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Abstract

This paper proposes a new semi-parametric identification and estimation approach to multi-

nomial choice models in a panel data setting with individual fixed effects. Our approach is

based on cyclic monotonicity, which is a defining convex-analytic feature of the random utility

framework underlying multinomial choice models. From the cyclic monotonicity property, we

derive identifying inequalities without requiring any shape restrictions for the distribution of the

random utility shocks. These inequalities point identify model parameters under straightforward

assumptions on the covariates. We propose a consistent estimator based on these inequalities.
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1 Introduction

Consider a panel multinomial choice problem where agent i chooses from K + 1 options (labeled

k = 0, . . . ,K). Choosing option k in period t gives the agent indirect utility

β′Xk
it +Aki + εkit, (1.1)

where Xk
it is a dx-dimensional vector of observable covariates that has support X , β is the vector

of weights for the covariates in the agent’s utility, Aki is an agent/alternative-specific fixed effect,

and εkit are unobservable utility shocks the distribution of which is not specified. The agent chooses

the option that gives her the highest utility:

Y k
it = 1{β′Xk

it +Aki + εkit ≥ β′Xk′
it +Ak

′
i + εk

′
it ; ∀k′}, (1.2)

where Y k
it denotes the multinomial choice indicator. Let the data be identically and independently

distributed (i.i.d.) across i. As is standard in semiparametric settings, we normalize ‖β‖ = 1,

X0
it = 0dx and A0

i = ε0it = 0. We do not impose any location normalization on εkit or Aki , and as a

result, it is without loss of generality to assume that Xk
it does not contain a constant.

In this paper, we propose a new semi-parametric approach to the identification and estimation

of β. We exploit the notion of cyclic monotonicity, which is an appropriate generalization of

“monotonicity” to multivariate (i.e. vector-valued) functions. The notion has not been used as a

tool for the identification and estimation of semi-parametric multinomial choice models, although

the cyclic monotonicity between consumption and price in a representative consumer basket has

been used in econometrics as early as Browning (1989) for testing rational expectation hypotheses.

In cross-sectional multinomial models, it is easy to show that there is a cyclic monotonicity rela-

tionship between the conditional choice probability and the utility index vector under independence

between the unobservable shocks and the utility indices. We apply that to the panel model given

above, find a way to integrate out the fixed effects, and obtain a collection of conditional moment

inequalities which, conveniently, are linear in β. Then we show that these moment inequalities

point identify β under either of two sets of primitive verifiable conditions. We finally propose a

consistent estimator for β, the computation of which requires only convex optimization and thus is

not sensitive to starting values of the optimization routine.

This paper is most closely related to several contemporaneous papers. Pakes and Porter (2015)

propose a different approach to construct moment inequalities for the panel data multinomial
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choice model, based on ranking the options according to their conditional choice probabilities. By

comparison, we compare the entire vector of choice probabilities for all options across time periods.

Khan, Ouyang, and Tamer (2016) propose an approach to point identification in a dynamic panel

setting. Some of their identification strategies are similar to ours, but our estimators are rather

different.

Our paper builds upon the existing literature on semi-parametric panel binary choice models.

Manski (1987) proposed the maximum score approach for identification and estimation. Honoré and

Kyriazidou (2000) use a maximum score-type estimator for a dynamic panel binary choice model.

Abrevaya (2000) proposes a general class of rank-correlation estimators, which is a smoothed version

of Manski’s (1987) estimator when applied to the panel binary choice models. Honoré and Lewbel

(2002) generalize the special regressor approach of Lewbel (1998, 2000) to the panel data setting.

Semi-parametric identification and estimation of multinomial choice models have been consid-

ered in cross-sectional settings (i.e., models without individual fixed effect). Manski (1975) and

Fox (2007) base identification on the assumption of a rank-order property that the ranking of β′Xk
i

across k is the same as that of E[Y k
i |X1

i , . . . , X
K
i ] across k; this is an IIA-like property that allows

utility comparisons among all the options in the choice set to be decomposed into pairwise com-

parisons among these options. To ensure this rank-order property, Manski assumes that the error

terms are i.i.d. across k, while Fox relaxes the i.i.d. assumption to exchangeability. Exchangeability

(or the rank-order property) is not used in our approach. Lewbel (2000) considers identification

using a special regressor. In addition, Powell and Ruud (2008) and Ahn, Ichimura, Powell, and

Ruud (2015) consider an approach based on matching individuals with equal conditional choice

probabilities, which requires that the rank of a certain matrix formed from the data to be deficient

by exactly 1. This approach does not obviously extend to the panel data setting with fixed effects.

The existing literatures on cross-sectional binary choice models and on the semi-parametric

estimation of single or multiple index models (which include discrete choice models as examples) is

voluminous and less relevant for us, and thus is not reviewed here for brevity.1

The paper proceeds as follows. In section 2, we introduce the notion of cyclic monotonicity

and relate it to a generic multinomial choice model. Subsequently, in Section 3, we present the

moment inequalities emerging from cyclic monotonicity for panel multinomial choice models, and

1An exhaustive survey is provided in Horowitz (2009), chapters 2 and 3.
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give assumptions under which these inequalities suffice to point identify the parameters of interest.

This section also contains examples where the point identification assumptions are verified. Section

4 presents an estimator, shows its consistency, and evaluates its performance using Monte Carlo

experiments. Sections 3 and 4 focus on 2-period panels and length-2 cycles. In Section 5, we

extend the discussion to longer panel and longer cycles. In Section 6, we discuss the closely

related aggregate panel multinomial choice model, which is a workhorse model for demand modeling

in empirical IO. This section also contains an illustrative empirical application using aggregate

supermarket scanner data. Section 7 concludes.

2 Preliminaries

In this section, we describe the concept of cyclic monotonicity and its connection to multinomial

choice models. We begin by providing the definition of cyclic monotonicity.

Definition 1 (Cyclic Monotonicity). Consider a function f : U → RK where U ⊆ RK , and a

length M -cycle of points in RK : u1, u2, . . . , uM , u1. The function f is cyclic monotone with respect

to the cycle u1, u2, . . . , uM , u1 if 2

M∑
m=1

(um − um+1)
′f(um) ≥ 0, (2.1)

where uM+1 = u1. The function f is cyclic monotone on U if it is cyclic monotone with respect to

all possible cycles of all lengths on its domain.

Cyclic monotonicity is defined for mappings from RK → RK , which generalizes the usual

monotonicity for real-valued functions. We make use of the following basic result which relates

cyclic monotonicity to convex functions:

Proposition 1 (Cyclic Monotonicity and Convexity). Consider a differentiable function F : U → R

for an open convex set U ⊆ RK . If F is convex on U , then the gradient of F (denoted ∇F (u) :=

∂F (u)/∂u) is cyclic monotone on U .

The proof for Proposition 1 is available from standard sources (e.g, Rockafellar (1970, Ch. 24),

Villani (2003, Sct. 2.3)). Consider a univariate and differentiable convex function; obviously, its

2Technically, this defines the property of being “cyclic monotonically increasing,” but for notational simplicity

and without loss of generality, we use “cyclic monotone” for “cyclic monotonically increasing.”
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slope must be monotonically nondecreasing. The above result states that cyclic monotonicity is

the appropriate extension of this feature to multivariate convex functions.

Now we connect the above discussion to the multinomial choice model. We start with a generic

random utility model for multinomial choices without specifying the random utility function or the

data structure in detail. Suppose that an agent is choosing from K+1 choices 0, 1, . . . ,K. The util-

ity that she derives from choice k is partitioned into two additive parts: Uk + εk, where Uk denotes

the systematic component of the latent utility, while εk denotes the random shocks, idiosyncratic

across agents and choice occasions. She chooses choice k∗ if Uk
∗

+ εk
∗ ≥ maxk=0,...,K U

k + εk. Let

Y k = 1 if she chooses choice k and 0 otherwise. As is standard, we normalize U0 = ε0 = 0.

Let uk denote a generic realization of Uk. Also let U = (U1, . . . , UK)′, u = (u1, . . . , uK)′, and

ε = (ε1, . . . , εK)′. We introduce the “social surplus function” (McFadden (1978, 1981)), which is

the expected utility obtained from the choice problem:

W(u) = E

{
max

k=0,...,K
[Uk + εk]|U = u

}
. (2.2)

The following lemma shows that this function is convex and differentiable, that its gradient corre-

sponds to the choice probability function, and finally that the choice probability function is cyclic

monotone. The first three parts of the lemma are already known in the literature (eg. McFad-

den (1981)), and the last part is immediately implied by the previous parts and Proposition 1.

