equal and the correlations 
between the dimensions are close to zero, then Mosier’s 
coefficient will produce a composite reliability equal to the 
average reliability of the dimensions. 

Composite score reliability is defined in terms of the 
proportion of the total composite variance that serves as 
an estimation of the true-score variance (Wang & Stanley, 
1970). Composite score reliability is an unbiased estimate 
of the reliability of the general case multidimensional meas-
ure for either weighted or unweighted dimensions. One of 
the advantages of using this coefficient instead of the strati-
fied alpha coefficient is that it accommodates different, ap-
propriate weights for each dimension, which can achieve 
higher value reliability (Ogasawara, 2009).

There are many alternatives how to weight the compo-
nents of the measure and add such information to the Mosi-
er’s coefficient as well as Wang and Stanley’s coefficient 
explained in the next section. Rudner (2001) proposed two 
methods for assigning weights to component scores: the 
implicit approach and the explicit approach. In the implicit 
method, one can consider adding the raw scores from the 
components or using item response theory analysis. In the 
explicit method one can assign weights to individual items 
of components directly: give more weight to a component 
that is more difficult (weighting by difficulty), give heavier 
weights to more reliable components (reliability weighting), 
or use validity coefficients as weights (validity weighting). 
The explicit method is relevant for computing Mosier’s reli-
ability since researchers can input the weight explicitly.

Several authors have used the composite score of reli-

ability for their multidimensional measures. For example, 

Harter, Schmidt, Killham, and Asplund (2006) employed 

this coefficient in a meta-analysis designed to estimate the 
reliability of the performance measures used in various 

studies. Since this coefficient is composed of both the reli-
ability of each dimension and the inter-correlations among 

dimensions, they decided to add updated reliability and in-

ter-correlation among the dimensions to the outcome meas-

ures. In this case, they defined the composite performance 
as an equally weighted sum of customer loyalty, turnover, 

safety, absenteeism, shrinkage, and financial performance. 
Wang and Stanley composite reliability coefficient. 

Wang and Stanley (1970) stated that when a scale contains a 

number of component measures (i.e., dimensions), optimal 

weighting possibly improves the reliability of the composite 

measure. As a consequence, such a measure will provide a 

more valid score than if it is merely summed or averaged 

without weighting. Each component likely has unequal psy-

chometric properties, such as reliability, variance, and inter-

correlations with one another. Wang and Stanley assert that 

since each of the characteristics of the component is reflect-
ed in the composite measure, differential weighting for each 

component would be effective to estimate the reliability:

                                                                                     (3)

where wj is weight for j dimension, rj is reliability for j 

dimension, and rij is correlation between i and j dimension. 

In the case of a measure comprising two dimensions, the 

reliability of the composite score can be expressed as:

                                                                                    (4)
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Wang and Stanley composite reliability reaches 1.00 

only if every reliability value of each dimension also equals 

1.00. Likewise, if it is equal to zero, the reliability value 

must be zero because the correlation of each dimension is 

also zero, assuming there is low correlation between two 

random variables (reliability equal to zero). 

Rudner (2001) explained that, in a measure with two 

dimensions, the lowest possible value of the composite reli-

ability is equal to that of the composite dimension with low-

est reliability value. For example, a measure containing two 

dimensions with reliability values of .7 and .8, respectively, 

would have the lowest possible composite reliability value 

of .7. If the two components are correlated, the composite 

reliability may be higher than the separate reliability of both 

components.

Reliability coefficient based on common factor model

Reliability coefficients presented in this section are 
developed under common factor model. The procedure 

for computing the reliability usually includes: (a) defining 
measurement model that specifically states the hypothesized 
relations between the construct being measured and items, 

(b) making sure that the proposed model fits the data, and 
(c) inputting related information (e.g., factor loading) into 

the equation to get the reliability value. Three coefficients 
are presented in this section: omega coefficient, hierarchi-
cal omega coefficient (omega-H), and composite reliability.

