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Abstract 

 The Empirical Bayes method addresses two problems of safety estimation;  it increases 

the precision of estimates beyond what is possible when one is limited to the use of a two-three 

year history accidents, and it corrects for the regression-to-mean bias. The increase in precision 

is important when the usual estimate is too imprecise to be useful. The elimination of the 

regression to mean bias is important whenever the accident history of the entity is in some way 

connected with the reason why its safety is estimated. The theory of the EB method is well 

developed. It is now used in the Interactive Highway Safety Design Model (IHSDM) and will be 

used in the Comprehensive Highway Safety Improvement Model (CHSIM). The time has come 

for the EB method to be the standard and staple of professional practice.  The purpose of this 

paper is to facilitate the transition from theory into practice 

 

 

1.  INTRODUCTION 

 The safety of an entity (a road section, an intersection, a driver, a bus fleet etc.)  is “the 

number of accidents (crashes), or accident consequences, by kind and severity, expected to occur 

on the entity during a specified period.”  (1, p.25).  Since what is  „expected‟ cannot be known, 

safety can only be estimated, and estimation is in degrees of precision.  The precision of an 

estimate is usually expressed by its standard deviation.  

 

 The safety of entities on which many accidents occur during a short period  can be 

estimated quite precisely by using only accident counts.  Thus, e.g., if on a road one expects 100 

accidents per year, then, with three years of accident counts, one can estimate the average yearly 

accident frequency with a standard deviation of about  (100/3)=±5.7 accidents/year or 5.7% of 

the mean.  (This is based on the assumption that accident counts are Poisson distributed). 

Conversely, when it takes a long time for few accidents to occur, the estimate is imprecise. Thus, 
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e.g., if one expects a rail-highway grade crossing or a driver  to have one accident in ten years 

then, with three years of accident counts, the estimate of average yearly accident frequency has a 

standard deviation of (0.1/3)=± 0.18. Since the mean is 0.1 accidents/year the standard deviation 

is 180% of the mean.  Thus, one shortcoming of safety estimates that are based on accident 

counts only is that they may be too imprecise to be useful. 

 

 

 The other shortcoming of safety estimates that are based only on accident counts is that 

they are subject to a common bias. For practical reasons one is often interested in the safety of 

entities that either require attention because they seem to have too many accidents, or merit 

attention because they have fewer accidents than expected. In both cases, were one to estimate 

safety using accident counts only, the estimate would be biased. The existence of this 

‟regression-to-mean‟ bias has been long recognized; it is known to produce inflated estimates of 

countermeasure effectiveness. Yet, incorrect claims caused by failure to recognize this bias are 

still being published in the literature. (A recent example is, e.g., Datta et al. (2) who claim that 

low-cost treatments at three intersections in Detroit reduced total accidents by 44%, 48% and 

57%. Yet, the three intersections were selected for treatment because their crash frequency, crash 

rate or casualty rate was higher than that of 95% of intersections and no correction for the 

regression-to-mean has been applied. Additional recent examples could be cited)   Rational 

management of safety is not possible if published studies give rise to unrealistic expectations 

about the effectiveness of safety improvements. 

 

  The Empirical Bayes (EB) method for the estimation of safety increases the precision of 

estimation and corrects for the regression-to-mean bias. It is based on the recognition that 

accident counts are not the only clue to the safety of an entity. Another clue is in what is known 

about the safety of similar entities. Thus, e.g., consider Mr. Smith, a novice driver in Ontario 

who had no accidents during his first year of driving. Let it also be known that an average novice 

driver in Ontario has 0.08 accidents/year. It would be silly to claim that Smith is expected to 

have zero accidents/year (based on his record only). It would also be peculiar to estimate his 

safety to be 0.08 accidents/year (by disregarding his accident record). A sensible estimate must 

be a mixture of the two clues.  Similarly, to estimate the safety of a specific segment of, say, a 

rural two-lane road, one should use not only the accident counts for this segment, but also the 

knowledge of the typical accident frequency of such roads in the same jurisdiction.  