Nonetheless, we give a self-contained proof in Appendix A for easy reference for the reader.

Lemma 2.1 (Gradient). Suppose that U is independent of ε and that the distribution of ε is

absolutely continuous with respect to the Lebesgue measure. Then

(a) W(·) is convex on RK ,

(b) W(·) is differentiable on RK ,

(c) p(u) = ∇W(u), where p(u) = E[Y|U = u] and Y = (Y 1, . . . , Y K)′, and

(d) p(u) is cyclic monotone on RK .

The cyclic monotonicity of the choice probability can be used to form identifying restrictions

for the structural parameters in a variety of settings. In this paper, we focus on the linear panel

data model with fixed effects, composed of equations (1.1) and (1.2).
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3 Panel Data Multinomial Choice Models with Fixed Effects

We focus on a short panel data setting where there are only two time periods. An extension to

multiple time periods is given in Section 5. Let U, ε, and Y be indexed by both i (individual)

and t (time period). Thus they are now Uit ≡ (U1
it, . . . , U

K
it )′, εit ≡ (ε1it, . . . , ε

K
it )′, and Yit ≡

(Y 1
it , . . . , Y

K
it )′. Let there be an observable dx dimensional covariate Xk

it for each choice k, and let

Ukit be a linear index of Xk
it plus an unobservable individual effect Aki :

Ukit = β′Xk
it +Aki , (3.1)

where β is a dx-dimensional unknown parameter. Let Xit = (X1
it, . . . , X

K
it ) and Ai = (A1

i , . . . , A
K
i )′.

Note that Xit is a dx ×K matrix. In short panels, the challenge in this model is the identification

of β while allowing correlation between the covariates and the individual effects. We tackle this

problem using the cyclic monotonicity of the choice probability, as we explain next.

3.1 Identifying Inequalities

We derive our identification inequalities under the following assumption.

Assumption 3.1. (a) εi1 and εi2 are identically distributed conditional on Ai,Xi1,Xi2:

(εi1 ∼ εi2)|(Ai,Xi1,Xi2)

(b) the conditional distribution of εit given Ai,Xi1,Xi2 is absolutely continuous with respect to

the Lebesgue measure for t = 1, 2 everywhere on the support of Ai,Xi1,Xi2.

Remark. (i) Part (a) of the assumption is the multinomial version of the the group homogeneity

assumption of Manski (1987), and is also imposed in Pakes and Porter (2015). It allows us to form

identification inequalities based on the comparison of choices made by the same individual over

different time periods, and by doing this to eliminate the fixed effect. This assumption rules out

dynamic panel models where Xk
it may include lagged values of (Y k

it )
K
k=1. But it allows εit to be

correlated with the covariates, and arbitrary dependence between εit and the fixed effects.

(ii) The assumption imposes no restriction on the dependence amongst the errors. The errors

across choices in a given period can be arbitrarily dependent, and the errors across time periods,

although assumed to have identical marginal distributions, can have arbitrary dependence. �
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To begin, we let η denote a K dimensional vector with the kth element being ηk, and define

p(η,x1,x2,a) :=
(

Pr[εki1 + ηk ≥ εk′i1 + ηk
′ ∀k′|Xi1 = x1,Xi2 = x2,Ai = a]

)
k=1,...,K

. (3.2)

Assumption 3.1(a) implies that

p(η,x1,x2,a) =
(

Pr[εki2 + ηk ≥ εk′i2 + ηk
′ ∀k′|Xi1 = x1,Xi2 = x2,Ai = a]

)
k=1,...,K

. (3.3)

Assumption 3.1(b) implies that p(η,x1,x2,a) is cyclic monotone in η for all possible values of

x1,x2,a. Using the cyclic monotonicity with respect to length-2 cycles, we obtain, for any η1,η2

and x1,x2,a:

(η1 − η2)′[p(η1,x1,x2,a)− p(η2,x1,x2,a)] ≥ 0. (3.4)

Now we let η1 = X′i1β + Ai and η2 = X′i2β + Ai. Note that for t = 1, 2, by the definition of

p(η,x1,x2,a), we have

p(X′itβ + Ai,Xi1,Xi2,Ai) = E[Yit|Xi1,Xi2,Ai]. (3.5)

Combining (3.4) and (3.5), we have

(E[Y′i1|Xi1,Xi2,Ai]− E[Y′i2|Xi1,Xi2,Ai])(X
′
i1β −X′i2β) ≥ 0 everywhere. (3.6)

Note that the fixed effect differences out within the second parenthetical term on the left hand-side.

Take the conditional expectation given Xi1,Xi2 of both sides, and we get,

(E[Y′i1|Xi1,Xi2]− E[Y′i2|Xi1,Xi2])(X
′
i1β −X′i2β) ≥ 0 everywhere. (3.7)

These inequality restrictions involve only identified/observed quantities and the unknown parameter

β, and thus can be used to set identify β in the absence of further assumptions, and to point identify

β with additional assumptions as discussed below. Note that under binary choice (K = 1), both

terms on the LHS of (3.7) become scalars, so that these inequalities reduce to the rank correlation

result in Manski (1987, Lemma 1).

Hence the foregoing derivations have proved the following lemma:

Lemma 3.1. Under Assumption 3.1,

(E[Y′i1|Xi1,Xi2]− E[Y′i2|Xi1,Xi2])(X
′
i1β −X′i2β) ≥ 0 everywhere.

The extension in Section 5 discusses how longer cycles can be used when more time periods are

available in the dataset. The next subsection presents conditions under which length-2 cycles are

enough to produce point identification.
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3.2 Point Identification of Model Parameters

To study the identificaiton information contained in the inequalties in (3.7), we rewrite them as

E[∆Y′i|Xi1,Xi2]∆X′iβ ≥ 0 (3.8)

where ∆Zi = Zi2 − Zi1.

Define g ≡ (∆XiE[∆Yi|Xi1,Xi2]). For identification, we will want to place restrictions on the

support of the vector g, which we define as:

G = supp(g) = supp(∆XiE[∆Yi|Xi1,Xi2]). (3.9)

We would like to find conditions on model primitives (Xit, Ait and εit) that guarantee that the

support of the vectors g is rich enough to ensure point identification.

First, we impose regularity conditions on the unobservables:

Assumption 3.2. (a) Pr(supp(εit|Ai, Xi1, Xi2) = RK |Xi1, Xi2) > 0 almost surely. (Correction

Note: This part of the assumption is stated incorrectly in the published version. This is the correct

version.)

(b) The conditional distribution of (εit, Ai) given (Xi1,Xi2) = (x1,x2) is uniformly continuous

in (x1,x2). That is,

lim
(x1,x2)→(x0

1,x
0
2)

sup
e,a∈RK

|Fεit+Ai|Xi1,Xi2
(e + a|x1,x2)− Fεit+Ai|Xi1,Xi2

(e + a|x0
1,x

0
2)| = 0.

The role of Assumption 3.2(a) becomes clear when we describe the covariate conditions below.

Assumption 3.2(b) is a sufficient condition for the continuity of the function E[∆Yi|Xi1 = x1,Xi2 =

x2]. The latter ensures that the violation of the inequality E[∆Y′i|Xi1 = x1,Xi2 = x2]∆x′b ≥ 0 for

a point (x1,x2) on the support of (Xi1,Xi2) implies that the inequality E[∆Y′i|Xi1,Xi2]∆X′ib ≥ 0

is violated with positive probability.

We also need a condition on the observable ∆Xi. In general this is not straightforward. Note

that the vectors g are equal to

∆XiE[∆Yi|Xi1,Xi2] =

K∑
k=1

∆Xk
i E[∆Y k

i |Xi1,Xi2] (3.10)

In general, it is difficult to formulate conditions on the RHS of the previous equation because the

RHS is a weighted sum of ∆Xk
i where the weight is the conditional choice probability, which is
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not a primitive quantity. We proceed by considering two approaches to reduce the RHS to a single

term.

There are two types of events conditional on which we can reduce the summation to a single

term:

1. For a given k, let ∆X−ki = (∆X1
i , . . . ,∆X

k−1
i ,∆Xk+1

i , . . . ,∆XK
i ). Conditional on the event

∆X−ki = 0 (that is, individual i’s covariates are constant across both periods, for all choices

except the k-th choice), we have

∆XiE[∆Yi|Xi1,Xi2] = ∆Xk
i E[∆Y k

i |Xi1,Xi2].

