
Estimating Risk with Time-to-Event Data: An Application to the

Women’s Health Initiative

Dandan Liua, Yingye Zhengb, Ross L. Prenticeb, and Li Hsub,†

aDepartment of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37232

bPublic Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109

Abstract

Accurate and individualized risk prediction is critical for population control of chronic diseases

such as cancer and cardiovascular disease. Large cohort studies provide valuable resources for

building risk prediction models, as the risk factors are collected at the baseline and subjects are

followed over time until disease occurrence or termination of the study. However, for rare diseases

the baseline risk may not be estimated reliably based on cohort data only, due to sparse events. In

this paper, we propose to make use of external information to improve efficiency for estimating

time-dependent absolute risk. We derive the relationship between external disease incidence rates

and the baseline risk, and incorporate the external disease incidence information into estimation of

absolute risks, while allowing for potential difference of disease incidence rates between cohort

and external sources. The asymptotic properties, namely, uniform consistency and weak

convergence, of the proposed estimators are established. Simulation results show that the proposed

estimator for absolute risk is more efficient than that based on the Breslow estimator, which does

not utilize external disease incidence rates. A large cohort study, the Women’s Health Initiative

Observational Study, is used to illustrate the proposed method.
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1. INTRODUCTION

Accurate and individualized risk prediction is valuable for population control of chronic

diseases such as cancer and cardiovascular diseases. To be clinically useful, prediction of

risks needs to reflect an individual’s true risk state accurately and to have small statistical

variation. Developing such a risk model can be a major undertaking, because it often

requires assembling large prospective cohorts with many individuals assessed for genetic

and environmental risk factors at baseline and followed up over time until the occurrence of

clinical events of interest or termination of the follow-up period.
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Our research is motivated by the need to provide accurate and efficient risk prediction for

rare chronic diseases. The Women’s Health Initiative (WHI), launched in 1991, is one of the

largest U.S. disease prevention programs addressing heart disease, breast and colorectal

cancer, osteoporotic fractures, and other clinical outcomes in postmenopausal women.

Between 1993 and 1998, a total of 93,676 women aged 50 to 79 years were recruited into

the WHI observational cohort study throughout the US (Women’s Health Initiative Study

Group, 1998). The study collects information on sociodemographic and epidemiologic

factors using standardized questionnaires, and biological samples are collected at clinic

visits. While the WHI constitutes one of the largest research cohorts in the US, the

efficiency of individual-level risk estimates is still a concern due to the relatively low

incidence of disease during cohort follow-up and the large number of risk factors under

consideration.

The probability of developing disease by time t given the subject is disease free at t0 and

his/her risk factor profile at t0 can be generally decomposed into two components: the time-

dependent disease risk for a baseline risk factor profile, and the relative risk of developing

disease for a particular risk factor profile compared to the baseline. Therefore, a natural

approach for estimating the disease risk is to fit a regression model to obtain relative risk

estimators and then estimate the time-dependent baseline risk nonparametrically by using for

example, the Breslow estimator (Breslow, 1972; Breslow and Crowley, 1974), in the setting

of the proportional hazards model (Cox, 1972). One potential weakness for such an

approach is that the baseline risk may be estimated with large variation due to limited

sample sizes and sparse events in the follow-up period.

Suitable external disease incidence rates from a national registry or other large cohort

studies could be used to obtain estimates of the baseline risk (e.g., Gail et al., 1989; Chen et

al., 2006). The key is to link the baseline risks with the external disease incidence rates. This

can be achieved by using a time-dependent attributable risk function, which is defined as the

proportion of disease incidence rate attributed to risk factors. If one knows the distribution

of risk factors in the population, then the attributable risk function at time t can be obtained

by one minus the inverse of the integrated relative risk function over the risk factor

distribution of subjects who are at-risk at time t. However, the information about risk factor

distribution is usually not readily available, particularly if the risk factor profile includes

novel risk factors and biomarkers. Several population-based studies may need to be

combined to estimate a joint distribution of risk factors. See for example, Chen et al. (2006),

for an e ort of this type to predict breast cancer risk from mammographic density and other

risk factors. Alternatively one can estimate the attributable risk function from more readily

available disease case data only, assuming the attributable risk to be constant over time

(Bruzzi et al., 1985). This approach does not require known distribution of risk factors in the

at-risk population, and it is easy to implement. However, since the estimator employs

information from cases only, it is not efficient if non-case data are available and it also

requires a strong independent censoring assumption. Moreover, when the attributable risk

function varies with time, it leads to a biased baseline risk estimator.