 

 The theoretical framework for combining the information contained in accident counts 

with the information contained in knowing the safety of similar entities is the EB method.  

Starting with its application to road safety by Abbess et al. (3) the method is now well developed 

(1, Chapters 11 and 12) and has been widely applied. A recent application of the EB method of 

safety estimation is the Interactive Highway Safety Design Model (IHSDM, 4 ).  Another 

application will be to the Comprehensive Highway Safety Improvement Model (CHSIM) now 

under development. The time has come for the EB method to be the standard of professional 
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practice; it should be  be used whenever the need to estimate road safety arises,  whether in the 

search for sites with promise, the evaluation of the safety effects of interventions, or the 

assessment of potential safety savings due to site improvements. The purpose of this paper is to 

be the bridge between theory and practice. 

 

2.  THE EB PROCEDURE 

 The task is to make joint use of two clues to the safety of an entity: the accident record of 

that entity and the accident frequency expected at similar entities.  This expected accident 

frequency at similar entities is determined by the Safety Performance Function (SPF) about 

which more will be said in section 3. In the EB estimate the joint use of the two clues is 

implemented by a weighed average. That is, 

 

     Estimate of the Expected Accidents for an entity =  

    Weight×Accidents expected on similar entities + (1-Weight)×Count of accidents on this entity 

    where   0Weight1 ... 1 

 

The result is determined by how much „weight‟ is given to the accidents expected on similar 

entities. The strength of the EB method is in the use of a „weight‟ that is based on sound logic 

and on real data. This „weight‟ will be seen to depend on the strength of the accident record (how 

many accidents are to be expected), and on the reliability of the SPF (how different may be the 

safety of a specific site from the average which the SPF represents).  

 

 The EB estimation procedure can be abridged or full. The abridged version makes use of 

the recent 2-3 years of accident counts and of the average traffic flow for that period. This 

reflects the now common belief that accident counts that are older than 2-3 years may not 

represent current conditions.  However, the EB procedure removes most reasons for not using 

older data. Accordingly, the full version of the EB procedure makes use of a longer accident and 

traffic flow history.  Because the full procedure uses more accident counts, the estimate of the 

full procedure is more precise than the estimate produced by the abridged procedure. Therefore, 

if data is available, one should strive to use the full procedure.  

 

3. SAFETY PERFORMANCE FUNCTION AND WEIGHT. 

 The average accident frequency of „similar sites‟ and the variation around this average are 

brought into the EB procedure by the Safety Performance Function (SPF). The SPF is an 

equation giving an estimate of µ, the average accidents/(km-year) for road segments or 

accidents/year for intersections, as a function of some trait values (e.g., ADT, Lane width, . . .) 

and of several regression parameters.   

 

 To illustrate, consider the SPF: estimate of µ=0.0224×ADT
0.564

 for a certain kind of road 

in a given jurisdiction. Here ADT plays the role of one traits value, no additional trait values are 
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represented in the SPF, the estimate of one regression parameter is 0.0224, and the estimate of 

the second regression parameter 0.564. If on a road of this kind ADT=4000 vehicles per day, 

then one should expect 0.0224×4000
0.564

=2.41 accidents/(km-year).  

 

 SPFs are calibrated from data by statistical techniques. In the past it was common to 

assume that accident counts come from a Poisson distribution. However, researchers found that 

the accident counts used in the calibration of SPFs are usually more widely dispersed than what 

would be consistent with the Poisson assumption.  This is why it is nowadays common to assume 

that the accident counts which serve as data come from a negative binomial distribution. One of 

the parameters of this distribution is the „overdispersion parameter‟, denoted here by „‟.  For 

road segments, the overdispersion parameter is estimated per-unit-length. That is, the dimension 

of  is [1/km] or [1/mile]. The meaning of  comes from the following relationship: if L is the 

length of a segment and  is the expected number of accidents for that segment, then the variance 

of accident counts on segments of that kind is [1+/(L)].  The dimensions of  and L must be 

complementary. That is, if in the course of model calibration  is estimated per km, then L must 

be measured in kilometres. Note,  estimated per km = 0.622× estimated per mile. For 

intersections L is taken to be one. More detail and an explanation of the sources of 

overdispersion is in reference (5) 

