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Abstract

In traditional econometrics, the quality of an individual investment –
and of the investment portfolio – is characterized by its expected return
and its risk (variance). For an individual investment or portfolio, we
can estimate the future expected return and a future risk by tracing the
returns x1, . . . , xn of this investment (and/or similar investments) over the
past years, and computing the statistical characteristics based on these
returns. The return (per unit investment) is defined as the selling of
the corresponding financial instrument at the ends of, e.g., a one-year
period, divided by the buying price of this instrument at the beginning of
this period. It is usually assumed that we know the exact return values
x1, . . . , xn. In practice, however, both the selling and the buying prices
unpredictably fluctuate from day to day – and even within a single day.
These minute-by-minute fluctuations are rarely recorded; what we usually
have recorded is the daily range of prices. As a result, we can only find
the range [xi, xi] of possible values of the return xi. In this case, different
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possible values of xi lead, in general, to different values of the expected
return E and of the risk V . In such situations, we are interested in
producing the intervals of possible values of E and V .

In the paper, we describe algorithms for producing such interval esti-
mates. The corresponding sequential algorithms, however, are reasonably
complex and time-consuming. In financial applications, it is often very
important to produce the result as fast as possible. One way to speed up
computations is to perform these algorithms in parallel on several proces-
sors, and thus, to speed up computations. In this paper, we show how
the algorithms for estimating variance under interval uncertainty can be
parallelized.

1 Computing statistics is important

In traditional econometrics, the quality of an individual investment – and of
the investment portfolio – is characterized by its expected return and its risk
(variance). For an individual investment or portfolio, we can estimate the fu-
ture expected return and a future risk by tracing the returns x1, . . . , xn of this
investment (and/or similar investments) over the past years, and computing the
statistical characteristics based on these returns: the expected return

E =
1
n
·

n∑

i=1

xi (1)

and the risk

V =
1
n
·

n∑

i=1

(xi −E)2. (2)

2 Additional problem: interval uncertainty

The return (per unit investment) is defined as the selling price of the corre-
sponding financial instrument at the end of, e.g., a one-year period, divided by
the buying price of this instrument at the beginning of this period. It is usually
assumed that we know the exact values x1, . . . , xn of the returns.

In practice, however, both the selling and the buying prices unpredictably
fluctuate from day to day – and even within a single day. These minute-by-
minute fluctuations are not always recorded; what we usually have recorded is
the daily range of prices. As a result, we can only find the interval range [xi, xi]
of possible values of the return xi.
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3 Traditional approach to solving the problem
of interval uncertainty

A traditional approach to solving this problem is to take the average

x̃i =
xi + xi

2

and to compute the characteristics based on these averages. In particular, as
an estimate for the expected return, we use the value

Ẽ =
1
n
·

n∑

i=1

x̃i,

and as an estimate for the risk, we use the value

Ṽ =
1
n
·

n∑

i=1

(x̃i − Ẽ)2 =
1
n
·

n∑

i=1

(x̃i)2 −
(

1
n
·

n∑

i=1

x̃i

)2

.

4 Traditional approach: limitations

The traditional approach can lead to an underestimation of risk. For example, in
the bull market, there may be dips leading to a small value of xi, but overall, the
values are increasing and therefore, the upper value xi is a reasonable estimate
for xi. Thus, if we use the average, we underestimate the actual high price.

In contrast, for the bear market, spikes are accidental but lower values are
more typical, so a more reasonable approximation for the actual xi is the lower
bound xi. Thus, if we use the average, we overestimate the actual low price.

As a result, when we compute the variance based on the values x̃i, we under-
estimate the low prices and underestimate the high prices – thus underestimating
the variance (which is the measure of price variation).

5 Estimating statistics under interval uncer-
tainty: a computational problem

In the case of interval uncertainty, instead of the true values x1, . . . , xn, we
only know the intervals x1 = [x1, x1], . . . ,xn = [xn, xn] that contain the (un-
known) true values of the measured quantities. For different values xi ∈ xi,
we get, in general, different values of the corresponding statistical characteristic
C(x1, . . . , xn). Since all values xi ∈ xi are possible, we conclude that all the
values C(x1, . . . , xn) corresponding to xi ∈ xi are possible estimates for the cor-
responding statistical characteristic. Therefore, for the interval data x1, . . . ,xn,
a reasonable estimate for the corresponding statistical characteristic is the range

C(x1, . . . ,xn) def= {C(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}. (3)
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We must therefore modify the existing statistical algorithms so that they com-
pute, or bound these ranges.