Note that, supp(∆Xk
i E[∆Y k

i |Xi1,Xi2]) = supp(∆Xk
i sign(E[∆Y k

i |Xi1,Xi2])) due to the fact

that E[∆Y k
i |Xi1,Xi2] is a scalar random variable. Assumption 3.2(a) ensures that we have

Pr
(
E[∆Y k

i |Xi1,Xi2] = 0|∆X−ki = 0
)

= 0, which implies that sign(E[∆Y k
i |Xi1,Xi2]) ∈ {−1, 1}

with probability one conditional on ∆X−ki = 0. Thus, it is sufficient to assume a rich support

for ∆Xk
i and −∆Xk

i conditional on ∆X−ki = 0. We are thus motivated to define

GI ≡ ∪ksupp(±∆Xk
i |∆X−ki = 0), (3.11)

where the conditional support of ±∆Xk
i is the union of the conditional support of ∆Xk

i and

that of −∆Xk
i .

2. Conditional on the event ∆Xk
i = ∆X1

i for all k (that is, individual i’s covariates are identical

across all choices and only vary across time periods), we have

∆XiE[∆Yi|Xi1,Xi2] = ∆X1
i E[−∆Y 0

i |Xi1,Xi2],

where ∆Y 0
i = −

∑K
k=1 ∆Y k

i . Similar arguments as above shows that it is sufficient to assume

a rich support for ∆X1
i and −∆X1

i , which motivates us to defined

GII ≡ supp(±∆X1
i |∆Xk

i = ∆X1
i ∀k). (3.12)

In what follows, our identification condition will be imposed on the set

G ≡ GI ∪GII . (3.13)

Two assumptions on G are considered, which differ in the types of covariates that they accommo-

date. Each assumption is sufficient by itself. We consider each case in turn.
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Assumption 3.3. The set G contains an open Rdx ball around the origin.

The gist of this assumption is that, beginning from the origin and moving in any direction, we

will reach a point in G. This assumption essentially requires all covariates to be continuous, but

allows them to be bounded.

Our second sufficient condition allows discrete covariates generally, but requires one regressor

with large support. Let g−1 denote g with the first element removed, and define G−1 = {g−1 :

∃g1 ∈ R s.t.(g1, g
′
−1)
′ ∈ G}. Let G1(g−1) = {g1 ∈ R : (g1, g

′
−1)
′ ∈ G}. For j = 2, . . . , dx, we define

g−j , G−j , and Gj(g−j) analogously.

Assumption 3.4. For some j∗ ∈ {1, 2, . . . , dx}:

(a) Gj∗(g−j∗) = R for all g−j∗ in a subset G0
−j∗ of G−j∗,

(b) G0
−j∗ is not contained in a proper linear subspace of Rdx−1,

(c) the j∗th element of β, denoted by βj∗, is nonzero.

The identification result is stated using the following criterion function:

Q(b) = E
∣∣min(0, E[∆Y′i|Xi1,Xi2]∆X′ib)

∣∣. (3.14)

We will return to this criterion function below in considering estimation.

Theorem 3.1. Under Assumptions 3.1, 3.2, and either 3.3 or 3.4, we have Q(β) = 0, and Q(b) > 0

for all b 6= β such that b ∈ Rdx and ‖b‖ = 1.

Remark. In the binary choice case, our condition 3.3 reduces to conditions similar to those in

Hoderlein and White (2012), and our condition 3.4 reduces to conditions similar to those in Manski

(1987). Hoderlein and White (2012) and Manski (1987) arrived at their respective conditions via

distinct and mutually incompatible arguments. We arrive at both types of point identification

conditions in a single framework, and by doing so were able to demonstrate the necessity of the

large support condition in the presence of a discrete regressor in the binary choice case. This is

reported as Theorem C.1 in section C of the Supplemental Appendix, which extends, in a small

way, Theorem 1 of Chamberlain (2010) to the case with general discrete regressors rather than a

time dummy, and provides an alternative proof for the case of nonparametric error.3 �

3Ahn, Ichimura, Powell, and Ruud (2015), who study a general model that encompasses the cross-sectional
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3.3 Examples

Next we consider several examples, which show that verifying Assumption 3.3 or 3.4 can be straight-

forward. For all the examples, we consider the trinary choice (K = 2) case with two covariates

(dx = 2).

Example 1. supp((Xk
it)t=1,2;k=1,2) = [0, 1]8. Then supp((∆Xk

i )k=1,2) = [−1, 1]4. Then, GI ⊇

supp(∆X2
i |∆X1

i = 0) = [−1, 1]2. Obviously, [−1, 1]2 contains an open neighborhood of the origin;

thus, Assumption 3.3 is satisfied.

Example 2. Suppose that the covariates do not vary across k: Xk
it = Xit for k = 1, 2, and

supp((Xit)t=1,2) = [0, 1]4. Thus, GII = supp(∆Xi) = [−1, 1]2 which satisfies Assumption 3.3.

Example 3. Suppose that the covariates take continuous values for alternative 1 and discrete

values for alternative 2, as an example of which supp((X1
it)t=1,2) = [0, 1]4, supp((X2

it)t=1,2) = {0, 1}4,

and the joint support is the Cartesian product. Then, supp(∆X1
i |∆X2

i = 0) = [−1, 1]2. Thus,

Assumption 3.3 is satisfied.

Example 4. Suppose that the first covariate is a time dummy: Xk
1,it = t for all k, t, and the

second covariate has unbounded support: supp((Xk
2,it)t=1,2;k=1,2) = (c,∞)4 for some c ∈ R. Then,

supp
(
∆X1

i |∆X1
i = ∆X2

i

)
= {1} × R.

Hence, G ⊇ GII = {−1, 1} × R. Let j∗ = 2 (for j∗ as defined in Assumption 3.4), and let G0
−2 =

{−1, 1}. Assumption 3.4(b) obviously holds. Assumption 3.4(a) also holds because G2(−1) =

G2(1) = R. Assumption 3.4(c) holds as long as β2 6= 0.

3.4 Remarks: Cross-Sectional Model

In this paper we have focused on identification and estimation of panel multinomial choice models.

Here we briefly remark on the use of the cyclic monotonicity (CM) inequalities for estimation

multinomial choice model, give a point identification condition that allows discrete regressors without explicitly

requring large support. Their condition is imposed on a non-primitive quantity that depends on β. This condition

may hold for a subset of values of β, but not for all values of β in {b ∈ RK : ‖b‖ = 1}, as implied by Theorem 1 of

Chamberlain (2010).
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in cross-sectional multinomial choice models, which is natural and can be compared to the large

number of existing estimators for these models. In the cross-sectional model, the individual-specific

effects disappear, leading to the choice model

Y k
i = 1{β′Xk

i + εki ≥ β′Xk′
i + εk

′
i for all k′ = 0, . . . ,K}.

Hence, to apply the CM inequalities, the only dimension upon which we can difference is across

individuals. Under the assumptions that the vector of utility shocks εi is (i) i.i.d. across individuals

and (ii) independent of the covariates X, the 2-cycle CM inequality yields that, for all pairs (i, j),

(E[Yi|Xi]− E[Yj |Xj ]) · (Xi −Xj)
′ β ≥ 0.

In particular, for the binary choice case (k ∈ {0, 1}), this reduces to

(
E[Y 1

i |Xi]− E[Y 1
j |Xj ]

)
· (Xi −Xj)

′ β ≥ 0

which is the estimating equation underlying the maximum score (Manski (1975)) and maximum

rank correlation (Han (1987)) estimators for the binary choice model.

4 Estimation and Consistency

In this section, we propose a computationally easy consistent estimator for β, based on Theorem

3.1. The consistency is obtained when n→∞ with T is fixed. In particular, we focus on T = 2 and

only discuss longer panels in Section 5 below. Based on the panel data set, suppose that there is a

uniformly consistent estimator p̂t(x1,x2) for E(Yit|Xi1 = x1,Xi2 = x2) for t = 1, 2. Then we can

estimate the model parameters using a sample version of the criterion function given in equation

(3.14). Specifically, we obtain a consistent estimator of β as β̂ = β/‖β‖, where

β = arg min
b∈Rdx :maxj=1,...,dx |bj |=1

Qn(b), and (4.1)

Qn(b) = n−1
n∑
i=1

[
(b′∆Xi)(∆p̂(Xi1,Xi2))

]
− , (4.2)

where [z]− = |min(0, z)|, and ∆p̂(Xi1,Xi2) = p̂2(Xi1,Xi2) − p̂1(Xi1,Xi2). The estimator is easy

to compute because Qn(b) is a convex function and the constraint set of the minimization problem

12



is the union of 2dx convex sets. If one knows the sign of a parameter, say β1 > 0, one can simplify

the estimator even further by using the constraint set {b ∈ Rdx : b1 = 1} instead. 4 5

The following theorem shows the consistency of β̂.