Omega coefficient. If a scale is known to contain several 

independent dimensions, it is possible that the scale score 

cannot be obtained from a simple summed score, because 

each dimension has different characteristics. In such a case, 

each dimension should be treated differently, for example, 

by weighting dimension measures separately. Depending on 

how each dimension is weighted to obtain the scale score, 

the reliability coefficients based on assumptions of unidi-
mensionality and multidimensionality can be distinguished. 

In some situations, each dimension plays an equal role, and 

they are thus weighted equally. The coefficient omega ac-

commodates this demand by estimating reliability under 

equal dimension weighting.

The coefficient omega was proposed by McDonald 
(1999) using a factor-analytic framework. As with the other 

reliability coefficients, this coefficient estimates the propor-
tions of a set of indicators that can explain the construct 

being measured. The author therefore called this coefficient 
construct reliability. However, this term can be confusing, 

since construct reliability and composite reliability are used 

interchangeably. For example, Fornell and Larcker (1981) 

explain that the composite reliability of each latent variable 

can be used as an estimate of construct reliability. Bacon, 

Sauer, and Young (1995) called both coefficient alpha and 
coefficient omega composite reliability or construct reliabil-
ity coefficients. Composite reliability is used in the context 

of analysis approach while construct reliability is used in the 

context of the structure of attribute being measured.

The coefficient omega was previously understood as 
having a unidimensional measurement property, since it is 

interpreted as an estimate of how much variance in summed 

scores can be assigned to the single general dimension mod-

el of measurement (McDonald, 1999). This model is usu-

ally called a common factor model, indicated by a single 

test composed of multiple dimensions. However, coefficient 
omega is not a purely unidimensional measurement proper-

ty (Reise, Moore, & Haviland, 2010); moreover, Heise and 

Bohrnstedt (1970) suggest coefficient omega as an estima-

tor of reliability for multidimensional measures. The differ-

ence between the coefficients alpha and hierarchical omega 
is the extent to which the reliability estimate is influenced 
by allowing group factors to figure into true-score variation.

There are two types of coefficient omega: general omega 
coefficient and weighted or hierarchical omega coefficient. 
The latter type is calculated by weighting each indicator 

based on factor loadings. Coefficient omega can be com-

puted using the pattern of coefficients estimated by EFA or 
CFA (Brunner & Süβ, 2005). Coefficient omega in terms of 
factor loadings can be expressed as follows: 

                                                                                    (5)

where λij refers to factor loading of i-indicators on j-factor 

and ei refers to unique variance of each indicator. The de-

nominator of the equation is the variance of the summed 

score of all included items.

Table 2 gives an example using fictitious data compris-

ing nine items from a three-dimensional measure derived 

from similar data to Table 1. To compute the value of factor 

loading, CFA is first conducted for a set of scale items. The 
loading value from CFA, reported by computer programs 

such as EQS, LISREL, MPLUS, or AMOS, can be used.
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Figure 1. A bifactor model for computing coefficient omega.
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Coefficient omega is model based reliability, therefore 
reliability values obtained under different models will re-

sult in different values as well. Factor loadings presented in 

Table 2 are obtained from confirmatory factor analysis us-

ing bifactor model that estimates general and specific factor 
simultaneously (see Figure 1). Readers interested in detailed 

information about bifactor model (usually called general-

specific model or nested-factor model) may consult Reise 

(2012). Solving for omega from Equation 6 according to 

information presented in Table 2 yields a value equal to:

ment precision, the estimated reliability will be higher than 

the coefficient alpha (Yurdugul, 2006).
McDonald’s hierarchical omega coefficient. McDonald 

(1970) introduced the hierarchical omega coefficient as an 
estimate of the reliability of measures that consist of several 

specific unique elements, but for which the general factor 
still holds. This coefficient has several names, such as coef-

ficient H (Hancock & Mueller, 2001), canonical-factor-re-

gression method coefficient omega (Allen, 1974), weighted 
omega (Bacon et al., 1995), and construct reliability (Brun-

ner & Süβ, 2005). This coefficient modifies the omega coef-
ficient, which is unable to accommodate different weights 
among dimensions. This coefficient still performs well on 
unidimensional measures when the congeneric assumption 

is held, or on multidimensional measures with varied di-

mensions. The hierarchical omega is expressed as follows:

