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ABSTRACT 
Design routability is a major concern in the ASIC design 

flow, particularly with today’s increasingly aggressive process 
technology nodes. Increased die areas, cell densities, routing 
layers, and net count all contribute to complex interconnect 
requirements, which can significantly deteriorate performance, 
and sometimes lead to unroutable solutions. Congestion analysis 
and optimization must be performed early in the design cycle to 
improve routability. This paper presents a congestion estimation 
algorithm for a placed netlist. We propose a net-based stochastic 
model for computing expected horizontal and vertical track usage, 
which considers routing blockages. The main advantages of this 
algorithm are accuracy and fast runtime. We show that the 
congestion estimated by this algorithm correlates well with post-
route congestion, and show experimental results of subsequent 
congestion optimization based this algorithm.  

I. INTRODUCTION AND BACKGROUND 
Congestion is a supply and demand problem for routing 

resources. During placement, cells are placed within the design 
boundary to minimize cost functions, typically based on total wire 
length. Wires between cells are then connected during the routing 
step. Design densities in deep submicron technologies can be 
severe, which result in major escalations in routing demands. 
Unfortunately, minimizing total wire length has no direct impact 
on routability. Consequently, in the absence of strong congestion 
analysis and removal techniques, routing demand in industrial 
designs can quickly exhaust supply. Congestion deteriorates 
design performance because of detoured nets, and can lead to 
unroutable solutions. Congestion also deteriorates the ability to 
make eco changes, and constrains the flexibility of routing to 
optimize secondary objectives (e.g. via count, crosstalk, antenna 
rules). When facing routability issues, designers typically must 
enlarge their floorplans, implying added expense and schedule 
delay. Worse yet, there is no guarantee that a new floorplan will 
yield a satisfactory solution. Substantial time and resources can 
be saved by measuring congestion earlier in the design cycle. 
This congestion analysis needs to be accurate and yet fast enough 
to include in the inner loop of synthesis/placement optimizations. 

The supply of routing resources can be computed from the 
technology parameters of the design, such as number of available 

routing layers, minimum pitch and routing direction of each layer. 
The demand for routing resources depends on the floorplan, 
synthesis, placement and routing solutions. However, fully 
accurate routing demand is not available until after detailed routing, 
which is too late to make significant changes. Therefore, 
estimation algorithms are required for congestion analysis during 
earlier phases of the design. Previous work in this area use either 
empirical models [1][9] or global routers to model congestion 
[4][5][8][10]. Most empirical models need design-specific tuning, 
and do not correlate well to the real congestion. There are two 
problems with global router based solutions. First, the runtime 
penalty is high, especially if multiple estimates are required during 
optimization. Second, the accuracy of a router-based congestion 
estimate cannot be guaranteed if a different router is used as the 
final routing tool. In addition, most congestion estimation 
algorithms fail to handle routing blockages. 

This paper presents a stochastic congestion estimation 
algorithm for a placed netlist that is blockage-aware. We show that 
this congestion model correlates well to post-route results. The 
runtime of this algorithm is fast, thus making it an ideal candidate 
to be used within the inner loop of synthesis and placement 
optimizations. Its stochastic nature promotes robustness against the 
implementation details of downstream routing algorithms.  

This paper is organized as follows: we present the details of 
our probabilistic congestion model in section II; the presence of 
routing blockages is discussed in section III; finally, experimental 
results and concluding remarks are given in section IV and V. 

II. CONGESTION ESTIMATION 
II.1. Premises 

Given a placed netlist, we discretize the core area with a 
homogeneous rectangular grid (c.f. Figure 1). We then analyze the 
congestion for every grid in the mesh. The number of grids in the 
mesh can be either a fixed number, or a variable that depends on 
the technology parameters. 

one grid

 
Figure 1. The grid mesh of a design 

Definition 1: The capacity of a grid is defined as the number of 
available routing tracks within the grid. The horizontal capacity of 
a grid is defined as the number of available horizontal routing 
tracks, and the vertical capacity of a grid is defined as the number 
of available vertical routing tracks. 
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Definition 2: The usage of a grid is defined as the number of 
used routing tracks within the grid. The horizontal usage of a grid 
is defined as the number of used horizontal routing tracks, and the 
vertical usage of a grid is defined as the number of used vertical 
routing tracks. 