Assumption 4.1. (a) maxi=1,...,n ‖∆p̂(Xi1,Xi2)−∆p(Xi1,Xi2)‖ →p 0 as n→∞, where ∆p(x1,x2) =

E[Yi2 −Yi1|Xi1 = x1,Xi2 = x2], and

(b) maxt=1,2E[‖Xit‖] <∞.

Theorem 4.1 (Consistency). Under Assumptions 3.1, 3.2, 4.1, and either 3.3 or 3.4:

β̂ →p β as n→∞.

The consistency result in Theorem 4.1 relies on an estimator of ∆p(x1,x2) that is uniformly

consistent over the observed values of (Xi1,Xi2) (i.e. Assumption 4.1). When supp(Xi1,Xi2) is

compact, any estimator that is uniformly consistent on supp(Xi1,Xi2) satisfies this requirement.

Such estimators are abundant in the nonparametric regression literature; see for example, Devroye

(1978) for nearest neighbor estimators, Hansen (2008) for kernel regression estimators, and Hirano,

Imbens, and Ridder (2009) for a sieve logit estimator. When supp(Xi1,Xi2) is not compact, at least

the nearest neighbor estimators and the kernel regression estimators can still be shown to satisfy

our uniform consistency requirement using the uniform convergence rate results in the references

just given, provided that the observed n values of (Xi1,Xi2) are contained in a slowly expanding

subset of its support with probability approaching one. The existence of such a slowly expanding

subset can be guaranteed by imposing appropriate tail probability bounds for the covariates. For

example if a kernel regression estimator is used, one can show using Theorem 2 of Hansen (2008)

that it suffices to assume that the covariates have tails that are thinner than polynomial.

Remark: Partial identification. Here we have focused on point identification of the model

parameters utilizing the cyclic monotonicity inequalities. An alternative would be to consider the

case when the parameters are partially identified. In that case, confidence intervals for β can

4An alternative candidate for β̂ is arg minb∈Rdx :‖b‖=1Qn(b). However, obtaining this estimator requires minimizing

a convex function on a non-convex set, which is computationally less attractive.
5Instead of forming the criterion function using a nonparametric estimator of p(·, ·), one could also use weight

functions to turn the conditional inequalities into unconditional inequalities, as done in Khan and Tamer (2009) and

Andrews and Shi (2013). We investigate this option in the Monte Carlo experiment and report the results in section

D of the Supplemental Appendix.
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be constructed using the methods proposed for general conditional moment inequalities (see, for

example, Andrews and Shi (2013) and Chernozhukov, Lee and Rosen (2013)). These methods are

partial-identification robust, and thus can be applied when our point identification assumptions hold

or do not hold. Moreover, since our moment inequalities, based on cyclic monotonicity, are linear in

the model parameters, we can also utilize more specialized methods for models with nonsingleton,

convex identified sets (Bontemps, Magnac, and Maurin (2012); Freyberger and Horowitz (2015)).

These methods may involve easier computation than the general methods. �

4.1 Monte Carlo Simulation

Consider a trinary choice example and a two-period panel. Let Xk
it be a three-dimensional covariate

vector: Xk
it = (Xk

j,it)j=1,2,3. Let (Xk
j,it)j=1,2,3;k=1,2;t=1,2 be independent uniform random variables in

[0, 1].6 Let Aki = (ωki +X1,i2−X1,i1)/4 for k = 1, 2, where ωki is uniform in [0, 1], independent across

k and independent of other model primitives. Consider the true parameter value β = (1, 0.5, 0.5),

and use the scale normalization β1 = 1.

We consider two specifications. The first specification is a multinomial logit model. In the

second specification, εkit for k = 1, 2 is a difference of two independent Cauchy(x0 = 0, γ = 2)

variates.

In addition to our CM estimator, we also implement Chamberlain’s (1980) conditional likelihood

estimator for comparison.7 The conditional likelihood method is consistent and n−1/2-normal for

the logit specification, but it may not be consistent in the Cauchy specification. For both estimators,

we report bias, standard deviation (SD) and the root mean-squared error (rMSE). To implement

our estimator, we use the Nadaraya Watson estimator with product kernel to estimate p(·, ·) with

bandwidth selected via leave-one-out cross-validation. We consider four sample sizes 250, 500, 1000,

and 2000, and use 5000 Monte Carlo repetitions.

The results are reported in Tables I and II. We only report the performance of β̂2 because

6Assumption 3.3 is satisfied because all the X variables are supported on the unit interval and they can vary freely

from each other. Thus point identification holds under this design.
7In section C of the Supplemental Appendix, we report an instrumental function variation of our estimator, where

the conditional moment inequalities are approximated by unconditional moment inequalities generated by multiplying

the moment function to indicators of hypercubes on the space of the conditioning variables in the spirit of Khan and

Tamer (2009) and Andrews and Shi (2013), instead of estimated nonparametrically. This variation of our estimator

is more difficult to compute and has less desirable Monte Carlo performance.
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that of β̂3 is nearly the same due to the symmetric design of the experiment. Under the Logit

design (Table 1), the conditional likelihood estimator not surprisingly has smaller bias and smaller

standard deviation. Yet our CM estimator is close in performance with conditional likelihood.

Under the Cauchy design, the conditional likelihood estimator displays larger bias and standard

deviation, and the bias shrinks very slowly with the sample size. This may reflect the inconsistency

of the conditional likelihood estimator in this set up. On the other hand, the CM estimator has

a smaller bias and standard deviation, both decreasing significantly as the sample size increases.

Overall, our CM estimator has more robust performance in non-logit setup and leads to only modest

efficiency loss in the logit setups in the range of sample sizes that we consider.8

Table I: Monte Carlo Performance of Estimators of β2 (Logit Design, β0,2 = 0.5)

n BIAS SD rMSE 25% quantile median 75% quantile

CM Estimator

250 -0.0622 0.1385 0.1519 0.3435 0.4302 0.5242

500 -0.0484 0.0977 0.1090 0.3854 0.4477 0.5141

1000 -0.0328 0.0701 0.0774 0.4192 0.4647 0.5133

2000 -0.0257 0.0488 0.0552 0.4402 0.4726 0.5069

Conditional Likelihood Estimator

250 0.0064 0.1283 0.1284 0.4192 0.4992 0.5862

500 0.0022 0.0888 0.0889 0.4419 0.5009 0.5581

1000 0.0016 0.0621 0.0621 0.4592 0.5004 0.5430

2000 -0.0001 0.0439 0.0439 0.4700 0.4994 0.5287

5 Longer Panels (T > 2)

We have thus far focused on two-period panel data sets for ease of exposition. Our method naturally

generalizes to longer panel data sets as well. Suppose that there are T time periods. Then one can

8As the sample size gets larger, the discrepancy between the standard deviation of the CM estimator and the

conditional likelihood estimator may grow because the latter is n−1/2-consistent while the former likely converges

slower.

15



Table II: Monte Carlo Performance of Estimators of β2 (Cauchy Design, β0,2 = 0.5)

n BIAS SD rMSE 25% quantile median 75% quantile

CM Estimator

250 -0.1164 0.2156 0.2450 0.2393 0.3761 0.5226

500 -0.0698 0.1714 0.1851 0.3124 0.4237 0.5379

1000 -0.0392 0.1291 0.1349 0.3701 0.4587 0.5454

2000 -0.0151 0.0953 0.0965 0.4209 0.4809 0.5462

Conditional Likelihood Estimator

250 0.1791 0.5985 0.6247 0.4118 0.6014 0.8467

500 0.1304 0.2512 0.2830 0.4613 0.6018 0.7607

1000 0.1166 0.1642 0.2013 0.5038 0.6045 0.7182

2000 0.1110 0.1142 0.1593 0.5327 0.6042 0.6809

use all cycles with length L ≤ T to form the moment inequalities. To begin, consider t1, t2, . . . , tL ∈

{1, 2, . . . , T}, where the points do not need to be all distinct. Assuming the multi-period analogue

of Assumption 3.1, we can use derivation similar to that in Section 3.1 to obtain

L∑
m=1

β′(Xitm −Xitm+1)E[Yitm |Xit1 , . . . ,XitL ] ≥ 0. (5.1)

To form an estimator, we consider an estimator p̂tm(Xit1 , . . . ,XitL) of E[Yitm |Xit1 , . . . ,XitL ]. Let

the sample criterion function be

Qn(b) = n−1
n∑
i=1

∑
t1,...,tL∈{1,...,T}

[
L∑

m=1

b′(Xitm −Xitm+1)p̂tm(Xit1 , . . . ,XitL)

]
−

(5.2)

The estimator of β, β̂ is defined based on Qn(b) in the same way as in Section 4.