6 Estimating expected return under interval un-
certainty

The expected return (arithmetic average) E is a monotonically increasing func-
tion of each of its n variables x1, . . . , xn, so its smallest possible value E is
attained when each value xi is the smallest possible (xi = xi) and its largest
possible value is attained when xi = xi for all i. In other words, the range E of E

is equal to [E(x1, . . . , xn), E(x1, . . . , xn)]. In other words, E =
1
n
·(x1+ . . .+xn)

and E =
1
n
· (x1 + . . . + xn).

7 Linearized techniques

When the daily fluctuations are small, we can use the linearization techniques.
Specifically, we represent the values xi as xi = x̃i + ∆xi, where the differences
∆xi

def= xi − x̃i are small, and we ignore quadratic terms in the formula for the
variance.

The condition that xi ∈ [xi, xi] means that ∆xi ∈ [−∆i, ∆i], where ∆i
def=

xi − x̃i = x̃i − xi and hence,

∆i =
xi − xi

2
.

In general, the variance has the form

V =
1
n
·

n∑

i=1

x2
i −

(
1
n
·

n∑

i=1

xi

)2

.

Linearization means that we replace the exact value

V (x1, . . . , xn) = V (x̃1 + ∆x1, . . . , x̃n + ∆xn)

with an approximate value

V (x1, . . . , xn) = V (x̃1 + ∆x1, . . . , x̃n + ∆xn) ≈

V (x̃1, . . . , x̃n) +
n∑

i=1

∂V

∂xi
(x̃1, . . . , x̃n) ·∆xi.

Here, Ṽ = V (x̃1, . . . , x̃n) is the risk estimated based on the daily averages. The

partial derivatives
∂V

∂xi
can be explicitly described, as

∂V

∂xi
(x1, . . . , xn) = 2xi − 2

(
1
n
·

n∑

i=1

xi

)
= 2 · (xi − E),
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so
∂V

∂xi
(x̃1, . . . , x̃n) = 2(x̃i − Ẽ).

Thus, the linearized expression for the variance takes the form

V = Ṽ + 2
n∑

i=1

(x̃i − Ẽ) ·∆xi.

The expression for V is monotonic in each of the unknowns ∆xi ∈ [−∆i, ∆i]:

• it is increasing when x̃i ≥ Ẽ and

• it is decreasing when x̃i ≤ Ẽ.

Thus:

• When x̃i ≥ Ẽ, the maximum is attained when ∆xi attains its largest
possible value ∆i. For this value ∆xi = ∆i, the corresponding term in the
expression for V takes the form (x̃i − Ẽ) ·∆i.

• When x̃i ≤ Ẽ, the maximum is attained when ∆xi attains its smallest
possible value −∆i. For this value ∆xi = −∆i, the corresponding term in
the expression for V takes the form −(x̃i − Ẽ) ·∆i.

Both cases can be described by the formula |x̃i − Ẽ| ·∆i.
Thus, the largest possible value for V takes the form V = Ṽ + 2∆, where

∆ def=
n∑

i=1

|x̃i − Ẽ| ·∆i.

One can similarly check that the smallest possible value for V takes the form
V = Ṽ − 2∆. So, in the linear approximation, the range of possible values of
the risk (variance) V has the form [Ṽ − 2∆, Ṽ + 2∆].

8 Linearization approximation is not always ad-
equate

In financial applications, the gain is usually obtained by having a small (often <
1%) advantage over the competing financial instruments. From this viewpoint,
it is desirable to have estimates which are as accurate as possible.

When the situation is stable, the daily fluctuations are low, and quadratic
terms can be reasonable ignored. However, the whole purpose of estimating
risk is to cover situations with high volatility. In such situations, the daily
fluctuations xi−xi = 2∆i can also be sizeable, and thus, terms quadratic in ∆i

cannot be ignored if we want accurate estimates.
In such situations, we need the exact range of the variance (risk) V .
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9 The exact estimation of risk under interval
uncertainty is, in general, an NP-hard prob-
lem

It is known that the problem of computing the exact range V = [V , V ] for the
risk (variance) V over interval data xi ∈ [xi, xi] is, in general, computationally
difficult (NP-hard); see, e.g., [11, 12].

Specifically, there is a O(n · log(n)) time algorithm for computing V , but
computing V is, in general, NP-hard.

10 Sequential algorithm for computing V in the
no-proper-subset case

In many practical situations, there are efficient algorithms for computing V .
For example, there exists a O(n · log(n)) time algorithm which is applicable in
all the cases when no two “narrowed” intervals, defined as

[x−i , x+
i ] def=

[
x̃i − ∆i

n
, x̃i +

∆i

n

]
(4)

are proper subsets of one another, i.e., when [x−i , x+
i ] 6⊆ (x−j , x+

j ) for all i and j
[4].