                                                                                     (6)

where λi is factor loading of i-indicators on j-factor. The dif-

ference between the coefficient omega and omega-H lies in 
the numerator. The numerator of coefficient omega involves 
both general and specific components while coefficient 
omega-H only involves general factors. Again, from Table 2 

we can obtain omega-H as follows:

Table 2

Standardized factor loading values of nine items from a three-dimensional 

measure on one general and three specific factors

Dimension Items G F1 F2 F3 Unique 

A

1 .17 .42 .13

2 .17 .42 .10

3 .15 .42 .14

B

1 .20 .38 .12

2 .30 .37 .11

3 .22 .40 .11

C

1 .10 .42 .14

2 .05 .44 .11

3 .12 .46 .10
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Since the proposed model consists of four latent vari-

ables (one general and three specific factors), there are four 
components of summed factor loadings in the numerator 

of the equation. It should be noted that the denominator of 

the Equation 5 (6.84 + 1.06 = 7.90) is equal to variance of 
the summed score of all included items (7.87, see Table 1). 

Hence, some researchers (i.e., McDonald, 1999) use vari-

ance of summed score when computing the value of coef-

ficient omega. 
Coefficient omega is widely used by researchers who 

use SEM with multidimensional constructs (Segars, 1997). 

Applying this coefficient to parallel or tau-equivalent meas-

urement, which assumes that each item has equal amount 

of precision of measurement, will obtain an estimate of re-

liability equal to the coefficient alpha. In contrast, if this 
coefficient is applied to congeneric measurement, which as-

sumes that each indicator has different amount of measure-
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The low omega-h indicates that (a) the universe from 

which one’s scale indicators are sampled is multifaceted and 
(b) the scale scores are a result of the largely independent 

contributions of what is unique to several of these facets, 

without much of a contribution from a latent construct that 

is common to all the facets (Zinbarg, Revelle, Yovel, & Li, 

2005). 

Coefficient omega and omega-H are different param-

eters, in most cases omega being always higher than ome-

ga-H except in the case of a unidimensional measure. The 

hierarchical omega coefficient is appropriate for a scale 
evaluated using SEM, because it allows each component 

of the measure to be weighted proportional to its true-score 

variance (Bacon et al., 1995). This coefficient is also appro-

priate for unidimensional measures, especially when item 

loadings are not equal. In this case, coefficients omega will 
yield a greater value than will coefficient alpha when the 
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number of items is small. Hierarchical omega coefficient 
can be interpreted as the square of the correlation between 

the dimensions of the optimal linear composite components; 

some authors therefore argue that this coefficient produces 
maximal reliability. However, the reliability value can be 

improved by appropriately weighting the constituent com-

ponents. Using simulation data, Bacon and colleagues 

(1995) found that applying coefficient omega to measures 
with unidimensional structure, with equal factor loadings 

for all items, gives the same numerical result as coefficient 
alpha.

Composite reliability. Raykov and Shrout (2002) provid-

ed a coefficient to estimate reliability for composite scores 
as a generalization of coefficient omega (McDonald, 1999) 
using SEM approach to the case of nonhomogeneous com-

ponents. The proposed coefficient can be used to explore the 

factor structure for a set of items, namely composite reli-

ability for congeneric measure. This coefficient is based on 
SEM and covariance structure analysis methods for scale 

reliability estimation using congeneric tests (Raykov & 

Shrout, 2002). The composite reliability coefficient is ob-

tained by taking the ratio between construct and composite 

variance. The equation is derived from the general concept 

of intra-class correlation as the ratio of model variance to 

the total variance, which includes reliability on one hand 

and the variance explained by the factor(s) on the other hand 

as two special cases. The term construct is used because 

this coefficient uses CFA. The composite reliability can be 
calculated using the following equation:

                                                                                     (7)

 

where λij is factor loading of Yi indicator in factor ηi, ηi is 

factor i and Ei is error measurement of indicator Yi. At the 

moment there is no computer software that directly facili-

tates computing this coefficient. However, Raykov (1997) 
created a syntax code for testing models based on SEM us-

ing programs such as EQS and LISREL. 