If L = T , the estimator just defined utilizes all available inequalities implied by cyclic mono-

tonicity. However, in practice there are disadvantages of using long cycles because (1) the estimator

p̂tm(Xit1 , . . . ,XitL) can be noisy when t1, . . . , tL contains many distinct values, and (2) it is compu-

tationally more demanding to exhaust and aggregate all cycles of longer length if T is moderately

large. Thus, in the empirical application below, we only use the length-2 cycles, that is, L = 2.

For identification, it might be possible to obtain weaker conditions for point identification when

longer cycles are used, but we were not able to come up with a clean set of conditions for that. For
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estimation, inequalities from longer cycles provide additional restriction on the parameter and thus

could potentially improve efficiency. We investigate the gain in a Monte Carlo experiment next.

Another interesting question is whether (5.1) with L = T exhaust all the information in the

random utility model and leads to the sharp identified set. We believe this is unlikely in general

because the CM inequalities only derive from the convexity of the social surplus function, and do

not use other properties of the random utility model. For instance, in random utility models, the

choice probability of one alternative should not increase when its own utility index stays constant

while the utility indices of the other alternatives weakly increase, which is not captured in the CM

inequalities.9 However, these properties are not straightforward to use in the panel data setting

and do not lead to simple linear (in parameters) moment conditions.

5.1 Monte Carlo Results Using Longer Cycles

Here we use a 3-period extension of the Cauchy design presented in the previous section. All the

specification details are the same (including the fact that Aki depends only on Xk
1,i2−Xk

1,i1), except

that one additional period of data is generated. In Table III, we report the performance of our

moment inequality estimators for β2 using length-2 cycles, and using both length-2 and 3 cycles

(all cycles). As we can see, the performance of the estimator is nearly identical whether or not

the length-3 cycles are used. In practice, one can try using length-2 cycles only first and then add

length-3 cycles to see if the results change. If not, there should be no reason to consider longer

cycles since longer cycles involve higher computational cost.

6 Related model: Aggregate Panel Multinomial Choice Model

Up to this point, we have focused on the setting when the researcher has individual-level panel

data on multinomial choice. In this section, we discuss an important and simpler related model:

the panel multinomial choice model estimated using aggregate data for which we are able to derive

some inference results. Such models are often encountered in empirical industrial organization.10

In this setting, the researcher observes the aggregated choice probabilities (or market shares) for the

consumer population in a number of regions and across a number of time periods. Correspondingly,

9These other properties are studied in Koning and Ridder (2003).
10See, for instance, Berry, Levinsohn, and Pakes (1995) and Berry and Haile (2014).
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Table III: Moment Inequality Estimator of β2 (T = 3, Cauchy Design, β0,2 = 0.5)

n BIAS SD rMSE 25% quantile median 75% quantile

Based on Length-2 Cycles Only

250 -0.1413 0.1393 0.1984 0.2631 0.3565 0.4506

500 -0.0989 0.1069 0.1457 0.3283 0.3997 0.4716

1000 -0.0693 0.0814 0.1069 0.3755 0.4300 0.4837

2000 -0.0467 0.0616 0.0773 0.4120 0.4529 0.4936

Based on All cycles

250 -0.1436 0.1391 0.1999 0.2613 0.3553 0.4465

500 -0.1006 0.1069 0.1467 0.3254 0.3973 0.4683

1000 -0.0702 0.0817 0.1077 0.3736 0.4291 0.4837

2000 -0.0478 0.0618 0.0782 0.4108 0.4514 0.4920

the covariates are also only observed at region/time level for each choice option. To be precise,

we observe (Sct,Xct = (X1,′

ct , . . . , X
K,′

ct )′)n,Tc=1,t=1 which denote, respectively, the region/time-level

choice probabilities and covariates. Only a “short” panel is required, as our approach works with

as few as two periods. Thus, to get the idea across with the simplest notation possible, we focus

on the case where T = 2.

We model the individual choice Yict = (Y 1
ict, . . . , Y

K
ict)
′ as

Y k
ict = 1{β′Xk

ct +Akic + εkict ≥ β′Xk′
ct +Ak

′
ic + εk

′
ict ∀k′ = 0, . . . ,K}, (6.1)

where X0
ct, A

0
ic, and ε0ict are normalized to zero, Aic = (A0

ic, . . . , A
K
ic )′ is the choice-specific individual

fixed effect, and εict = (ε1ict, . . . , ε
K
ict)
′ is the vector of idiosyncratic shocks. Correspondingly, the

vector of choice probabilities Sct = (S1
ct, . . . , S

K
ct )
′ is obtained as the fraction of Ict agents in region

i and time t who chose option k, i.e. Sct = I−1ct
∑Ict

i=1 Yict.

Make the market-by-market version of Assumption 3.1:

Assumption 6.1. (a) The error terms are identically distributed (εic1 ∼ εic2) conditional on

market and individual identity. Let market identity be captured by a random element ηc; then this

condition can be written as (εic1 ∼ εic2)|ηc,Aic and
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(b) the conditional c.d.f. of εict given Aic, ηc is absolutely continuous with respect to the Lebesgue

measure, everywhere in Aic, ηc.

Then arguments similar to those for Lemma 3.1 imply the following lemma.

Lemma 6.1. Under Assumption 6.1, we have

E(∆Y′ic|ηc)(∆X′cβ) ≥ 0, a.s. (6.2)

We no longer need to perform the nonparametric estimation of conditional choice probabilities

because E(Yict|ηc) can be estimated uniform consistently by Sct.
11

Now, we can construct a consistent estimator of β. The estimator is defined as

β̂ = β/‖β‖, where (6.3)

β = arg min
b∈Rdx :maxj=1,...,J |bj |=1

Qn(b) = n−1
n∑
c=1

[
(b′∆Xc)(∆Sc)

]
− . (6.4)

This estimator is consistent by similar arguments as those for Theorem 4.1. Estimators using longer

cycles when T > 2 can be constructed as in the previous section.

6.1 Convergence Rate of β̂ in the Aggregate Case

In the aggregate case, Ict is typically large relative to n. As a result, it is often reasonable to assume

that Ict increases fast as n→∞, and Sct converges to the limiting choice probability E[Yict|ηc] fast

enough that the difference between Sct and E[Yict|ηc] has negligible impact on the convergence of

β̂. Under such assumptions, we can derive a n−1/2 convergence rate for β̂.

The derivation involves differentiating the criterion function with respect to b, which is easier

to explain on a convex parameter space rater than the unit circle that we have been using as the

normalized parameter space. Thus, for ease of exposition, we switch to the normalization β1 = 1

in this section. The parameter space is hence {(1, b̃′)′ : b̃ ∈ Rdx−1}. Let β̃ denote β with the first

coordinate removed. We make the following assumptions.

11If infc,t Ict grows fast enough with n × T , this estimator is uniformly consistent, i.e. supc supt ‖Sct −

E(Yict|ηc)‖ →p 0. Section 3.2 of Freyberger’s (2013) arguments (using Bernstein’s Inequality) imply that the above

convergence holds if log(n× T )/minc,t Ict → 0.

19



Assumption 6.2. (a) (Sct,Xct)
2
t=1 is i.i.d. (independent and identically distributed) across c, and

E(‖vec(Xct)‖2) <∞.

(b) maxt=1,2E[‖Sct − E[Yict|ηc]‖2] = O(n−1).

(c) β̂ →p β.

Let Wc = (∆Xc)E[∆Yic|ηc]. Let W1
c denote the first coordiante of Wc, and let W̃c denote

Wc with the first coordinate removed.

(d) Pr(b′Wc = 0) = 0 for all b such that b1 = 1 and ‖b− β‖ ≤ c1 for a constant c1.

(e) With probability one, the conditional c.d.f. FW1
c |W̃c

(·|W̃c) of W1
c given W̃c is continuous

on [−β̃′W̃c,∞), continuously differentiable on (−β̃′W̃c,∞) with the derivative fW1
c |W̃c

(·|W̃c) that

is bounded by a constant C.