The algorithm from [4] is as follows:

1. First, we sort the values x̃i into an increasing sequence. Without losing
generality, we can assume that

x̃1 ≤ x̃2 ≤ . . . ≤ x̃n. (5)

2. Then, for every k from 0 to n, we compute the value V (k) = M (k)−(E(k))2

of the sample variance V for the vector x(k) = (x1, . . . , xk, xk+1, . . . , xn).
(For k = 0, x(0) = (x1, . . . , xn).)

3. Finally, we compute V as the largest of n + 1 values V (0), . . . , V (n).

To compute the values V (k) of Stage 2, first, we explicitly compute M (0) =
1
n
·

n∑

i=1

(xi)2, E(0) =
1
n
·

n∑

i=1

xi, and

V (0) = M (0) − (E(0))2. (6)

Once we know the values M (k) and E(k), we can compute

M (k+1) = M (k) +
1
n
· (xk+1)

2 − 1
n
· (xk+1)2 (7)
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and
E(k+1) = E(k) +

1
n
· xk+1 −

1
n
· xk+1. (8)

Comment. Detailed justification for this algorithm is given in the Appendix.

11 Sequential algorithm: number of computa-
tion steps

Sorting requires O(n · log(n)) steps; see, e.g., [3]. Computing the initial values
M (0), E(0), and V (0) requires linear time O(n). For each k from 0 to n− 1, we
need a constant number of steps to compute the next values M (k+1), E(k+1),
and V (k+1). Finally, finding the largest of n + 1 values V (k) also requires O(n)
steps. Thus, overall, we need

O(n · log(n)) + O(n) + O(n) + O(n) = O(n · log(n)) (9)

steps.

12 Comment about the possibility of linear-time
algorithms

As we have seen, in the O(n · log(n)) algorithm, the main computation time is
used on sorting. It is possible to avoid sorting when estimating variance under
interval uncertainty (see, e.g., [6, 18]), and use instead the known fact that we
can compute the median of a set of n elements in linear time (see, e.g., [3]).
(This use of median is similar to the one from [2, 7].)

It is worth mentioning, however, that while asymptotically, the linear time
algorithm for computing the median is faster than sorting, this median comput-
ing algorithm is still rather complex – so, for reasonable size n, sorting is faster
than computing the median – and thus, sorting-based algorithms are actually
faster than median-based ones.

13 Need for parallelization

Traditional algorithms for computing the variance V based on the exact values
x1, . . . , xn require linear time O(n). Algorithms for estimating variance under
interval uncertainty require a larger amount of computation time – e.g., time
O(n · log(n)).

In financial applications, it is often very important to produce the result
as fast as possible. One way to speed up computations is to perform these
algorithms in parallel on several processors, and thus, to speed up computations.

Let us we show how the algorithms for estimating variance under interval
uncertainty can be parallelized.
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14 Possibility of parallelization

For large n, we may want to further speed up computations if we have several
processors working in parallel.

In the general case, all the stages of the above algorithm can be parallelized
by known techniques. In particular, the computation of values M (k) and E(k)

of Stage 2 is a particular case of a general prefix-sum problem, in which we must
compute the values

a1, a1 ∗ a2, a1 ∗ a2 ∗ a3, . . . , (10)

for some associative operation ∗ (in our case, ∗ = +).

15 Case of potentially unlimited number of pro-
cessors

If we have a potentially unlimited number of processors, then we can do the fol-
lowing (see, e.g., [8], for the information on how to parallelize the corresponding
stages):

• on Stage 1, we can sort the values x̃i in time O(log(n));

• on Stage 2, we can compute the values V (i) (i.e., solve the prefix-sum
problem) in time O(log(n));

• on Stage 3, we can compute the maximum of V (i) in time O(log(n)).

As a result, we can check monotonicity in time

O(log(n)) + O(log(n)) + O(log(n)) = O(log(n)). (11)

16 Case of a fixed number of processors

If we have p < n processors, then we can:

• on Stage 1, sort n values in time

O

(
n · log(n)

p
+ log(n)

)
; (12)

see, e.g., [8];

• on Stage 2, compute the values V (i) in time

O

(
n

p
+ log(p)

)
; (13)

see, e.g., [1];
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• on Stage 3, compute the maximum of V (i) in time

O

(
n

p
+ log(p)

)
. (14)

Overall, we thus need time

O

(
n · log(n)

p
+ log(n)

)
+ O

(
n

p
+ log(p)

)
+ O

(
n

p
+ log(p)