The goal of this paper is to make use of disease incidence data from external sources to

obtain an efficient baseline risk estimator. One example of external sources for cancer
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outcomes is the Surveillance Epidemiology and End Results Registry (SEER) data, a

primary source for cancer statistics representing 26% of the US population and providing

incidence rates for various cancer sites. We propose a novel approach to estimating the

absolute disease risk, extending the idea of Gail et al. (1989) to allow the attributable risk

function to vary flexibly with time, and the censoring to be conditionally independent of

failure times given the risk factors. We expect the use of the external disease incidence

information to improve the efficiency of the risk function compared to the estimator based

on the Breslow baseline hazard estimator from the cohort data. However, there is also a

question of the extent to which the baseline risk of cohort participants is same as the external

sources. For example, subjects in the WHI may differ from the general population because

of eligibility criteria that included a clinically assessed predicted survivorship of at least 3

years from enrollment, and characteristics related to their self-selection for the study. The

key to our proposal is to allow for such difference when estimating the attributable risk

function using all the cohort data. In addition, our proposed estimator does not require the

joint distribution of risk factors to be known in the population, and therefore can be readily

applied in practice.

The rest of the article is organized as follows. We describe estimation methods for risk

prediction in Section 2 and the large sample properties in Section 3. The finite sample

performance of the proposed estimator is assessed through a simulation study in Section 4.

The proposed method is applied to risk prediction for colorectal cancer using the WHI

observational study in Section 5. Finally, we conclude the article with some remarks in

Section 6. Technical details are provided in the Supplementary Materials.

2. METHODS DEVELOPMENT

2.1 Notation and Model

Since for many chronic diseases the time to a clinical event can be censored by competing

risk events such as death, it is necessary to take this aspect into consideration when

projecting disease risk particularly for long intervals (Gail, 2011). We, therefore, adopt the

competing risks framework and model cause-specific hazards for the cause of interest and

competing risk events (Kalbfleisch and Prentice, 2002). Without loss of generality, we

assume there are two types of events with ∊ = 1 for the cause of interest and ∊ = 2 for

competing causes. Let T be the failure time from all causes. We specify the cause-specific

hazard for (T, ∊ = 1) given Z by the commonly used proportional hazards model (Cox,

1972):

(1)

where , λ0(t) is an unspecified baseline

cause-specific hazard function, and β0 is a p-vector of regression coefficients. Let λ†(tZ) be

the cause-specific hazard function for competing causes ∊ = 2.
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Let R(t|t0; Z) denote a subject’s risk of developing disease by a future time t given he/she is

disease-free at current age t0 and has risk profile Z. Then R(t|t0; Z), also called the absolute

risk by Gail (2011), can be defined as

(2)

The second equation in (2) follows integration of instantaneous probabilities of developing

disease between time t0 and time t, where the instantaneous probability at time u, t0 < u < t,

is the hazard of developing disease at u multiplied by the probability that the subject is free

of disease and other competing risks (the exponential term) at that time. The presence of

competing risks reduces the absolute risk for developing the disease, as the subject may

suffer other competing causes before he/she has a chance to develop the disease. In the

example of WHI, the outcome of interest is colorectal cancer (CRC) diagnosis and the

competing risk event is death due to causes other than CRC. The absolute risk is defined as

the probability of developing CRC in the next (t – t0) year interval given a subject is CRC-

free and alive at age t0 and her risk profile at age t0.

We will first focus on estimation of λ(t|Z) for the event of interest by following the usual

practice in epidemiologic studies for absolute risk estimation, assuming the competing risks

are independent of Z (see e.g. Gail et al., 1989; Gail, 2011). We will then describe the

generalization of the proposed approach to allow for the effect of Z on competing risks.