 Many SPFs and overdispersion parameters have been estimated and the results can be 

found in the literature. Thus, e.g., Maycock and Hall (6) model accidents at roundabouts, Hauer 

et al.(7) model accidents at urban signalized intersections, Bonneson and McCoy (8) model 

accidents at stop-controlled rural intersections, Miaou (9) models truck accidents on rural roads; 

Vogt and Bared (10) model accidents on rural road segments and intersections, Persaud and 

Dzbik (11) model accidents on freeways.   

In summary we defined: 

µ the number of accidents/(km-year) for expected on similar segments and accidents/year 

expected for similar intersections. 

 the number of accidents during a specified period given by µ×L×Y expected for similar 

segments and µ×Y expected for similar intersections. In this, L stands for segment length 

and Y for years. 

 overdispersion parameter estimated per unit length for segments. Naturally, entities for 

which the accident frequency is not proportional to their length (e.g. intersections or rail-

highway grade crossings) have an overdispersion parameter that is not estimated per unit 

length. 

 

 It is now possible to give the expression for the „weight‟ used in equation 1. In general: 
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/)Y(1

1
weight  ... 2 

  

where Y is the number of years of accident counts used. This expression for weight ensures that  

the variance of the estimate in equation 1 is as small as possible. For a full derivation and 

justification, see (1, pp. 193-194). 

 

 

4. THE ABRIDGED EB PROCEDURE ILLUSTRATED. 

 To introduce the abridged procedure consider numerical examples of gradually increasing 

complexity: 

 

Numerical Example 1: A Road segment with one year of accident counts. 

 A road segment is 1.8 km long, has an ADT of 4000, and recorded 12 accidents in the last 

year.  The SPF for similar roads is 0.0224×ADT
0.564

 accidents/(km-year), with an overdispersion 

parameter =2.05/km. To estimate the safety of this road segment proceed as follows. 

 

 Step 1: Average for entities of this kind. 

 Roads such as this have 0.0224×4000
0.564

=2.41 accidents/(km-year), on average. 

Therefore segments that are 1.8 km long are expected to have 1.8×2.41=4.34 accidents in 

one year. 

 Step 2: Weight. 

 We need a „weight‟ for joining the 12 accidents recorded on this road and the 4.34 

accidents for an average road of this kind. For weight we use equation 2. Here µ=2.41 

accidents/(km-year), Y=1 and   the estimate of =2.05/km. Therefore: weight = 

1/[1+(2.41×1)/2.05] =0.460. Note that both µ and  are „per unit length‟. 

 Step 3: Estimate.  

Using equation 1 the estimate of the expected accident frequency for the specific road 

segment at hand is:  0.460×4.34+0.540×12=8.48 accidents in one year. Note that 8.48 is 

between the average for similar sites (4.34) and the accident count for this site (12). The 

EB estimator pulls the accident count towards the mean and thereby accounts for the 

regression to mean bias. The standard deviation of the estimate of the expected accident 

frequency is given by: 

estimate)weight1()estimate(   ... 3 

  

Here, =±(0.54×8.48)=±2.14 accidents in one year.  

 

Numerical Example 2: Three years of accident counts 
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 Suppose now that for the same road segment  we have three years of accident counts: 12, 

7, 8, and that the ADT in each of  those three years was 4000 vpd. To estimate the safety of the 

road segment: 
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Step 1: Average for entities of this kind. 

  As before, segments of this kind are expected to have 2.41 accidents/km-year. On 1.8 km in 

three years we expect 1.8×3×2.41=13.01 accidents.  