)
=

O

(
n · log(n)

p
+ log(n) + log(p)

)
. (15)
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A Justification for the O(n · log(n)) time algo-
rithm

Let us first prove that the no-subset condition is equivalent to the condition
that

|x̃i − x̃j | ≥ |∆i −∆j |
n

. (16)
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Indeed, the condition |x̃i − x̃j | ≥ |∆i −∆j |
n

means that if x̃i ≥ x̃j , then we
have

x̃i − x̃j ≥ ∆i −∆j

n
, (17)

i.e.,

x̃i − ∆i

n
≥ x̃j − ∆j

n
(18)

and also
x̃i − x̃j ≥ ∆j −∆i

n
, (19)

i.e.,

x̃i +
∆i

n
≥ x̃j +

∆j

n
. (20)

This means that no narrowed interval (4) is a proper subinterval of the interior
of another narrowed subinterval.

Vice versa, if one of the narrowed intervals is a proper subinterval of another
one, then the condition (16) is not satisfied. Thus, the condition (16) indeed
means that no narrowed subintervals are proper subintervals of each other.

Let us now prove that the above algorithm is indeed correct. With respect
to each variable xi, the population variance is a quadratic function which is non-
negative for all xi. It is well known that a maximum of such a function on each
interval [xi, xi] is attained at one of the endpoints of this interval. Thus, the
maximum V of the population variance is attained at a vector x = (x1, . . . , xn)
in which each value xi is equal either to xi or to xi.

We will first justify our algorithm for the case when |x̃i − x̃j | >
|∆i −∆j |

n
for all i 6= j and ∆i > 0 for all i.

To justify our algorithm, we need to prove that this maximum is attained
at one of the vectors x(k) in which all the lower bounds xi precede all the upper
bounds xi. We will prove this by reduction to a contradiction. Indeed, let us
assume that the maximum is attained at a vector x in which one of the lower
bounds follows one of the upper bounds. In each such vector, let i be the largest
upper bound index preceded by the lower bound; then, in the optimal vector x,
we have xi = xi and xi+1 = xi+1.

Since the maximum is attained for xi = xi, replacing it with xi = xi− 2 ·∆i

will either decrease the value of the variance or keep it unchanged. Let us
describe how variance changes under this replacement. In the sum for M , we
replace (xi)2 with

(xi)
2 = (xi − 2 ·∆i)2 = (xi)2 − 4 ·∆i · xi + 4 ·∆2

i . (21)

Thus, the value M changes into M + ∆Mi, where

∆Mi = − 4
n
·∆i · xi +

4
n
·∆2

i . (22)
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The population mean E changes into E + ∆Ei, where ∆Ei = −2 ·∆i

n
. Thus,

the value E2 changes into (E + ∆Ei)2 = E2 + ∆(E2)i, where

∆(E2)i = 2 · E ·∆Ei + ∆E2
i = − 4

n
· E ·∆i +

4
n2
·∆2

i . (23)

So, the variance V changes into V + ∆Vi, where

∆Vi = ∆Mi −∆(E2)i = − 4
n
·∆i · xi +

4
n
·∆2

i +
4
n
· E ·∆i − 4

n2
·∆2

i =

4
n
·∆i ·

(
−xi + ∆i + E − ∆i

n

)
. (24)

By definition, xi = x̃i + ∆i, hence −xi + ∆i = −x̃i. Thus, we conclude that

∆Vi =
4
n
·∆i ·

(
−x̃i + E − ∆i

n

)
. (25)

Since V attains maximum at x, we have ∆Vi ≤ 0, hence

E ≤ x̃i +
∆i

n
. (26)

Similarly, since the maximum is attained for xi+1 = xi, replacing it with
xi+1 = xi+1 + 2 ·∆i+1 will either decrease the value of the variance or keep it
unchanged. Let us describe how variance changes under this replacement. In
the sum for M , we replace (xi+1)

2 with

(xi+1)2 = (xi+1 + 2 ·∆i+1)2 = (xi+1)
2 + 4 ·∆i+1 · xi+1 + 4 ·∆2

i+1. (27)

Thus, the value M changes into M + ∆Mi+1, where

∆Mi+1 =
4
n
·∆i+1 · xi+1 +

4
n
·∆2

i+1. (28)

The population mean E changes into E + ∆Ei+1, where ∆Ei+1 =
2 ·∆i+1

n
.