2.2 Proposed Estimation Method

To estimate λ(t|Z), we need to estimate β0 and λ0(t), both of which can be estimated in a

standard way by treating failures from other causes as censoring. This is because under the

competing risks framework, the likelihood factors into a separate component for each cause-

specific hazard function, where the component can be considered as regarding failures from

other causes as censored at the corresponding failure times, see equation (8.8) in Kalbfleisch

and Prentice (2002). Left truncation is also considered here since it is frequently

encountered in cohort studies as is shown in the motivating WHI study. Consider n subjects

in a cohort study. Let Ti, Li, and Ci be the minimum of failure times of all causes, left

truncation time (e.g. study entry) and censoring time, respectively, for i = 1,… , n, let ∊i ∈

{1, 2} be the cause of failure and Zi be a p×1 covariate vector. Define Xi = min(Ti, Ci) if Xi ≥

Li, and the censoring indicator δi = I(Li < Ti ≤ Ci)I(∊i = 1), where I(·) is an indicator

function. Therefore δi equals 1 if the failure time of the event of interest is observed and 0

otherwise. We assume that {(Xi, δi, Zi), i = 1,… , n} are independently and identically

distributed (i.i.d.), and both Li and Ci are independent of Ti conditional on Zi. Define the

counting process Ni(t) = I(Li < Xi ≤ t, δi = 1) and the at-risk process Yi(t) = I(Li < t ≤ Xi). In

addition, define , , and

, where r = 0, 1, 2, a⊗0 = 1, a⊗1. The maximum

partial likelihood estimator  may be obtained by solving the following score equations
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where  and τ is the end of the follow-up period. The cause-

specific cumulative baseline hazard function  can be estimated by the usual

Breslow estimator, denoted by . These estimators have been

widely used for estimating β and Λ0(t) in the Cox model for cohort studies.

It is clear from (2) that to estimate the absolute risk both regression coefficients and baseline

hazard function estimators are needed. However, since the Breslow estimator takes jumps at

observed failure times, it can be quite inefficient due to sparse events or small at-risk sizes in

cohort studies. As a result, it can lead to an inefficient estimation of R(t|t0; Z). In the

following we propose an estimator for λ0(t), leveraging the information from the external

disease incidence data.

Let λ*(t) and λ(t) denote the cause-specific incidence rates for the event of interest from the

external source and the cohort, respectively. Note that λ*(t) and λ(t) are sometimes termed

as the“composite” incidence rates (e.g., Gail et al., 1989; Gail, 2011), as they describe the

marginal cause-specific incidence rates from pooling subjects with different risk profiles.

Let f(t) and  be the marginal cause-specific density and survival functions of T for the

event of interest. In addition let f(t|Z) and  be their counterparts conditional on Z.

Note that . Therefore, under the Cox model

(1) we can write the composite cause-specific incidence rate as

, which, in the presence of

non-differential competing risk events, can be written as

where k(z) is the density distribution for Z in the pertinent population. It then follows that

λ0(t) = ϕ(t)λ(t), where

(3)

Note that the terms related to competing risk exp{−Λ†(t)} are canceled out in both

numerator and denominator.

When a suitable external cause-specific composite incidence rate λ*(t) is available, we can

plug it in for λ(t), and then estimate λ0(t) by ϕ(t)λ*(t). However, the incidence rate in the

cohort may differ from the external incidence rate because of eligibility criteria and
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participant characteristics such that cohort participants may not be entirely representative of

the population that the external incidence rate comes from. It is therefore important to allow

for such difference. Towards this end, we propose to estimate

where ρ0 > 0 with ρ0 = 1 indicating no difference of disease incidence rates between the

cohort and the external source. The key is then to estimate ϕ(t) and ρ0. Expression (3)

naturally leads to an estimator for ϕ(t), which entails estimation of

 by replacing β0 with  and Λ0(t) with the Breslow estimator

. Plugging in an empirical estimator for k(z), we can obtain an estimator for ϕ(t)

given by , where

 and

. A natural estimator for ρ0

is

(4)

Consequently, we can obtain the cause-specific baseline risk estimator by

, and the corresponding estimator for the absolute risk R(t|t0; Z) as

Our proposed absolute risk estimator differs from previous approaches that also use external

incidence rates for obtaining baseline risk. Our approach does not require known risk factor

distribution f(Z|T ≥ t) as in Chen et al. (2006), which overcomes the potential difficulty for

obtaining such distribution in the population. Compared to the case-only estimator of ϕ(t)

(Gail et al., 1989), our estimator uses not only the cases but also subjects who have not

developed diseases in the cohort when estimating ϕ(t); and hence, can be expected to

improve the efficiency for estimating ϕ0(t) compared to the case-only estimator.