(f) The smallest eigenvalue of

E[W̃cW̃
′
cfW1

c |W̃c
(−W̃′

cβ̃ − τW′
c(b− β)|W̃c)1(W′

c(b− β) < 0)]

is bounded below by c2 > 0 for all τ ∈ (0, 1) and all b such that b1 = 1 and ‖b− β‖ ≤ c1.

For establishing the rate result, we follow the general methods of Kim and Pollard (1990) and

Sherman (1993), which are useful for dealing with the noise component due to sample averaging

in the criterion function (6.4). This is the only source of noise we need to consider, as Assumption

6.2(b) ensures that the noise from using the observed market shares Sct to estimate the conditional

expectations E[Yct|ηc] is negligible. In the individual-level data setting, an analogue of Assumption

6.2(b) would hold and a n−1/2 rate for β̂ would be obtained if the conditional choice probability were

either known or estimable at a parametric rate. However, a known conditional choice probability

or one estimated with parametric rate is implausible in that setting. We conjecture that with

individual-level data, the noise due to estimating the conditional choice probability dominates and

determines the rate. However, we have not found a way to handle this part of the noise.

Parts (d)-(f) of this assumption require further explanation. We need to establish a quadratic

lower bound for the limiting criterion function in a neighborhood of the true value β. We do so via

deriving the first and the second order directional derivatives of the limiting criterion function in

such a neighborhood. Parts (d)-(e) are used to guarantee the existence of directional derivatives,

while part (f) ensures that the second-order directional derivative is bounded from below by a
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quadratic function.12 The proof of the following theorem is given in Section B of the Supplemental

Appendix.

Theorem 6.1. Under Assumption 6.2, we have β̂ − β = Op(n
−1/2) for β̂ defined in Eq. (6.3).

6.2 Empirical Illustration

Here we consider an empirical illustration, based on the aggregate panel multinomial choice model

described above. We estimate a discrete choice demand model for bathroom tissue, using store/week-

level scanner data from different branches of Dominicks supermarket.13 The bathroom tissue cate-

gory is convenient because there are relatively few brands of bathroom tissue, which simplifies the

analysis. The data are collected at the store and week level, and report sales and prices of different

brands of bathroom tissue. For each of 54 Dominicks stores, we aggregate the store-level sales of

bathroom tissue up to the largest six brands, lumping the remaining brands into the seventh good

(see Table IV).

Table IV: Table of the 7 product-aggregates used in estimation.

Products included in analysis
1 Charmin
2 White Cloud
3 Dominicks
4 Northern
5 Scott
6 Cottonelle
7 Other good (incl. Angelsoft, Kleenex, Coronet and smaller brands)

We form moment conditions based on cycles over weeks, for each store. In the estimation

results below, we consider cycles of length 2. Since data are observed at the weekly level, we

consider subsamples of 10 weeks or 15 weeks which were drawn at periodic intervals from the 1989-

1993 sample period. After the specific weeks are drawn, all length-2 cycles that can be formed from

those weeks are used.

We allow for store/brand level fixed effects and use the techniques developed in Section 3.1 to

difference them out. Due to this, any time-invariant brand- or store-level variables will be subsumed

12We use directional derivatives because our limiting criterion function is not fully differentiable to the second

order. In particular, even though it is first-order differentiable, the first derivative has a kink.
13This dataset has previously been used in many papers in both economics and marketing; see a partial list at

http://research.chicagobooth.edu/kilts/marketing-databases/dominicks/papers.
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Table V: Summary Statistics

min max mean median std.dev

10 week data DEAL 0 1 .4350 0 .4749

PRICE .1776 .6200 .3637 .3541 .0876

PRICE×DEAL 0 .6136 .1512 0 .1766

15 week data DEAL 0 1 .4488 0 .4845

PRICE .1849 .6200 .3650 .3532 .0887

PRICE×DEAL 0 .6091 .1644 0 .1888

into the fixed effect, leaving only explanatory covariates which vary both across stores and time.

As such, we consider a simple specification with Xk = (PRICE, DEAL, PRICE*DEAL). PRICE

is measured in dollars per roll of bathroom tissue, while DEAL is defined as whether a given brand

was on sale in a given store-week.14 Since any price discounts during a sale will be captured in the

PRICE variable itself, DEAL captures any additional effects that a sale has on behavior, beyond

price. Summary statistics for these variables are reported in Table V.

Table VI: Point Estimates for Bathroom Tissue Choice Model

10 week data 15 week data

β1 DEAL .1053 .0725

β2 PRICE -.9720 -.9922

β3 PRICE×DEAL -.2099 -.1017

The point estimates are reported in Table VI. One interesting observation from the table is that

the sign of the interaction term is negative, indicating that consumers are more price sensitive when

a product is on sale. This may be consistent with the story that the sale status draws consumers’

attention to price (from other characteristics of the product).

14The variable DEAL takes the binary values {0, 1} for products 1-6, but takes continuous values between 0

and 1 for product 7. The continuous values for product 7 stand for the average on-sale frequency of all the small

brands included in the product-aggregate 7. This and the fact that PRICE is a continuous variable make the point

identification condition, Assumption 3.3, hold.
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7 Conclusions

In this paper we explored how the notion of cyclic monotonicity can be exploited for the identifi-

cation and estimation of panel multinomial choice models with fixed effects. In these models, the

social surplus (expected maximum utility) function is convex, implying that its gradient, which

corresponds to the choice probabilities, satisfies cyclic monotonicity. This is just the appropriate

generalization of the fact that the slope of a single-variate convex function is non-decreasing.

We establish sufficient conditions for point identification of the model parameters, and propose

an estimator and show its consistency. Noteworthily, our moment inequalities are linear in the

model parameters, so that the estimation procedure is a convex optimization problem, which has

significant computational advantages. In ongoing work, we are considering the possible extension

of these ideas to other models and economic settings.
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A Appendix: Proofs

Proof of Lemma 2.1. (a) By the independence between U and ε, we have

W(u) = E{max
k

[Uk + εk]|U = u} = E{max
k

[uk + εk]}. (A.1)

This function is convex because maxk[u
k + εk] is convex for all values of εk and the expectation

operator is linear.
(b,c) Without loss of generality, we focus on the differentiability with respect to uK . Let

(u1∗, . . . , u
K
∗ ) denote an arbitrary fixed value of (U1, . . . , UK), and let u0∗ = 0. It suffices to show that

limη→0[W(u1∗, . . . , u
K
∗ +η)−W(u1∗, . . . , u

K
∗ )]/η exists. We show this using the bounded convergence

theorem. First observe that

W(u1∗, . . . , u
K
∗ + η)−W(u1∗, . . . , u

K
∗ )

η
= E

[
∆(η,u∗, ε)

η

]
, (A.2)

where ∆(η,u∗, ε) = max{u1∗ + ε1, . . . , uK∗ + η + εK} − max{u1∗ + ε1, . . . , uK∗ + εK}. Consider an
arbitrary value e of ε and e0 = 0. If eK + uK∗ > maxk=0,...,K−1[u

k
∗ + ek], for η close enough to zero,

we have
∆(η,u∗, e)

η
=

(uK∗ + η + eK)− (uK∗ + eK)

η
= 1. (A.3)

Thus,

lim
η→0

∆(η,u∗, e)

η
= 1. (A.4)

On the other hand, if eK + uK∗ < maxk=0,...,K−1[u
k
∗ + ek], then for η close enough to zero, we have

∆(η,u∗, e)

η
=

0

η
= 0. (A.5)

Thus,

lim
η→0

∆(η,u∗, e)

η
= 0. (A.6)

Because ε has a continuous distribution, we have Pr(εK + uK∗ = maxk=0,...,K−1[u
k
∗ + εk]) = 0.

Therefore, almost surely,

lim
η→0

∆(η,u∗, ε)

η
= 1{εK + uK∗ > max

k=0,...,K−1
[uk∗ + εk]}. (A.7)

Also, observe that ∣∣∣∣∆(η,u∗, ε)

η

∣∣∣∣ ≤ ∣∣∣∣uK∗ + η + εK − (uK∗ + εK)

η

∣∣∣∣ = 1 <∞. (A.8)

Thus, the bounded convergence theorem applies and yields

lim
η→0

E

[
∆(η,u∗, ε)

η

]
= E[1{εK + uK∗ > max

k=0,...,K−1
[uk∗ + εk]}] = pK(u). (A.9)

This shows both part (b) and part (c).
Part (d) is a direct consequence of part (c) and Proposition 1.
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Proof of Theorem 3.1. To prove Theorem 3.1, we first prove the following lemma.
Define the convex conic hull of G as:

coni(G) =

{
L∑
`=1

λ`g`

∣∣∣∣∣ g` ∈ G, λ` ∈ R, λ` ≥ 0; `, L = 1, 2, . . .