To obtain all elements in the Equation 7, a CFA model 

is set, representing a measure with two dimensions, each 

consisting of three items (see Figure 2). Three factors are 

assumed to predict a certain amount of how the construct 

represents the attribute being measured, with each item 

also manifesting the composite measure. The composite 

reliability is obtained by taking the ratio of the construct 

variance (F4) to the composite variance (F5). Using EQS, 

we obtained that true composite variance was 1.549 and the 

construct variance was 1.819. Equation 7 would give a coef-

ficient of the composite reliability of 1.549 / 1.819 = .852.
Raykov (1997) suggested that this coefficient is most 

trustworthy with large samples because it was developed 

under a SEM framework. This coefficient should also be 
applied with care to categorical data with a very limited 

number of response options. Categorical data are suitably 

approached by the weighted least squares method of esti-

mation, which performs optimally when applied to large 

samples; obtaining the composite reliability to estimate pa-

rameters on small samples will produce misleading results.

Using a set of simulated data with N = 500 for a scale 
consisting of six components, Raykov and Shrout (2002) 

found that the true reliability of the data was .83. Since all 

model parameters in the datasets were already defined, the 
true reliability was known. The result obtained by estimat-

ing, using the coefficient alpha, was .76, and the composite 
reliability was .83. These results indicate that the composite 

reliability can be considered a recommendable reliability 

estimator, while the coefficient alpha tends to underestimate 
true reliability.

SUMMARY

As instruments intended to measure attributes, scales 

usually involve multiple items. Scale items should be in-

terchangeable, since they perform as indicators of the same 

attribute. Attribute levels can be identified through a com-

posite score that is calculated from the unweighted sum of 

item scores. Computation of the composite score from a set 

of scale items is meaningful only if all items hold a uni-

dimensionality assumption (Gerbing & Anderson, 1988). 

However, in most cases, an inspection of scale dimension-

ality reveals that items or sets of items have low intercor-

relations, even though a core theoretical supposition is that 

these items assess the same attribute. In such a case, one can 

infer that the multidimensionality assumption holds. A reli-

ability coefficient based on a unidimensional method (i.e., 
coefficient alpha) cannot be applied to such a situation. The 
literature suggests applying an appropriate coefficient in the 
case of a multidimensional or congeneric measure (e.g., S. 

Green & Yang, 2009; Raykov, 1997). Recently, these coef-
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Figure 2. A general structural model for estimating composite 

reliability.
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ficients have gained popularity (Bacon et al., 1995), but few 
researchers have implemented them in practice. 

The reliability coefficients for multidimensional meas-

ures described in this article can be divided into two types: 

reliability coefficient based on CTT approach (i.e., strati-
fied alpha, Mosier’s, and Wang-Stanley’s coefficients) and 
common factor model approach (i.e., omega coefficient). As 
opposed to CTT, common factor model forces researchers 

to specify the substantive nature of the latent structure un-

derlying items or indicators either in EFA or CFA terms. Re-

liability coefficient based on CTT approach view reliability 
as the proportion of true-score variance, without consider-

ing the composition of the true score. On the contrary, since 

common factor approach examines whether covariance 

shared among components are accounted for by a single or 

multiple latent factors and whether the latent true score fac-

tor loads equally on that factor (Putka & Sackett, 2010), a 

good reliability estimate requires a fitting model (Green & 
Yang, 2009) as it is a model-based estimate.

In the case of reliability based on CTT, true score vari-

ance for the overall composite score reflects the sum of 
true score variance for each component of the composite 

and the sum of covariances between items comprising dif-

ferent components (Putka & Sackett, 2010). In the case of 

reliability based on common factor model, reliability has 

been defined as the ratio of the variance due to the com-

mon attribute to the total score variance (McDonald, 1999). 