Furthermore, since the proposed approach makes use of known external disease incidence

rates, it also improves efficiency compared to the Breslow estimator that uses cohort data

only. Lastly, we propose a scale factor ρ to allow for potential difference between the cohort

and the external incidence rate, which ensures a broad applicability of our proposed

estimator.
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2.3 Effect of Covariates on Competing Risks

In settings that competing risk events are associated with covariates in the risk model, we

can model the cause-specific hazard for the competing risks (T, ∊ = 2) given a q×1 covariate

Z† by using the proportional hazards model:

where ,  is an unspecified

baseline cause-specific hazard function for competing risks, and γ0 is a q × 1 vector of

regression coefficients. The function ϕ(t) becomes

(5)

which could be estimated by additionally plugging in the Breslow estimator for  and

the maximum partial-likelihood estimator for γ0. The estimator for γ0(t) can then be

obtained following the same approach as in Section 2.2 by multiplying the external

incidence rate with the modified estimator for ϕ(t) in (5), and  in (4).

To increase efficiency for estimating , we can take the same [hatwide] approach as for

estimating λ0(t) by borrowing the incidence rate information from the external source. In

this case, ϕ†(t) is defined as in (5) except that in the denominator the first term  is

replaced by  and  is the multiplicative factor allowing for difference in cause-

specific incidence rates for competing risks between cohort and the external source. Then

 can be estimated by multiplying , ϕ†(t) and λ†(t), where λ†(t) is the external

incidence rates for competing risks.

3. LARGE SAMPLE RESULTS

In this section we establish the large sample results of the proposed estimators and show that

 is consistent to Λ0(t) uniformly and asymptotically normal, and the corresponding risk

estimator  is also consistent uniformly and asymptotically normal.

First we define the following frequently used notation in survival analysis. Let

 be the martingale process with respect to the

filtration , where t ∈ (0, τ] with τ being

the maximum follow-up time and Pr(X ≥ τ) > 0. Let  denote the

observed information matrix and A = E{n−1I(β0)}. In addition, we let  denote the

limit value of  and . In addition we define the

following requisite notation:

Liu et al. Page 7

J Am Stat Assoc. Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Furthermore we let h(t; β), hr(t; β), g(t; β), gr(t; β) and qr(t; β) be the limit of H(t; β), Hr(t; β),

G(t; β), Gr(t; β) and Qr(t; β), r = 0, 1, respectively.

It has been shown in Andersen and Gill (1982) that  and  are strongly consistent

estimators for β0 and Λ0(t) over(0, τ], respectively. In addition, they showed that

where  and

.

In the following, we establish the asymptotic consistency and normality of the proposed

cumulative baseline hazard function  (Theorem 1) and absolute risk estimators

 (Theorem 2). Let  and S†(t) =

exp{−Λ†(t)}.

Theorem 1

Under regularity conditions provided in Section A.1 of the Supplementary Materials,

 converges almost surely to Λ0(t) uniformly in t ∈ [0, τ]. Moreover,

 converges in distribution to a zero mean Gaussian process with

covariance function , where

, with

, ,
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and c(t; β) = g(t; β)/g0(t; β)2 {g1(t; β) + q0(t; β)h(t; β) – q1(t; β) Λ0(t)}

To show the consistency of the proposed cumulative baseline hazard estimator , it

suffices to prove the consistency of  and . We decompose  into four

components and show each of components converges to 0 almost surely. Similarly, we

decompose  into two components, and show each component converges to 0 in

probability. The asymptotic normality of  is proved by showing that the process

 and  are asymptotically equivalent to a summation of n

i.i.d. quantities  and , respectively, and appealing to the

central limit theorem. The detailed proof is provided in Section A of the Supplementary

Materials.

The following theorem establishes the large sample theory for the proposed absolute risk

estimator based on .

Theorem 2

Under regularity conditions provided in Section A.1 of the Supplementary Materials,

 converges almost surely to R(t|t0; Z) uniformly in t ∈ [t0, τ]. Moreover,

 converges in distribution to a zero mean Gaussian

process with covariance function  where

The consistency of  follows directly from the convergence of  and  to

Λ0(t) and β0, respectively. The asymptotic normality is shown by writing each component as

summation of n i.i.d. quantities. A detailed proof is provided in Section A of Supplementary

Materials.