Thus, the value E2 changes into (E + ∆Ei+1)2 = E2 + ∆(E2)i+1, where

∆(E2)i+1 = 2 · E ·∆Ei+1 + ∆E2
i+1 =

4
n
· E ·∆i+1 +

4
n2
·∆2

i+1. (29)

So, the variance V changes into V + ∆Vi+1, where

∆Vi+1 = ∆Mi+1 −∆(E2)i+1 =

4
n
·∆i+1 · xi+1 +

4
n
·∆2

i+1 −
4
n
· E ·∆i+1 − 4

n2
·∆2

i+1 =

4
n
·∆i+1 ·

(
xi+1 + ∆i+1 − E − ∆i+1

n

)
. (30)
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By definition, xi+1 = x̃i+1−∆i+1, hence xi+1+∆i+1 = x̃i+1. Thus, we conclude
that

∆Vi+1 =
4
n
·∆i+1 ·

(
x̃i+1 − E − ∆i+1

n

)
. (31)

Since V attains maximum at x, we have ∆Vi+1 ≤ 0, hence

E ≥ x̃i+1 − ∆i+1

n
. (32)

We can also change both xi and xi+1 at the same time. In this case, the
change ∆M in M is simply the sum of the changes coming from xi and xi+1:
∆M = ∆Mi + ∆Mi+1, and the change ∆E in E is also the sum of the corre-
sponding changes: ∆E = ∆Ei + ∆Ei+1. So, for

∆V = ∆M −∆(E2) = ∆M − 2 · E ·∆E −∆E2, (33)

we get

∆V = ∆Mi + ∆Mi+1 − 2 · E ·∆Ei − 2 · E ·∆Ei+1 − (∆Ei)2−
(∆Ei+1)2 − 2 ·∆Ei ·∆Ei+1. (34)

Hence,
∆V = (∆Mi − 2 · E ·∆Ei − (∆Ei)2)+

(∆Mi+1 − 2 · E ·∆Ei+1 − (∆Ei+1)2)− 2 ·∆Ei ·∆Ei+1, (35)

i.e.,
∆V = ∆Vi + ∆Vi+1 − 2 ·∆Ei ·∆Ei+1. (36)

We already have the expressions for ∆Vi, ∆Vi+1, ∆Ei = −2 ·∆i

n
, and ∆Ei+1 =

2 ·∆i+1

n
, so we conclude that ∆V =

4
n
·D(E), where x

D(E) def= ∆i ·
(
−x̃i + E − ∆i

n

)
+ ∆i+1 ·

(
x̃i+1 − E − ∆i+1

n

)
+

2
n
·∆i ·∆i+1. (37)

Since the function V attains maximum at x, we have ∆V ≤ 0, hence D(E) ≤ 0
(for the population mean E corresponding to the optimizing vector x).

The expression D(E) is a linear function of E. From (26) and (32), we know
that

x̃i+1 − ∆i+1

n
≤ E ≤ x̃i +

∆i

n
. (38)

For E = E− def= x̃i+1 − ∆i+1

n
, we have

D(E−) = ∆i ·
(
−x̃i + x̃i+1 − ∆i+1

n
− ∆i

n

)
+

2
n
·∆i ·∆i+1 =

13



∆i ·
(
−x̃i + x̃i+1 +

∆i+1

n
− ∆i

n

)
. (39)

We consider the case when |x̃i+1 − xi| >
|∆i −∆i+1|

n
. Since the values x̃i are

sorted in increasing order, we have x̃i+1 ≥ x̃i, hence

x̃i+1 − x̃i = |x̃i+1 − x̃i| > |∆i −∆i+1|
n

≥ ∆i

n
− ∆i+1

n
. (40)

So, we conclude that D(E−) > 0.

For E = E+ def= x̃i +
∆i

n
, we have

D(E+) = ∆i+1 ·
(

x̃i+1 − x̃i − ∆i

n
− ∆i+1

n

)
+

2
n
·∆i ·∆i+1 =

∆i+1 ·
(
−x̃i + x̃i+1 +

∆i

n
− ∆i+1

n

)
. (41)

Here, from |x̃i+1 − x̃i| > |∆i −∆i+1|
n

, we also conclude that D(E+) > 0.

Since the linear function D(E) is positive on both endpoints of the interval
[E−, E+], it must be positive for every value E from this interval, which con-
tradicts to our conclusion that D(E) ≥ 0 for the actual population mean value
E ∈ [E−, E+]. This contradiction shows that the maximum of the population
variance V is indeed attained at one of the values x(k), hence the algorithm is
justified.

The general case when |x̃i− x̃j | ≥ |∆i −∆j |
n

and ∆i ≥ 0 can be obtained as
a limit of cases when we have strict inequalities. Since the function V is contin-
uous, the value V continuously depends on the input bounds, so by tending to
a limit, we can conclude that our algorithm works in the general case as well.
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