Definition 3: The horizontal congestion cost of a grid is defined 
as the ratio between the horizontal usage and the horizontal 
capacity of the grid. The vertical congestion cost of a grid is 
defined as the ratio between the vertical usage and the vertical 
capacity of the grid. 

Obviously, if a congestion cost is larger than 100%, the grid 
is congested for that direction. The larger the cost is, the worse 
the congestion will be. 

The capacities of the grids, which are the supply part of the 
congestion analysis, can be computed easily from the dimensions 
of the grid and the technology parameters. Assume the number of 
horizontal routing layers is Nh, the number of vertical routing 
layers is Nv, and the minimum pitches for the ith horizontal and 
vertical layer are Lh

i and Lv
i, respectively. Also assume the width 

and height of each grid are W and H. The following equations 
compute the horizontal and vertical capacities of a grid: 
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Our probabilistic congestion model will be used to compute 
the usages of the grids, which represent routing resource demand. 
We make the following general assumptions for this model: 

− All nets are optimally routed with shortest length 
− All nets make at most one change of direction per grid  
− No change of direction is allowed in the grid with pins 

unless there are more than one pins in the same row or 
column of the grid 
The first assumption restricts the routes to be within the net 

bounding box, unless there are routing blockages that prohibit this. 
The second and third assumptions simplify our model. For any 
optimally routed net, the amount of consumed routing resources 
is independent of the number of turns the net makes. By 
restricting how the change of direction is accomplished, we are 
able to reduce the solution space while maintaining the accuracy 
of our model. If a net is allowed to change its direction at most 
once per grid, probabilistically, it will change the direction in the 
middle of the grid. For example, there are five vertical tracks in 
the grid shown in Figure 2A. When the net needs to change the 
direction from horizontal to vertical, it can use either one of them 
with the same probability. The expected horizontal and vertical 
usages for this net within the grid are the same as if the net 
always changes its direction in the middle of the grid. If the grid 
is on the same row or column of one pin, assumption three 
requires that the change of direction shall occur in the place 
where a straight line can be drawn to that pin (c.f. Figure 2B).  

A B

1 2 3 4 5

not in the middle

 
Figure 2. A net changes its direction 

II.2. The basic model for two-pin nets 
We first introduce our basic model for any two-pin net with 

the following restrictions: 
− The pins are located at the lower left and upper right corners 
− The bounding box of the net covers at least two rows and two 

columns 
− There is no routing blockages within the bounding box 

The extensions to multi-pin nets will be discussed in section 
II.5. We will relax the first restriction by allowing pins to be 
located anywhere within the grid in section II.3. In section II.4, we 
present the solutions to special cases where the bounding box of 
the net covers at most one row or one column. Congestion analysis 
with the presence of routing blockages are explained in section III. 
II.2.1. A simple example 

1

2
3

45
6

 
Figure 3. A two-pin net covering a 3××××3 mesh 

We introduce the probabilistic congestion model with a 
simple example. Figure 3 illustrates a two-pin net that covers a 3×3 
mesh. The two pins are at the lower left and upper right corners of 
the mesh, respectively. There are six possible ways to route these 
pins as shown in this figure. Assuming that each route would 
happen with the same probability, we compute the probabilistic 
track usages for the vertical and horizontal directions of each grid 
in this mesh. Let us use the lower middle grid as an example. 
There are three routes going through this grid (labeled as routes 1, 
2 and 4). Route 1 is a complete horizontal route. Therefore, it 
consumes one entire horizontal track, but no vertical track. Routes 
2 and 4 change the direction from horizontal to vertical in this grid. 
As explained in section II.1, the knees of the routes will be in the 
middle of the grid. Therefore, both of them consume one entire 
vertical track, but half of a horizontal track. Therefore, the total 
usages for this grid are two horizontal tracks and two vertical 
tracks. Because the total number of possible routes is six, the 
probabilistic usages for this net in this grid are one third of a track 
for both the horizontal and vertical directions. The following 
matrix summarizes the probabilistic track usages of this net for the 
horizontal and vertical directions: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 1 2 2 3 3
1 2 2 2 2 2 2
6