4. SIMULATION STUDY

In the first simulation study, we evaluated the performance of estimators for ϕ(t), ρ0 and

Λ0(t). Specifically, we generated failure times from a proportional hazards model λ(t|Z) =

λ0(t) exp(β0Z), where λ0(t) = pλ(λt)p–1, a Weibull distribution with p = 2 and λ = 0.01. We

generated two exposure variables Z = (Z1, Z2) with Z1 ~ Bernoulli(0.5) and Z2 ~ N(0, 1). The

corresponding regression coefficients β0 = (log 2, log 2). We let C = C*I(1 ≤ C* ≤ 100) +

I(C* < 1) + 100I(C* > 100), where C* ~ N(µ–10Z1, 15) and µ = 74.5 and 51.5 were chosen
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to yield the censoring rates of approximately 50% and 75%, representing moderate and high

censoring, respectively. We generated 1000 replicates with cohort size n = 1000. We did not

consider competing risks here since the focus for this set of simulation was to evaluate the

performance of our proposed ϕ(t), ρ and Λ0(t) estimators, for which only the regression

coefficients and the Breslow estimators were needed where the competing risks event was

treated as censoring. We considered ρ0 = 1, 1.5, 2, i.e., the external incidence rate λ*(t) =

λ(t)ρ0 and keep the simulated data the same regardless of the choice of ρ0. Therefore, the

result for  does not change with ρ0. Since λ*(t) is assumed known, the estimators for

different ρ0 only differ by a constant factor. To save space we only present the results for ρ0

= 1.5.

Table 1 summarizes the results for the proposed estimators ,  and , as well as

the Breslow estimator  at t = 20, 40, 60. All the estimators appear to be unbiased. The

asymptotic standard errors (ASE) are close to their empirical standard deviations (ESD), and

the resulting 95% coverage probabilities (CP) are close to the nominal level of 95%. The

proposed estimator  is more efficient than the Breslow estimator . The estimated

asymptotic relative efficiency (ARE) of  to  ranges from 1.21 to 2.38 when the

censoring rate is 50%, and reduces to 1.16 to 1.94 when the censoring rate increases to 75%.

The efficiency reduction for high censoring rate is because the proposed baseline hazard

estimator  also relies on  and , both of which lose efficiency as the censoring

rate increases. This is particularly the case for , as the estimator is proportional to the

number of cases in the cohort, see equation (4). Under both censoring scenarios, the

efficiency gain is the most at early time t = 20 with ARE=2.38 and 1.94 for censoring rate

50% and 75%, respectively, as there are few events in the early age interval.

In the second set of simulation, we considered a scenario that mimicked the WHI study on

colorectal cancer in terms of incidence rates and sample size. The details of the study are

provided in the following Application section. Specifically, we let p = 2 and λ = 0.0026 such

that the crude incidence rate of colorectal cancer is ρ0 = 1.5 times of the 2008 SEER

incidence rate. We also simulated a competing risks event and let the time to the competing

risks event follow a piecewise-constant exponential distribution with the hazard rate

equivalent to the mortality rate from all causes (excluding colorectal cancer) obtained from

the 2008 National Vital Statistics System (NVSS) (CDC and NCHS, 2012). The censoring

time C = C*I(1 ≤ C* ≤ 100) + I(C* < 1) + 100I(C* > 100), where C* ~ N(µ + 10Z1, 15) and

µ = 70 was chosen to yield the censoring rates of approximately 95%. We generated 1000

replicates with cohort size n = 20, 000. The rest of the settings were kept the same as in the

first simulation.

Table 2 summarizes the results of proposed ,  and  as well as the Breslow

estimator . It also includes the results of both the proposed estimator  and

the Breslow-based estimator denoted by  for baseline risks at t0 = 55, 60, 65, t =

t0 + 10 and Z = (0, 0), (0, 1), (1, 1). The overall performance of the estimators for  and
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Λ0(t) is similar to those in the first simulation, and the ARE of  to  ranges from

1.05 to 1.27, which is lower than that shown in Table 1. This is expected as the censoring

rate in this simulation is 95%, which is considerably higher than the first simulation. Both

absolute risk estimators are unbiased for all configurations. The ASEs and ESDs are close to

each other and the CPs are close to the nominal level of 95%. The proposed absolute risk

estimator is more efficient than the Breslow-based estimator with ARE of  to

 ranging from 2.29 to 3.21.

5. APPLICATION

5.1 Study Population and Risk Factors

As described in the Introduction, WHI includes a large cohort study that follows

postmenopausal women for various disease outcomes and mortality information. In this

paper we focus on predicting absolute risks of CRC for white women aged 50 and above. A

total of 76,733 subjects are included in the analysis. Among those, 1,073 (1.4%) developed

CRC and 9,190 (12.0%) died during the follow-up of causes other than CRC. The disease

outcome we considered is age (in integer years) at diagnosis of CRC, which is subject to left

truncation (age at enrollment), right censoring (age at the end of follow-up or loss of follow-

up) and competing risks (death).