 Step 2: Weight.  

The weight is 1/[1+(2.41×3)/2.05]=0.220. Note that with one year of accident data used the 

weight was 0.460. As more years of accident data as used, the weight (given to the number of 

accidents expected on similar entities) diminishes. 

Step 3: Estimate. 

Expected accidents=0.220×13.01 + 0.780×(12+7+8)=23.92 accidents in three years with 

=±(0.78×23.92)=±4.32 or 23.92/(3×1.8)±4.32/(3×1.8)=4.43±0.80 accidents/(km-year). 

 

Numerical Example 3: Application of Accident Modification Functions (AMFs) 

 Suppose now that the SPF equation in Example 1 is for roads with 1.5 m shoulders while the 

road segment of interest has 1.2 m shoulders, and that a 0.3m decrease in shoulder width is known 

to increase accidents by, say, 4%. 

Step 1: Average for entities of this kind. 

 Using the result from Example 1, segments of this kind are expected to have 1.04×2.41=2.51 

accidents/km-year. On 1.8 km in three years we expect 1.8×3×2.51=13.55 accidents.  

 Step 2: Weight. 

The weight is  1/[1+(2.51×3/2.05]=0.214. 

 Step 3: Estimate.  

Expected accidents=0.214×13.55+0.786×(12+7+8)=24.12 ± (0.786×24.12)=4.35 accidents 

in three years or [24.12±4.35]/(3×1.8)=4.47±0.81 accidents/(km-year). 

 

Numerical Example 4: Subsections and Accident records. 

 Consider the road segment in Figure 1 that is made up of three subsections that differ in 

some  traits (which determine the variable values of the SPF) and in the AMFs. However, the 

accident count is not available separately for each subsections, only for the entire 1.5 km segment 

on which  11 accidents were counted in the last two years. 

1 2 3

0.2 km0.1km 1.2 km

 

Figure 1 
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Step 1: Average for Entities of this kind. 

The ADTs and AMFs differ amongst the subsections as shown in columns 2 and 4 of Table 

1. 

Table 1 

Subsection ADT Length 

[km] 

AMF 

  

Accidents/(km-year) Accidents 

1  2000  0.1  .90 1.466  0.147  

2  2300  1.2  .95 1.675  2.010  

3  2300  0.2  1.05 1.851  0.370  

Sum 2.527  

 

Assume that, as in the earlier examples the SPF is 0.0224×ADT
0.564

 accidents/(km-year) and 

=2.05/km. Thus, after correction for AMF, subsection 1 is expected to have 

0.0224×2000
0.564

 ×0.90 = 1.466 accidents/(km-year) and therefore1.466×0.1=0.147 

accidents/year. The three sub-sections together are expected to have 2.527×2=5.054 

accidents in two years or 2.527/1.5 =1.715 accidents/(km-year). From here on it is 

convenient to forget about the subsections and treat the 1.5 km segment as one entity.  

Step 2: Weight. 

 The weight is  1/[1+(1.715×2)/2.05]=0.374. 

Step 3: Estimate. 

Expected accidents for the 1.5 km long section in two years =0.374×5.054 +0.626×11 =8.78 

±(0.626×8.78)=2.34 accidents or [8.78±2.34)/(1.5×2)=2.93±0.78 accidents/(km-year).  

 

Numerical Example 5: Accidents by severity. 

Consider again the setting in numerical example 2 with the addition of the information in columns 1 

and 2 of Table 2. 

 Step 1: Average for entities of this kind. 