3 3 2 2 1 1

 
 ×  
  

 

II.2.2. The total number of possible routes 
Definition 4: We define F(m, n) as the total number of possible 
ways to optimally route a two-pin net covering an m×n mesh. 

Lemma 1: ( ) ( )1 1 1= =, ,F m F n  (3) 

Proof: If there is only one row or column, assumption three in 
section II.1 is no longer applicable. Therefore, we follow the same 
assumption of other nets such that the route will change direction 
in the middle of the grid. In this case, we have only one possible 
route when there is only one row or column (c.f. Figure 4). 
Therefore, F(m,1) and F(1,n) are always 1.  
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Figure 4. F(m, n) with one row or one column 

Theorem 1: Assume m,n≥2, F(m, n) can be computed using 
following equation:  
 ( ) ( ) ( )1 1= − + −, , ,F m n F m n F m n  (4) 

Proof: Consider the lower left grid where one of the two pins is 
located (c.f. Figure 5). In order to optimally route these two pins, 
all routes must exit this grid from either the top or the right hand 
side of the grid. These two sets of routes are mutually exclusive. 
In addition, the routes that exit from the top of the grid cover a 
(m-1)×n mesh, and the routes that exit from the right cover an 
m×(n-1) mesh. The total number of routes is the summation of 
these two values; therefore, we proved the above equation.  

 
Figure 5. Computing F(m, n) 

Corollary 1: ( ) ( )=, ,F m n F n m   (5) 

Proof: The proof is trivial from (3) and (4).  

Theorem 2: If m≥n, F(m, n) can be computed as: 
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Proof:  The proof can be obtained by induction.   

II.2.3. The probabilistic usage matrix 
Definition 5: Assume the pins are located at the lower left and 
upper right corners of the bounding box, we define the 
probabilistic usage matrix P for a two-pin net that covers a m×n 
mesh as follows: 

( )
( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )
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where Px(i,j) and Py(i,j) represent the probabilistic horizontal and 
vertical usages for this net in grid (i, j). 

The P matrix has the following properties:  
 ( ) ( )1  1= − + − +, ,x y x yP i j P m i n j  (7) 
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(7) indicates that the entries in the P matrix are images of 
each other with respect to the center of the matrix. This symmetry 
is because those two pins in this mesh are equivalent. Therefore, 
we only need to compute the entries in the lower triangle of the 
matrix, and the entries in the upper triangle of the matrix can be 
copied from the corresponding entry in the lower triangle. 
Moreover, all optimal routes for this net consume exactly m 

vertical tracks and n horizontal tracks. (8) and (9) indicate that the 
routes will consume exactly one vertical track per row, and one 
horizontal track per column. 

Theorem 3: The (lower triangle) of P matrix can be computed as 
following: 
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Proof: The total number of possible routes is F(m,n). Therefore, 
this term becomes the common denominator for all expressions. 
For simplicity, we assume that we will route from the lower left 
pin to the upper right pin. We divide the grids into five different 
categories depending on the location of the grid within the mesh: 
Case a: At the lower left corner (where i=1 and j=1), all routes 
must leave the grid from either the top or the right hand side of the 
grid. The number of routes leaving from the top is F(m-1,n), and 
each of them consumes one vertical track and no horizontal track. 
Similarly, the number of routes leaving on the right is F(m,n-1), 
and each of them consumes one horizontal track and no vertical 
track. Therefore, the horizontal and vertical usages for this grid are 
F(m,n-1) and F(m-1,n), respectively. 