The risk factors included in our model are selected based on the risk prediction model

developed by Freedman et al. (2009). In their work, risk prediction models were obtained for

colon (proximal and distal) and rectal cancers, respectively, using population-based case-

control data. The risk factors included in their final models vary for different tumor sites.

For the purpose of illustration, here we do not distinguish among tumor sites and include the

risk factors for all cancer sites. These are history of endoscopy (SMC) and polyps in last 5

years (SMC and no polyps, SMC and polyps, no SMC, and unknown history); number of

first-degree relatives with CRC (0, ≥ 1); current leisure-time vigorous activity (0, 0-2, > 2

hours per week); use of aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs)

(nonuser, regular user); vegetable consumption (< 2, ≥ 2 medium portion per day); BMI (<

30, ≥ 30kg/m2); and estrogen status within the last 2 years (negative, positive). Risk factors

are categorized analogous to Freedman et al. (2009) with some modifications made along

with the WHI data collection regime. Different from the case-control study used in

Freedman et al. (2009) which collected risk factors for cases at the time of CRC diagnosis,

the information on risk factors for WHI women were collected prospectively at the time of

enrollment.

The WHI study enrolled healthy post-menopausal women aged 50-79. Since no information

is available for women aged less than 50, we will estimate absolute risk only starting at age

50. For women who enrolled after age 50, due to late entry, their failure times were treated

as left truncated. For example, a women enrolled at age 60 and developed CRC at age 70

would only be in the at-risk set for developing disease between age 60 and 70. This problem

can be appropriately handled by carefully defining the at-risk set for each subject as

described in Section 2.2.
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5.2 Results

We obtained the external composite incidence rate for age after 50 from the SEER. To check

whether the SEER incidence rate is suitable for obtaining the baseline hazard function, we

graphically examined the WHI incidence and cumulative incidence rates compared to the

SEER rates (Figure 1). The WHI incidence rates are fairly close to the SEER incidence rates

for age between 50 and 65 years old and higher when age is greater than 65 years old. Even

though the 95% simultaneous confidence bands of the WHI incidence rates cover the SEER

incidence rates for almost the entire range of the age, the confidence bands of the cumulative

incidence rates fail to cover the SEER cumulative incidence rates for age greater than about

65 years old. We, therefore, assume that ρ0 is piece-wise constant with age 65 as the cut-off.

We extend constant ρ in equation (4) such that the integration from 0 to τ is replaced by pre-

specified age intervals, in the WHI example, [50, 65] and 65+, to reflect different ρ values

for before and after age 65 years old.

Since the Cox proportional hazards model was used to obtain the hazard ratio estimators, we

also checked the proportional hazards assumption for the risk factors (Grambsch and

Therneau, 1994). All p-values were greater than 0.05, suggesting the Cox model was

appropriate. The competing risk incidence rates, i.e., mortality rates, were obtained from the

2008 National Vital Statistics System (CDC and NCHS, 2012) from all causes except CRC.

The hazard ratio estimates and the corresponding 95% confidence intervals (CI) are

presented in Table S1 of the Supplementary Materials. Compared to women who had SMC

and no colon or rectal polyps in the last 5 years, women who were found having polyps at

screening were at higher risk for developing CRC (HR=1.16, 95% CI, 1.04 to 1.28), so did

women not having SMC (HR=1.30; 95% CI, 1.22 to 1.39). Women with one or more first-

degree relatives with CRC were more likely to be diagnosed with CRC than those without a

positive family history (HR=1.23, 95% CI, 1.05 to 1.45). Those taking aspirin or NSAIDs at

least once a week during the past 30 days (regular users) had lower risk of being diagnosed

with CRC (RR=0.76, 95% CI, 0.70 to 0.83). Women having sufficient vegetable

consumption (more than 2 medium portion/day) were also at lower risk of developing CRC

(HR=0.94, 95% CI, 0.88 to 1.00). Obese women (BMI ≥ 30) had an increased risk of CRC

(HR=1.38, 95% CI, 1.29 to 1.48). Women who used hormone- replacement therapy (HRT)

during the past 2 years were less likely to develop CRC (HR=0.87, 95% CI, 0.81 to 0.93).