 As in the earlier examples, segments of this kind are expected to have 2.41 total 

accidents/(km-year).  Applying the typical proportions in column 2 of Table 2, we expect 

0.046 fatal accidents, 0.128 A-injury accidents, . . ., as shown in column 3. On 1.8 km in 

three years we expect on roads of this kind 1.8×3×0.046=0.247 fatal accidents as shown in 

column 4. 
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Table 2 

 

Accident severity 
Accidents in 

three years 
Proportion 

on similar 

roads 

Average 

Accidents/(

km-year) 

Average 

Accidents in 

three years 

 

Weight 
Expected 

Accidents 

this site 

 1  2 3 4 5 6 

Fatal (K) 1  0.019 0.046  0.247  0.937  0.295  

Incapacitating injury 

(A) 
2  0.053 0.128  0.690  0.843  0.896  

Non-incapacitating 

injury (B) 
2  0.151 0.364  1.965  0.653  1.977  

Possible injury (C) 5  0.140 0.337  1.822  0.669  2.872  

Property damage only 17  0.637 1.535  8.290  0.308  14.317  

Total 27 1.000 2.410  13.014   20.357  

 

 Step 2: Weight.  

The weight for fatal accidents is 1/(1+0.046×3/2.05)=0.937 as shown in column 5. The 

overdispersion parameter,  remains 2.05/km for all severities because it can be shown that 

when the SPF is multiplied by a constant, the overdispersion parameter is unchanged. Note  

that the weight of the „Average for entities of this kind‟ is large for the rare accident 

severities. It is the property of the EB procedure that estimates will not be dominated by the 

random occurrence of rare events. 

Step 3: Estimates. 

The estimate of expected fatal accidents=0.937×0.247 + 0.063×1=0.295±(0.063×0.295) 

=0.136 accidents in three years. Note that the sum of expected accidents when estimated 

separately for each severity is 20.35. When the same has been estimated in example 2 using 

the total accidents without differentiation by severity, the estimate was 23.92 accidents. The 

discrepancy has two sources. First, it is appropriate that  the specific accident severity of a 

site should be reflected in the estimates. Therefore, in principle, the two numbers should 

differ. However, there is a systematic reason for the discrepancy. It arises mainly because 

separation into severity classes inevitably results in smaller values of µ used in equation 2, 

and therefore in larger weights given to the expected accident frequency on similar entities. 

An ad-hoc correction could be to multiply each estimate by the ratio 23.92/20.35. The 

estimate of expected fatal accidents would then be 0.295×1.118=0.347.  A correct way of 

removing the blemish would be to adopt procedures described by Flowers (12) or Heydecker 

(13). However, both require additional parameter estimates to be used and these are, at this 
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time, not easily available. 

 

 

Numerical Example 6. An intersection.  

 

For three-leg rural intersection in Minnesota Vogt and Bared (7) find that under nominal 

conditions µ is estimated by 6.54×10
-5 

×ADTmainline×ADTminor road and the estimate of  is 

1.96. Consider such an intersection with ADTmainline=4520,  ADTminor road=230, the AMF to 

account for differences from nominal conditions is1.27,  and there were 7 accidents in three 

years. 

 

Step 1: Average for entities of this kind. 

 Under the nominal conditions, intersections of this kind are expected to have 6.54×10
-

5
×4520

0.82
×230

0.51
=1.041 accidents/year. Under the real conditions of this intersection, using 

the AMFs, 1.27×1.041=1.322 accidents/year. In the three years for which accident counts are 

used, 3×1.322=3.966 accidents. 

 Step 2: Weight.  

The weight is 1/[1+(1.322×3)/1.96]=0.331 

Step 3: Estimate. 

Expected accidents=0.331×3.966 + 0.669×7=6.00±(0.669×6.00)=2.00 accidents in three 

years or [6.00±2.00]/3=2.00±0.67 accidents/year. 

 

Numerical Example 7. Accidents allocated to a group of intersections . 

 Some data bases contain information about how  many intersection (and intersection-

related) accidents have occurred on a road segment without the ability to specify how many 

occurred on which intersection. Consider a road segment with two intersections for which we have 

estimates of µ1 (2.6 accidents/year) , 1 (2.2) and of µ2 (4.3 accidents/year), 2 (1.8). In three years,  

11 accidents have occurred on these two intersections. 