(1,1) F(m,n-1)

F(m-1,n)

 
Figure 6. The lower left grid 

Case b: At the lower right corner (where i=1 and j=n), there is only 
one route going through it (c.f. Figure 7). This route uses one 
horizontal and one vertical track. Therefore, the horizontal and 
vertical usages for this grid are both 1. 

(1,n)

 
Figure 7. The lower right grid 

Case c: For the rest of the grids in the first row (where i=1 and 
1<j<n), the routes enter from the left side of the grid, and leaves 
from either the top or the right hand side of the grid. The numbers 
of routes that enter the grid from left, leave the grid from top, and 
leave the grid from right are F(m,n-j+1), F(m-1,n-j+1) and F(m,n-j), 
respectively. All routes going from left to right consume one 
horizontal track, but no vertical track. The routes going from left to 
top will make the turn in the middle of the grid, and each of them 
consumes one vertical track and half of a horizontal track. 
Therefore, the horizontal track usage for all routes passing through 
this grid is F(m,n-j)+F(m-1,n-j+1)/2 = (F(m,n-j+1)+F(m,n-j))/2, 
and the total vertical track usage is F(m-1,n-j+1). 
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(1,j)
F(m,n-j+1) F(m,n-j)

F(m-1,n-j+1)

 
Figure 8. Grids in the first row 

Case d: Similar to case c, for the rest of the grids in the first column 
(where 1<i<m and j=1), the routes enter from the bottom of the grid, 
and leaves from either the top or the right hand side of the grid. 
Every route going from bottom to top consumes one vertical track, 
but no horizontal track. Every route going from bottom to right 
consumes one horizontal track and half of a vertical track. 
Therefore, the horizontal and vertical track usages for this grid are 
F(m-i+1,n-1) and (F(m-i+1,n)+F(m-i,n))/2, respectively. 

(i,1)

F(m-i+1,n)

F(m-i+1,n-1)
F(m-i,n)

 
Figure 9. Grids in the first column 

Case e: For the rest of the grids (in the middle), routes enter the 
grid from either left or bottom, and leave the grid from either top or 
right hand side of the grid. There are four different types of routes 
depending on their entry and departure sides. The following table 
summarizes these four types of routes for the number of routes and 
their track usages on the horizontal and vertical directions: 

Type Entry Depart # of routes Hor Ver 
1 Left Right F(i,j-1)× F(m-i+1,n-j) 1 0 
2 Left Top F(i,j-1)× F(m-i,n-j+1) 0.5 0.5 
3 Bottom Right F(i-1,j)× F(m-i+1,n-j) 0.5 0.5 
4 Bottom Top F(i-1,j)× F(m-i,n-j+1) 0 1 

Table 1. Types of routes for a grid in the middle 

(i,j)
F(i,j-1)

F(i-1,j)

F(m-i,n-j+1)

F(m-i+1,n-j)

 
Figure 10. Grids in the middle 

Types 1, 2 and 3 consume horizontal tracks. The total 
horizontal track usage for this grid is: 
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Types 2, 3 and 4 consume vertical tracks. The total vertical 
track usage for this grid is: 
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Figure 11. Track usages in a 5××××5 mesh 

Figure 11 shows the P matrix for a 5×5 grid in a color-coded 
manner. Darker color represents higher value of usages. The corner 
grids where pins are located are the darkest, because any route 
must go through these two grids. 

II.3. Off-grid pins 
(10) and (11) assume that pins are located at the lower left and 

upper right corners of the mesh. In this section, we relax this 
restriction by allowing pins to be located anywhere within the grid. 
We call these kinds of pins off-grid pins. Let us assume that the 
width and height of each grid are W and H, and the distances from 
the pins to the grid edges are dx1, dy1, dx2, dy2, respectively, as 
shown in Figure 12. Off-grid pins only affect the usages on the 
outside ring of the mesh. The usages for the grids in the middle 
will remain the same. Because of the asymmetry of the pin 
locations, the usages for the last row and last column must be 
computed instead of copied from their corresponding entries in the 
first row and first column. The horizontal usages for the first and 
last row are scaled down by dx1/W and dx2/W, respectively, and the 
vertical usages are scaled down by dy1/H and dy2/H, respectively. 

d y1

d y2

dx1

dx2

W

H

 
Figure 12. Off-grid pins 

II.4. Short nets and flat nets 
If both pins are located in the same grid, we call the net a 

short net. Similarly, if both pins are located in the same row or 
column, we call the net a flat net.  