We then used the proposed method to estimate the baseline hazard function and the absolute

risk. The proposed estimators  are 1.18 (95% CI: 1.01, 1.36) and 1.63 (95% CI: 1.52, 1.73)

for age below 65 and age above 65, respectively. The cumulative baseline hazard function

was slightly larger than the Breslow estimator with 95% CIs of the estimators overlapping

with each other (Figure S1 in Supplementary Materials).

We selected 3 risk factor profiles representing lowest, medium and highest risk for each of

the age groups 50, 55, 60 and 65, and calculated the 10- and 20-year absolute risk for

developing CRC (Table 3). For example, the first profile describes a 55-year old white

women categorized as lowest risk. She had SMC in the last 5 years but no polyps were

found. She does not have any positive family history, exercises strenuously each week, takes

aspirin daily, eats more than 2 medium portions of vegetable every day, took HRT in the
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past 2 years and has a BMI of 28 kg/m2. With this low-risk profile, her 10-year risk of

developing CRC is only 0.38% (95%CI: 0.29% to 0.47%) and her 20-year absolute risk is

1.14% (95%CI: 0.87% to 1.40%). In contrast, the “averaged” 10-year and 20-year risk for

women aged 50 is 0.52% and 1.86%, respectively, which grossly overestimates the risk for

this low risk woman. The third profile represents a high risk profile for a woman who is also

55 years old and white. Compared with low-risk profile women in the aforementioned

example, she did not have SMC nor HRT. She does not exercise or take aspirin/NSAIDs and

eats only 1 medium portion of vegetable every day. Moreover she has positive family

history of CRC and is obese with BMI of 32 kg/m2. Her 10-year absolute risk of CRC is

1.59% (95%CI: 1.21% to 1.98%), and her 20-year absolute risk is 4.74% (95%CI: 3.67% to

5.80%); both her 10- and 20-year absolute risk estimates are more than 4 times higher than

those of the low-risk women. If we were to use the averaged risk for these women, their

risks would be greatly underestimated.

For comparison we also calculated the absolute risk based on the Breslow estimator, which

does not make use of external incidence rates (Table 3). For the same two profiles shown

above, the 10- and 20-year absolute risk estimates for a low-risk 50-year old woman are

0.29% (95% CI: 0.15 to 0.42) and 1.05% (95% CI: 0.77% to 1.33%), respectively; for a

high-risk 50 year old woman, her 10- and 20- year absolute risk estimates are 1.22% (95%

CI: 0.65% to 1.79%) and 4.38% (95% CI: 3.26% to 5.50%), respectively. The risk estimates

are similar for both the proposed and the Breslow-based estimator with the proposed

estimator having shorter confidence intervals, suggesting that our proposed estimates are

more efficient than the Breslow-based estimators, although the efficiency gain of the

proposed estimator diminishes at the older age.

To further demonstrate the patterns of absolute risks for subjects with different risk profiles,

we plotted 5-20 years absolute risks in Figure 2 for white women aged 50, 55, 60 and 65

respectively with combined 4 levels of BMI (< 30 vs. ≥ 30) and estrogen status (negative vs.

positive) while holding the rest of the risk factors constant: having SMC and no polyps,

negative family history of CRC, less than 2 hours vigorous exercise every week, not taking

aspirin or NSAIDs daily and eating less than 2 medium portion of vegetable every day. The

absolute risks for the 4 combined levels of BMI and estrogen status present consistent

patterns across the 4 age levels, with BMI less than 30 kg/m2 and positive estrogen status

being the lowest risk profile and BMI equal to or greater than 30 kg/m2 and negative

estrogen status being the highest risk profile. Clearly such information could help physicians

and patients make more informed medical choices.

We further allowed for covariate effect on competing risks and assessed its impact by

incorporating such effects in the modified absolute risk estimates proposed in Section 2.3.

Specifically, we modeled the cause-specific hazards for competing risks using the Cox

model with WHI data. Several risk factors for CRC have significant effects on the

competing risks (death) including history of sigmoidoscopy and/or colonoscopy (SMC) and

history of polyps in last 5 year (p-value=0.0003), NSAIDs (p-value < .0001), vegetable

consumption (p-value< .0001) and BMI (p-value< .0001). We used the proposed method to

estimate the cause-specific baseline hazard rate for competing risks. The external incidence

rate for mortality due to causes other than CRC was extracted from 2008 NVSS. We plotted
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the WHI mortality rate for non-CRC death in comparison with the 2008 NVSS in Figure S2

of the Supplementary Materials. The mortality rate for non-CRC from NVSS is generally

higher than the WHI mortality rate, and is closed to the upper 95% simultaneous confidence

band. The estimated multiplicative factor ρ† is 0.96 (95% CI: 0.95 to 0.98). We re-calculated

the absolute risks for the 12 profiles above using the covariate adjusted competing risk

estimates. The results are shown in the Supplementary Materials Table S2. The absolute risk

estimates are very closed to the estimates that didn’t adjust for covariate effects on

competing risks, suggesting that adjusting for covariates in the hazard function for

competing risks does not have much influence on the absolute risk estimates in this

application.