For higher order factor model, the observed variance of a 

manifest subtest score is composed of variance attributable 

to the general (higher) order construct, the variance attribut-

able to the specific constructs, and subtest-specific factors. 
In this context reliability is mathematically expressed as the 

proportion of variance in the target construct to observed 

score variance as McDonald (1999) described. Since there 

are various variance components decomposed by the model, 

researchers should decide which variance components con-

tribute to test-score reliability (Bentler, 2006).

Reliability coefficients in this paper can also be distin-

guished from one another by how weighting is done (explic-

it weights vs. implicit weights). Two coefficients—Mosier’s 
and Wang-Stanley’s reliability coefficient—require re-

searchers to weight dimensions based on scale length, item 

difficulty, item discrimination, or theoretical bases. The 
other coefficients (e.g., coefficient omega) are weighted au-

tomatically by loading value. 

Discussions on unidimensional and multidimensional 

measurement models still evolve. Multidimensional tests 

are not only demonstrated by low correlations among test 

components or items as Osterlind (1998) mentioned that 

items from unidimensional tests may not correlate highly 

with each other, but only a single ability accounts for an ex-

aminee correctly responding to an item or set of test items. 

Several authors have warned that the standard (low-dimen-

sional) independent factor CFA model may be much too 

restrictive for many psychological instruments. Since the 

empirical research about the influence of model (mis)fit on 
the factor-analysis based coefficients is almost non-existing, 
this may pose a limitation to the practical utility of reliabil-

ity coefficients presented in this paper. On the other hand, 
coefficient alpha only requires uncorrelated errors as long 
as it is interpreted properly as a lower bound. Thus, the reli-

ability coefficients presented in this paper can be perceived 
to serve as an alternative that can be used to enrich the infor-

mation about the reliability in addition to coefficient alpha.
In summary, we urge researchers to take into account 

measure dimensionality when calculating reliability. If 

measures are found to be multidimensional, one of the al-

ternative coefficients described in this article should be ap-

plied. The correct coefficient depends on the main method 
used in the study. For example, studies that use SEM meth-

odology in data analysis should employ reliability coeffi-

cients based on CFA. The choice of reliability measure also 

depends on the design of a study, construct being measured, 

as well as the measurement model. Bentler (2006) gave a 

good illustration implemented in our demonstrated data, a 

single test that consists of three dimensions. A composite 

made of nine items could be looked at in several ways: a 

sum across nine items (giving emphasis on general factor) 

or a sum across three 3-item components (giving emphasis 

on specific factors). Even the composite score in both ap-

proaches is the same; the reliability values computed may 

differ. Composites made up of more components may or 

may not have larger reliability coefficients. They will tend 
to be larger, but do not necessarily need to be, because 

the assumptions underlying the theory may not be correct 

(Bentler, 2006).

Nonetheless, this paper is limited to reliability coeffi-

cients based on CTT and common factor approach. Recent-

ly, with the increasing popularity of item response theory, 

reliability measures under this approach have caught much 

attention (Cheng, Yuan, & Liu, 2011). Quite some work has 

recently been done in the field of multidimensional item-
response models (MIRT, see Reckase, 2009). Reliability es-

timates based on item response theory approach give more 

emphasis on the error of measurement for each test subject 

rather than a global index of reliability for the whole test. 

Hence, several authors feel that devising a single reliability 

coefficient for a test developed under item response theory 
approach is inappropriate and misguided. However, when 

a single coefficient needs to be reported, there are two 
possibilities (Green, Bock, Humphreys, Linn, & Reckase, 

1984). One approach is to define a conditional reliability 
describing a measurement reliability pertaining to individu-

als tested with the same precision as other persons with the 

same level of the measured ability. The other possibility is 

to define an average or marginal reliability. Marginal reli-
ability is an estimate of the overall reliability of the test 

based on the average conditional standard errors, which is 

estimated at different points on the achievement scale, for 

all examinees.
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