For a short net, the horizontal and vertical probabilistic usages 
are dx1+dx2-W/W and dy1+dy2-H/H, respectively. 

For a flat net whose pins are in the same column, the 
horizontal usage is dx1+dx2-W/2W for the first and last row, and 
0 otherwise. The vertical usage is dy1/H for the first row, dy2/H for 
the last row, and 1 otherwise. 

For a flat net whose pins are in the same row, the horizontal 
usage is dx1/W for the first column, dx2/W for the last column, and 1 
otherwise. The vertical usage is dy1+dy2-H/2H for the first and 
last column, and 0 otherwise.  

II.5. Multi-pin nets 
The two-pin net model can be extended to model multi-pin 

nets. We construct either the minimum spanning tree (MST) or the 
rectilinear steiner tree (RST) of the multi-pin net, and then use the 
two-pin net model for each pair of connected pins to compute the 
probabilistic usages. MST algorithms run faster, but might double-
count the overlapping net segments. This presents a tradeoff 
between runtime and accuracy. Therefore, MST based congestion 
estimation can be used during early optimization steps, such as 
location based logic synthesis and coarse placement, where a faster 
turnaround time is appreciated. RST based congestion estimation 
can be used in later stages such as placement legalization. 

 
Figure 13. Multi-pin nets 
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III. BLOCKAGES 
If we regard the routes as water flows in a river, routing 

blockages are like stones. They define regions with reduced 
routing resources. There are two types of routing blockage: partial 
or complete. Partial blockages block a certain number of layers, 
but there are still limited routing resources available. Complete 
blockages block all the layers, and require all routes must de-tour 
around them. Partial blockages can be easily modeled by 
eliminating the blocked layers during the capacity computation 
for the grids. In this section, we discuss techniques to work with 
complete routing blockages. 

III.1. Simple blockages 

 
Figure 14. Two simple blockages 

We define isolated routing blockages in the grid as simple 
blockages. Figure 14 shows a 5×5 mesh with two simple 
blockages. These routing blockages have two effects. First, the 
usages in the blocked grids are always zero. Second, these usages 
are distributed to the neighboring grids. However, they are not 
distributed evenly to them. The grids that are, 1) closer to the 
blocked grid, and 2) have more unblocked neighboring grids, 
have the higher probability to receive the distributed usages. 
Assume the distance between a candidate unblocked grid and the 
blocked grid is d, and the number of unblocked neighboring grids 
for the candidate grid is n. We compute the weight for the  grid as 
w=2-d×n, and use this weight to proportionally distribute the 
usage of the blocked grid to all candidate grids. In practice, we 
only consider unblocked grids whose distance to the blocked grid 
is within a pre-defined number D. 

Figure 15 shows the probabilistic usages of the grid shown 
in Figure 14. D is defined as 1 in this example. Comparing with 
Figure 11, the usage of the grid in the middle of the mesh has 
increased significantly because both blockages distribute their 
usages to this grid. 

 
Figure 15. Track usages with two simple blockages 

III.2. Line blockages 
If one complete row or column of the mesh is blocked by a 

routing blockage, we call it a line blockage. In Figure 16A, we 
show a routing blockage that blocks four grids. For the two nets 
shown in this figure, their original bounding boxes have a line 
blockage because the middle row is completely blocked. In this 
case, no route can be completed within the bounding box. We 
need to extend the bounding box to include at least one unblocked 
grid in that row to bypass the blockage. For the net on the left 
hand side, the unblocked grid is found by extending the bounding 
box one grid to the left. Similarly, for the net on the right hand 
side, the unblocked grid is found by extending the bounding box 

one grid to the right. The computation of the track usages will then 
be based on the assumption that there is one possible route. 