}
. (A.10)

Lemma A.1. Suppose that the set {g ∈ Rdx : β′g ≥ 0} ⊆ coni(G), then Q(β) = 0, and Q(b) > 0
for all b ∈ {b′ ∈ Rdx : ‖b′‖ = 1} such that b 6= β.

Proof of Lemma A.1. The result Q(β) = 0 is straightforward due to Equation (3.8). We next show
that for any b 6= β and ‖b‖ = 1, Q(b) > 0.

Suppose not, that is, suppose that Q(b) = 0. Then we must have b′g ≥ 0 for all g ∈ G because
if not, due to G being the support set of g there must be a subset G0 of G such that Pr(g ∈ G0) > 0
and b′g < 0 ∀g ∈ G0 which will imply Q(b) > 0. Now that b′g ≥ 0 for all g ∈ G, it must be that

b′g ≥ 0 ∀g ∈ coni(G). (A.11)

This implies that
coni(G) ⊆ {g ∈ Rdx : b′g ≥ 0}. (A.12)

Combining that with the condition of the lemma, we have

{g ∈ Rdx : β′g ≥ 0} ⊆ {g ∈ Rdx : b′g ≥ 0}. (A.13)

By Lemma E.1 in the supplemental appendix, this implies that β = b, which contradicts the
assumption that b 6= β. This concludes the proof of the lemma.

Now we prove Theorem 3.1 using the lemma we just proved. By the lemma, it suffices to show
that

{g ∈ Rdx : β′g ≥ 0} ⊆ coni(G). (A.14)

We break the proof into two cases depending on whether assumption (3.3) or (3.4) is assumed to
hold.

Under assumption 3.3 (continuous covariates). Suppose that Assumption 3.3 holds. Below
we establish two facts:
(i) {g ∈ Rdx : β′g > 0} ⊆ {λg : λ ∈ R, λ ≥ 0, g ∈ G, β′g > 0}; and
(ii) {λg : λ ∈ R, λ ≥ 0, g ∈ G, β′g > 0} ⊆ {λg : λ ∈ R, λ ≥ 0, g ∈ G}.
These two facts (i) and (ii) together immediately imply that

{g ∈ Rdx : β′g ≥ 0} ⊆ {λg : λ ∈ R, λ ≥ 0, g ∈ G} ⊆ coni(G) (A.15)

where the last subset inclusion follows from the definition of coni(·). This proves (A.14).
To show (i), consider an arbitrary point g0 ∈ Rdx such that β′g0 > 0. Then by Assumption 3.3,

there exists a λ ≥ 0 and a g ∈ G such that λg = g0. Because β′g0 > 0, we must have λβ′g > 0, and
thus β′g > 0. This shows result (i).

To show (ii), consider an arbitrary point in {λg : λ ∈ R, λ ≥ 0, g ∈ G, β′g > 0}. Then this
point can be written as λ∗g∗ where λ∗ is a scalar such that λ∗ ≥ 0 and g∗ is an element in G such
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that β′g∗ > 0. By the definition of G, we have either g∗ ∈ supp(±∆Xk
i |∆X

−k
i = 0), for some

k ∈ {1, . . . ,K}, or g∗ ∈ supp(±∆X1
i |∆Xk

i = ∆X1
i ∀k). We discuss these two cases separately.

First, suppose without loss of generality g∗ ∈ supp(∆Xk
i |∆X

−k
i = 0) for some k ∈ {1, . . . ,K}.

Then there exists xk∗ and xk† such that xk∗ − xk† = g∗ and (xk∗, x
k
† ) is in the conditional support of

(Xk
i2, X

k
i1) given ∆X−ki = 0. By the definition of G and Assumption 3.2(b), we have

{E[∆Y k
i |Xk

i2 = xk∗,∆X−ki = 0, Xk
i1 = xk† ]g

∗} ∈ G. (A.16)

Note that Assumption 3.2(b) is used to guarantee that E[∆Y k
i |Xk

i2 = xk∗,∆X
−k
i = 0, Xk

i1 =
xk† ](x

k
∗ − xk† ) is a continuous function and thus maps the support of (Xk

i2, X
k
i1) into the support

of E[∆Y k
i |Xk

i2,∆X−kit = 0, Xk
i1]∆X

k
i . Below we show that

a := E[∆Y k
i |Xk

i2 = xk∗,∆X−ki = 0, Xk
i1 = xk† ] > 0. (A.17)

This and (A.16) together imply that

λ∗g∗ = (λ∗a−1)ag∗ ∈ {λg : λ ∈ R, λ ≥ 0, g ∈ G} (A.18)

This shows result (ii).
The result in (A.17) follows from the derivation:

E[Y k
i2|Xk

i2 = xk∗,∆X−ki = 0, Xk
i1 = xk† ]

= Pr

(
β′xk∗ +Aki + εki2 ≥ max

k′=0,...,K:k′ 6=k
β′Xk′

i2 +Ak
′
i + εk

′
i2

∣∣∣∣Xk
i2 = xk∗,∆X−ki = 0, Xk

i1 = xk†

)
= Pr

(
β′xk∗ +Aki + εki1 ≥ max

k′=0,...,K:k′ 6=k
β′Xk′

i2 +Ak
′
i + εk

′
i1

∣∣∣∣Xk
i2 = xk∗,∆X−ki = 0, Xk

i1 = xk†

)
= Pr

(
β′xk∗ +Aki + εki1 ≥ max

k′=0,...,K:k′ 6=k
β′Xk′

i1 +Ak
′
i + εk

′
i1

∣∣∣∣Xk
i2 = xk∗,∆X−ki = 0, Xk

i1 = xk†

)
> Pr

(
β′xk† +Aki + εki1 ≥ max

k′=0,...,K:k′ 6=k
β′Xk′

i1 +Ak
′
i + εk

′
i1

∣∣∣∣Xk
i2 = xk∗,∆X−ki = 0, Xk

i1 = xk†

)
= E[Y k

i1|Xk
i2 = xk∗,∆X−ki = 0, Xk

i1 = xk† ], (A.19)

where the first and the last equalities hold by the specification of the multinomial choice model,
the second equality holds by Assumption 3.1(a), the third equality is obvious from the conditioning
event that ∆X−ki = 0, and the inequality holds by Assumption 3.2(a) and β′(xk∗ − xk† ) > 0.

Second, suppose instead, and without loss of generality, g∗ ∈ supp(∆X1
i |∆Xk

i = ∆X1
i ∀k). Then

there exists (xk∗, x
k
† )
K
k=1 in the support of (Xk

i2, X
k
i1) such that g∗ = xk∗ −xk† for all k = 1, . . . ,K. By

the definition of G and Assumption 3.2(b), the following vector belongs to G:

−E[∆Y 0
i |Xk

i2 = xk∗, X
k
i1 = xk† ∀k = 1, . . . ,K]g. (A.20)

where ∆Y 0
i = Y 0

i2 − Y 0
i1 and Y 0

it = 1−
∑K

k=1 Y
k
it . Below we show that

a := −E[∆Y 0
i |Xk

i2 = xk∗, X
k
i1 = xk† ∀k = 1, . . . ,K] > 0. (A.21)

The rest of the prove of result (ii) is the same as that in the first case above.
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Inequality (A.21) follows from the derivation:

E[Y 0
i2|Xk

i2 = xk∗, X
k
i1 = xk† ∀k = 1, . . . ,K]

= Pr

(
max

k=1,...,K
β′xk∗ +Aki + εki2 ≤ 0

∣∣∣∣Xk
i2 = xk∗, X

k
i1 = xk† ∀k

)
= Pr

(
max

k=1,...,K
β′xk∗ +Aki + εki1 ≤ 0

∣∣∣∣Xk
i2 = xk∗, X

k
i1 = xk† ∀k

)
< Pr

(
max

k=1,...,K
β′xk† +Aki + εki1 ≤ 0

∣∣∣∣Xk
i2 = xk∗, X

k
i1 = xk† ∀k

)
= E[Y 0

i1|Xk
i2 = xk∗, X

k
i1 = xk† ∀k = 1, . . . ,K], (A.22)

where the arguments for each steps are the same as those for the corresponding steps in (A.19).

Under assumption 3.4: discrete covariates. The following concepts are useful for the proof.
For a set A ⊂ RK for an integer K, we define −A = {−x : x ∈ A}, and say that A is symmetric
about the origin if A = −A.