 

Step 1: Average for entities of this kind. 

 In the three years for which accident counts are available and on two similar intersections 

one should expect 3×2.6+3×4.3=7.8+12.9= 20.7 accidents. 

 Step 2: Weight.  

Were one to use  equation 2 directly, as if the two intersections were one, weight would be 

1/(1+20.7/2)=0.088. In this the average overdispersion parameter was used.  This is a bit of 

an oversimplification. Actually, when the accident count is available jointly for n entities 

with means 1, 2,. . .,n and overdispersion parameters 1, 2, . . .,n and when correlation 

coefficient between i and j is i,j  then the weight should be computed by: 
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But, it is at present not clear what correlation coefficient should be used and therefore the 

two extremes are of interest. 

 

When ρi,j=0, 
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In this example the weight is between 1/[1+(7.8
2
/2.2+12.9

2
/1.8)/20.7]=0.147 and 

1/{1+[(7.8
2
/2.2) +(12.9

2
/1.8)]

2
/20.7}=0.085. 

  

Step 3: Estimate. 

Using the simply-obtained weight of 0.088, Expected accidents=0.088×20.7+ 

0.912×11=11.94±(0.912×11.94)=3.30 accidents in three years. 

 

 

5. THE FULL PROCEDURE ILLUSTRATED. 

 So far we discussed the abridged EB procedure. The full procedure differs from the abridged 

procedure in that year to year changes in ADT and in other variables can be brought into estimation 

thereby allowing use of longer accident histories. The full EB procedure is illustrated by numerical 

examples. 
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Numerical Example 8 - Accounting for changing ADTs 

 A road segment is 1.8 km long. It has remained physically unchanged during the past 9  

years. The ADT estimates and accident counts for each year are given in rows 2 and 3 of 

Table 3. As in earlier examples, for this kind of road and nominal conditions µ is estimated by 

0.0224×ADT
0.564

 accidents/(km-year) and the overdispersion parameter  is 2.05. Assume 

further that to convert from nominal to real conditions, the product of all AMFs is, in this 

case, 0.95.To estimate the safety of this road section in each of the nine years proceed as 

follows: 

Table 3 

1 Year 1989 90 91 92 93 94 95 96 97 Sums 

2 ADT 4500 4700 5100 5200 5600 5400 5300 5300 5400  

3 Accidents 12 5 9 8 14 8 5 7 6 74 

4 
µyear,  

[accidents/(km-year)] 
2.446  2.506  2.624  2.653  2.767  2.710  2.682  2.682  2.710  23.781  

5 
Expected accidents in 

year 
4.402  4.511  4.724  4.776  4.980  4.879  4.828  4.828  4.879  42.806 

6 
Expected annual accident 

for segment 
7.36  7.54  7.89  7.98  8.32  8.15  8.07  8.07  8.15  71.52  

 

         Step 1.  Average for entities of this kind 

Each year has an estimate of the expected number of accidents for roads of this kind. Thus, 

e.g., for 1989 and under nominal conditions, roads with ADT=4500 are estimated to have 

0.0224×4500
0.564

= 2.574 accidents/(km-year) and after adjustment to actual conditions µ1989= 

2.574×0.95= 2.446 accidents/(km-year) as shown in row  4.  Listed in row 5 are the expected 

accidents when segment length has been accounted for. 

  

          Step 2. Weight. 

The formula for computing the weight is now: 



 








yearlastyear

yearfirstyear
year

1

1
weight     ... 7 
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Note that equations 2 and 7 are identical when all the µ‟s are the same. With  =2.05 and 

µyear= 23.781, the weight = 1/(1+23.781/2.05) =0.0794. 

  

           

 Step 3. Estimates. 