If an unblocked grid can be found by extending the bounding 
box to either direction, we choose the direction with the minimum 
expansion. However, if both directions have the same expansion 
factor (c.f. Figure 16B), we extend the bounding box in both 
directions. In this case, the computation of the track usages will be 
based on the assumption that there are two possible routes. 

original bounding box

extended bounding box  

original bounding box

extended bounding box  
Figure 16. A complete blockages 

III.3. Adjacent blockages 
If blockages are adjacent to each other, we first find the 

minimum bounding box that covers all the adjacent blockages. If 
the new bounding box is isolated, we treat all the blocked grids as 
simple blockages, and distribute the usages to the free grids as 
described in section III.1. If the new bounding box is a line 
blockage, we will use the same techniques in section III.2 to 
estimate the routings. 

III.4. Complex blockages 
If a routing blockage cannot be processed using any of the 

above techniques, we have to use a maze routing algorithm [7] to 
find a route between the source and the destination. Fortunately, in 
real designs, the number of this kind of blockages are relatively 
small. This is because that almost all complete routing blockages 
are found on top of macro cells, and most macro cells are placed 
along the edges of the core area. The blocked grids along the edges 
of the core area can be handled efficiently using techniques in 
section III.1 and III.2. This makes the runtime overhead of the 
maze router a negligible factor for the overall runtime. 

IV. EXPERIMENTAL RESULTS 
IV.1. Correlation 

We present the correlation between the predicted congestion 
versus the actual congestion seen by routers as congestion maps. A 
congestion map visually plots the congestion in the design by 
assigning different colors to different congestion costs. A lighter 
color means higher congestion cost. Most commercial routing tools 
are able to produce a congestion map. 

We include two industrial designs to report our experimental 
results. Table 2 summarizes the basic statistics of these designs. 

 # of instances # of nets CPU time 
Design1 316K 332K 70s 
Design2 347K 374K 110s 

Table 2. Two industrial designs 

In Figure 17, we present the congestion maps for two 
industrial designs. The congestion map on the left hand side is the 
congestion predicted by our probabilistic model, and the one on the 
right is created by a third-party commercial router. The comparison 
between these two congestion maps shows that we are able to 
predict the congestion hot spots in a fraction of the runtime of 
invoking a global router. 

A B 
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Figure 17. Congestion Correlation 

IV.2. Congestion Removal 
Many techniques can be used to remove congestion based on 

congestion estimation. Congestion cost can be included as a part 
of the cost function of the location based logic optimizer and the 
placer [2][5][6][8]; synthesis based congestion removal 
techniques can be performed during placement; and finally, 
incremental congestion removal algorithms [10] can be used to 
remove local hot spots in a post-placement design. The details of 
these techniques are beyond the scope of this paper.  

In Figure 18, we present the congestion maps with and 
without the congestion removal techniques for the two industrial 
designs shown in Figure 17. All the congestion optimization 
techniques require multiple congestion estimations during various 
stages of the optimization. The congestion map on the left hand 
side is the result without congestion removal techniques, and the 
one on the right is with congestion removal techniques using the 
probabilistic congestion estimation model. With the accurate 
congestion prediction, we are able to remove most of the 
congestion in the design. Note that for the second design, the 
placement without congestion removal is not routable. 

   
 

   
Figure 18. Congestion Removal 

V. CONCLUSION 
In this paper, we present a fast and accurate congestion 

estimation algorithm for a placed netlist. This algorithm is based 
on the supply and demand analysis of routing resources, where the 
supply is determined by technology parameters, and the demand is 
computed by a probabilistic congestion model. For every net in the 
design, the probabilistic model considers all possible ways that a 
router can route the net, and then computes the probabilistic track 
usages for this net. With extreme fast runtime and good post-route 
correlation, this algorithm can be used as the core congestion 
estimation for many congestion optimization techniques.  
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