6. DISCUSSION

Large-scale prospective cohort studies are valuable resources for building risk prediction

models. Risk factors are collected at the baseline and subjects are followed over time until

the occurrence of diseases or termination of the study. However, for rare diseases, the

number of events occurring during cohort follow up may be limited; as a result, the baseline

hazard function may not be estimated reliably if using only the cohort data. Our novel

approach utilizes external incidence rates to estimate the baseline hazard function, while

allowing for differences between cohort and external incidence rates. We prove that the

proposed estimator is uniformly consistent and converges weakly to a Gaussian process. We

also show that in finite sample sizes the proposed estimator is susbstantially more efficient

than the Breslow estimator that does not utilize the external incidence rates. Our proposed

approach is aimed to improve the efficiency of baseline hazard estimation with the goal to

improve the efficiency of absolute risk estimation. It does not affect the bias and efficiency

of regression coefficients estimators which are obtained by maximizing the partial likelihood

function of cohort data in a standard fashion.

We assumed the external disease incidence rate known from a population-based registry, for

example, cancer incidence rates from SEER in our data example. Since the population-based

registry typically involves a large number of subjects, the variability of the incidence rates

are generally negligible compared to the variability of parameter estimates from the cohort.

In some cases, we can also obtain the external disease incidence rate from another study. In

these situations, the variability of the external disease incidence rate may not be negligible.

This can be seen from the asymptotic distribution of , which can be

equivalently represented by

Since  is uniformly consistent to ϕ(t), the first term is asymptotically equivalent to

. Due to the fact that the external incidence rates are

estimated from another study, the two terms are not correlated asymptotically. Therefore, the
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asymptotic variance of  is the sum of two variances: variance due to estimation of

 from external data and variance due to estimation of  from the cohort.

An important issue for utilizing external disease incidence rates is that they may not be same

as the disease incidence rate in the cohort. In this paper, we proposed to capture this

potential difference by a scale factor ρ0. Clearly, ρ0 may vary with time, as shown in the

example of the WHI study. In the extreme scenario of ρ0 being completely nonparametric,

the proposed estimator becomes the Breslow estimator, and there will be no gain in

efficiency in estimating the baseline hazard function. In order to balance between bias and

efficiency, we suggest to use a parametric function for ρ0 such as the piece-wise constant

function as used in the Application. The incidence rates of the cohort study and the external

source should be carefully examined to determine the appropriate form of the parametric

function for ρ0.

Another important issue is whether the risk estimates obtained from the cohort study can be

projected to the population that the external incidence rates come from, which is often of

great interest in risk projection. We can test H0 : ρ0 = 1, and if there is not adequate evidence

to reject the hypothesis, it may be reasonable to assume that there is no significant difference

between the cohort and the external population, and apply the absolute risk estimates

obtained from the cohort to this external population. If the hypothesis is rejected, we must be

cautious about projecting the risk estimates to the population by simply using ϕ(t)λ*(t),

because there may be several reasons that could give rise to discrepancy in the incidence

rates between the external population and the cohort. For example, the discrepancy may be

due to different risk factor distributions or even different hazard ratios. A much thorough

investigation is needed to understand the underlying reasons for such discrepancy as each

scenario requires different approach to handle misspecification. Methods for dealing this

complex issue requires additional development, which is beyond the scope of this paper and

will be communicated separately.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Incidence and cumulative incidence rates from the Women’s Health Initiative (WHI) and the

SEER data. Shaded area: 95% simultaneous confidence band for the WHI estimates. (a)

Incidence rate; (b) Cumulative incidence rate.
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Figure 2.

Absolute risk estimates of colorectal cancer (CRC) from 5 to 20 years based on the WHI

study for postmenopausal white women at 4 different ages: (a) 50 years old, (b) 55 years

old, (c) 60 years old, and (d) 65 years old.
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