First we show that it is without loss of generality to assume that the set G0
−j∗ in Assumption 3.4

is symmetric about the origin. Suppose that a set G0
−j∗ satisfying Assumption 3.4 is not symmetric

about the origin. Let Ğ0
−j∗ = G0

−j∗ ∪ (−G0
−j∗). Then Ğ0

j∗ is symmetric about the origin. We

now show that for any g−j∗ ∈ Ğ0
j∗ , Gj∗(g−j∗) = R. It suffices to consider g−j∗ ∈ −G−j∗ . Then

−g−j∗ ∈ G−j∗ which implies that Gj∗(−g−j∗) = R. Note that G is defined to be the union of various
conditional support sets of±∆Xi each of which is symmetric about the origin. Thus, G is symmetric
about the origin. That implies that Gj∗(−g−j∗) = −Gj∗(g−j∗). Therefore, Gj∗(g−j∗) = −R = R,
which complete the proof that Gj∗(g−j∗) = R for any g−j∗ ∈ Ğ0

j∗ . Lastly, because G is symmetric
about the origin, G−j∗ is also symmetric about the origin, which combined with the fact that
G0
−j∗ ⊆ G−j∗ implies that Ğ0

−j∗ ⊆ G−j∗ . Therefore, Assumption 3.4(a) remains valid if we redefine

G0
−j∗ to be Ğ0

−j∗ . It is straightforward to see that Assumption 3.4(b) also remains valid with the
redefinition, and Assumption 3.4(c) is unaffected by the redefinition.

Thus, in the rest of the proof, we assume G0
−j∗ to be symmetric about the origin.

Suppose that Assumption 3.4 holds. It has been shown in the continuous covariate case above
that {λg : λ ∈ R, λ ≥ 0, g ∈ G, β′g > 0} ⊆ {λg : λ ∈ R, λ ≥ 0, g ∈ G} under Assumptions 3.1(a)
and 3.2. That implies

coni({g ∈ G : β′g ≥ 0}) ⊆ coni(G). (A.23)

Below we show that
{g ∈ Rdx : β′g ≥ 0} ⊆ coni({g ∈ G : β′g ≥ 0}). (A.24)

This combined with (A.23) proves (A.14) and thus proves the theorem.
Now we show (A.24). Suppose without loss of generality that βj∗ > 0. Let G̃0 = {g ∈ Rdx :

g−j ∈ G0
−j , gj∗ > −β′−j∗g−j∗/βj∗}, where β−j∗ = (β1, . . . , βj∗−1, βj∗+1, . . . , βdx)′. By Assumption

3.4(a), we have that

G̃0 ⊆ {g ∈ G : β′g ≥ 0}. (A.25)

Consider an arbitrary point g0 ∈ {g ∈ Rdx : β′g ≥ 0}. Then, g0,j∗ > −g′0,−j∗β−j∗/βj∗ . That means

d := g0,j∗ + g′0,−j∗β−j∗/βj∗ > 0. (A.26)

30



By Assumption 3.4(b), G0
−j∗ spans Rdx−1, and is symmetric about the origin. Thus, G0

−j∗ spans

Rdx−1 with nonnegative weights. Then, there exists a positive integer M , weights c1, . . . , cM > 0,
and g1,−j∗ , . . . , gM,−j∗ ∈ G0

−j∗ such that g0,−j∗ =
∑M

m=1 cmgm,−j∗ .

Let gm,j∗ =
(
d/
∑M

m=1 cm

)
−
(
g′m,−j∗β−j∗/βj∗

)
for m = 1, . . . ,M . Let gm be the vector whose

j∗th element is gm,j∗ and who with the j∗ element removed is gm,−j∗ , for m = 1, . . . ,M . Then
gm ∈ G̃0 for m = 1, . . . ,M because gm,−j∗ ∈ G0

−j by construction and gm,j∗ > −g′m,−j∗β−j∗/βj∗
due to d > 0. Also it is easy to verify that g0 =

∑M
m=1 cmgm. Thus, g0 ∈ coni(G̃0). Subsequently,

by (A.25)
g0 ∈ coni({g ∈ G : β′g ≥ 0}). (A.27)

Therefore, (A.24) holds.

Proof of Theorem 4.1. For any b ∈ Rdx , let ‖b‖∞ = maxj=1,...,J |bj |. Below we show that

β →p β/‖β‖∞. (A.28)

This implies that β̂ →p β because β̂ = β/‖β‖ and the mapping f : {b ∈ Rdx : ‖b‖∞ = 1} → {b ∈
Rdx : ‖b‖ = 1} such that f(b) = b/‖b‖ is continuous.

Now we show Eqn. (A.28). Let

Q(b) = E
[
b′(∆Xi) (∆p(Xi1,Xi2))

]
− . (A.29)

Under Assumption 3.1, the identifying inequalities (3.7) hold, which implies that

Q(β) = Q(β/‖β‖∞)) = 0. (A.30)

Consider any b such that ‖b‖∞ = 1 and b 6= β/‖β‖∞. We have b/‖b‖ 6= β/‖β‖ because the function
f(b) = b/‖b‖ : {b ∈ Rdx : ‖b‖∞ = 1} → {b ∈ Rdx : ‖b‖ = 1} is one-to-one. Thus, for such a b,
Theorem 3.1 implies that,

Q(b) > 0. (A.31)

This, the continuity of Q(b), and the compactness of the parameter space {b ∈ Rdx : ‖b‖∞ = 1}
together imply that, for any ε > 0, there exists a δ > 0 such that,

inf
b∈Rdx :‖b‖∞=1,‖b−β‖>ε

Q(b) ≥ δ. (A.32)

Next we show the uniform convergence of Qn(b) to Q(b). Combining (A.31) and the uniform
convergence, one can show the consistency of β̂ using standard consistency arguments in, e.g.,
Newey and McFadden (1994)).

Now we show the uniform convergence of Qn(b) to Q(b). That is, we show that

sup
b∈Rdx :‖b‖∞=1

|Q(b)−Qn(b)| →p 0. (A.33)
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First, we show the stochastic equicontinuity of Qn(b). For any b, b∗ ∈ Rdx such that ‖b‖∞ =
‖b∗‖∞ = 1, consider the following derivation:

|Qn(b)−Qn(b∗)| ≤ n−1
n∑
i=1

∣∣(b− b∗)′(∆Xi) (∆p̂(Xi1,Xi2))
∣∣

≤ n−1
n∑
i=1

‖b− b∗‖‖(∆Xi) (∆p̂(Xi1,Xi2)) ‖

≤ n−1
n∑
i=1

‖∆Xi‖‖b− b∗‖. (A.34)

Therefore, for any fixed ε > 0, we have

lim
δ↓0

lim sup
n→∞

Pr

(
sup

b,b∗∈Rdx ,‖b‖∞=‖b∗‖∞=1,‖b−b∗‖≤δ
|Qn(b)−Qn(b∗)| > ε

)

≤ lim
δ↓0

lim sup
n→∞

Pr

(
δn−1

n∑
i=1

‖∆Xi‖ > ε

)

≤ lim
δ↓0

lim sup
n→∞

Pr

(
n−1

n∑
i=1

‖∆Xi‖ > ε/δ

)
= 0, (A.35)

where the first inequality holds by (A.34) and the equality holds by Assumption 4.1(b). This shows
the stochastic equicontinuity of Qn(b).

Given the stochastic equicontinuity Qn(b) and the compactness of {b ∈ Rdx : ‖b‖∞ = 1}, to
show (A.33), it suffices to show that for all b ∈ Rdx : ‖b‖∞ = 1, we have

Qn(b)→p Q(b). (A.36)

For this purpose, let

Q̃n(b) = n−1
n∑
i=1

[
(b′∆Xi)(∆p(Xi1,Xi2))

]
− . (A.37)

By Assumption 4.1(b) and the law of large numbers, we have Q̃n(b) →p Q(b). Now we only need

to show that |Q̃n(b)−Qn(b)| →p 0. But that follows from the derivation:

|Q̃n(b)−Qn(b)|

≤ n−1
n∑
i=1

∣∣(b′∆Xi1)(∆p̂(Xi1,Xi2)−∆p(Xi1,Xi2))
∣∣ ,

≤

(
sup

i=1,...,n
‖∆p̂t(Xi1,Xi2)−∆pt(Xi1,Xi2)‖

)(
n−1

n∑
i=1

‖b′Xi1 − b′Xi2‖

)
,

→p 0, (A.38)

where the convergence holds by Assumptions 4.1(a)-(b). Therefore the theorem is proved.

32