 Now the expected number of accidents for the specific road section at hand and the period 

1989-1997 is 0.0794×42.846+0.9206×74=71.52±(0.9206×71.52)=8.11. Note that this 

estimate is based on the full nine-year accident history and this explains the small weight 

attached to what is expected at similar sites. The estimate for any specific year is now 

computed by multiplying the estimate for the entire period by the ratio µyear/µyear. Thus, for 

1997 the estimate is [71.52±8.11]×2.710/23.781=8.15±0.92. These values are listed in row 6. 

In this manner, the evidence of the entire accident record of nine years is brought to bear on 

the estimate in any specific year. 

 

Numerical Example 9 - Accounting for secular trend. 

 In the preceding example the underlying assumption was that while ADT changed over the 

years, other factors affecting the safety (weather, vehicles, drivers etc.) remained unchanged. 

However, most everything changes with time. This „secular trend‟ can be expressed in multivariate 

models by „yearly multipliers‟ which can be estimated together with all other regression 

coefficients. Such multipliers are listed in row 2a in Table 4. Thus, e.g., were the model  

0.0224×ADT
0.564

 applied to data from 1990, it would over-predict the total number of recorded 

accidents that occurred in 1990 by 1.6%; to bring the prediction and the accident count into 

agreement one has to multiply by 0.984 as shown in row 2a..The yearly multipliers alter the entries 

in row 5 and this, in turn, affects all other numerical results. 

Table 4 

1 Year 1989 90 91 92 93 94 95 96 97 Sums 

2a Yearly Multipliers 1  0.984  1.053  1.005  0.996  0.932  0.931  0.891  0.927   

2b ADT 4500 4700 5100 5200 5600 5400 5300 5300 5400  

3 Accidents 12 5 9 8 14 8 5 7 6 74 

4 µyear,  

[accidents/(km-year)] 2.446  2.466  2.764  2.667  2.756  2.526  2.497  2.390  2.513  23.023  

5 Expected accidents in year 4.402  4.439  4.974  4.800  4.960  4.547  4.495  4.301  4.523  41.441  

6 Expected annual accident for 
segment 7.58  7.64  8.56  8.26  8.54  7.83  7.74  7.40  7.79  71.34  

 

Numerical Example 10 - Projection. 

 The focus so far was on estimating what the expected accident frequency was for some year 
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in the past. Occasionally one wishes to project what accident frequency should be expected at some 

time in the future. Projections of this kind are always necessary when one wishes compare what 

safety would have been had some intervention not been implemented to what safety was with the 

intervention in place. Suppose then that for the segment in numerical example 8 we wish to project 

the expected number of accidents in 2003 and 2004 when ADTs of 6000 and 6300 are expected and 

for when the yearly multiplier values of 0.9 and 0.92 are projected.   

  The starting point for the projection can be any of the values in Table 4.  Thus, e.g., 

the value of 7.79 accidents in 1997 is for AADT1997=5400 and the yearly multiplier of 0.927. Recall 

that the exponent of ADT in the model equation is 0.564. Thus, the projection ratio for 2003 is 

(0.9×6000
0.564

)/(0.927×5400
0.564

)=1.030 and for 2002 it is 

(0.92×6300
0.564

)/(0.927×5400
0.564

)=1.083. Therefore for  2003 we project 7.79×1.030=8.02 

accidents and for 2002 we project 7.79×1.083=8.44 accidents. 

 

6. SUMMARY. 

 The safety of entities is usually estimated from the history of its accident counts. The EB 

procedure for safety estimation combines accidents counts with knowledge about the safety of 

similar entities. Doing so has several advantages. Precision of estimation is enhanced when the 

accident record is sparse and the regression to mean bias is eliminated. As usually, improved 

precision requires added information. In this case one needs estimates of the Safety Performance 

Functions for similar entities and an estimate of the applicable overdispersion parameter. Since 

these are now more widely available, EB estimation of safety should be the preferred practice. The 

purpose of this paper is illustrate that what may seem to be a complex theory can be put into daily 

practice. 
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